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Outline
• Context

• Self-managing chaotic wireless networks
Wi l k l b d• Wireless network emulator testbed

• Interference model (Xi Liu, Srini Seshan)
• A networking view

• Auto transmit rate selection (Glenn Judd, 
Xiaohui Wang)
• Interference a non-issue (really)

• Auto transmit power selection (Xi Liu, Srini 
Seshan)
• Interference a big issue
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Testbed based on 
Signal Propagation Emulation
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Chaotic Wireless Networks

• Unplanned:
• Independent users set up 

APAPs
• Spontaneous
• Variable densities
• Other wireless devices

• Unmanaged:
• Configuring is a pain

ESSID h l l t
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• ESSID, channel, placement, 
power

• Use default configuration

“Chaotic” Deployments

Chaotic Project Roadmap
• Goal: self-configuration and self-optimization
• What can we do with today’s commercial 

hardware?
• Automatically tune parameters to optimize 

network performance
• E.g.: channel, transmit power, transmit rate

• Leverage emerging wireless technologies
T ’ i l h d• Tomorrow’s commercial hardware

• Software defined radios, smart antennas

• Optimize use of the scarce wireless spectrum
• Dynamic spectrum sharing
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Interference: 
So Many Models to Choose From!
• Circle model => Use low power levels 

reduce interference 

• SINR model => Use higher power 
levels provides better performance by 
reducing effects of noise

S
I + N

SINR=

• Capture effect is key: Can higher signal 
power overcome effect of interference?
• What does real hardware do?

Impact of Interference on 
Packet Reception Rate

• Ran experiment on wireless emulator
• Atheros cards + create hidden terminal

• Measure packet 
success rate as 
function of transmit 
power for different 
levels of interference

I t f h d

Hidden

• Interference changed 
in steps of 4db

• SINR formula holds
• Increasing interference 

= reducing power
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Automatic Transmit Rate Selection
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• Best transmit rate depends on the SINR
• Signal to noise and interference ratio

• Can be estimated on 802.11 cards based on RSSI
• Can measure received signal strength using RSSI
• Can exchange information about transmit power, noise, etc.

Charm: Channel-Aware Rate Selection

• Leverage channel reciprocity: 
overhear packets sent by 
destination to learn about Ddestination to learn about 
channel conditions
• Build history of path loss for each 

channel

• When transmitting packet, use 
path loss history to “predict” 
path loss

S

D

?R
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I

path loss
• Select best transmit rate from 

look up table
• Per destination rate threshold table 
• Thresholds dynamically adjusted 

based on experience Time
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The Formulas

RSS P + G PL + G

= PL(Rx to Tx)
(Reciprocity Theorem)

RSS(at Rx) = PTx + GTx – PL(Tx to Rx) + GRx

PL(Rx to Tx) = PRx + GRx + GTx – RSS(at Tx)

RSS(at Rx) = RSS(at Tx) + PTx– PRx

11

PTx/PRx : Transmit Power at  transmitter/receiver

GTx/GRx : Transmit Antenna Gain/Receive Antenna Gain

PL : Path Loss

Constant

SINR(at Rx) = RSS(at Rx) – NRx

Note: no IRx
No interference

But hold your guns, please!

Charm Performance

• Charm performs better in both static and 
dynamic scenarios
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Dealing with Real Hardware
• RSSI versus RSS

• Fairly linear but there can be an offset
• Automatically dealt with by auto-tuning

• Some noise in RSSI measurements
• Filter out with “time-aware” algorithm

• Interference can affect Tx RSSI 
reading and SINR at Rx
• Not really – lots of reasons

• Lack of calibration of transmit power, 
i l RSSI ff t t y 

Ra
te

noise values, RSSI offset, etc.
• Automatically dealt with by auto-tuning

• Calibration of xmit rate thresholds
• Adjust automatically based on observed 

success/failure of transmissions
• Deals with above calibration issues 13
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Transmit Rate Selection and 
Hidden Terminals
• Some rate selection algorithms perform poorly in 

hidden terminal situations
• Collision -> reduce rate -> increased chance of collisionsCollision > reduce rate > increased chance of collisions

• Create simple hidden terminal scenario on emulator

Interferer

14

Receiver

Transmitter
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Transmit Power Control to
Minimize the Effect of Interference
• Simple idea: reduce transmit 

power to minimum needed 
to reach destination

D

to reach destination
• Based on SINR

• Does not work!
• Interference is not constant 

but affected by transmit power 
used by other nodes

• Reducing transmit power 
k

S

makes receiver more 
susceptible to interference

• Simple experiment: if all nodes cut transmit 
power in half, SINR stays the same
• Assuming noise is not a concern

15

Automatic Power Control: Concepts

AP1 AP2

• Any transmission creates interference on all links

n2

n1

 L11 
 L22

 L12 

 L21 

y
• Captured in pair-wise interference conflict graph: 

• Nodes are wireless links
• Edge if simultaneous transmission not possible

• Concurrent transmission is possible if
SINR1+SINR2 ≥ 2*SINRthreshold
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Power Control Algorithm
• Greedily remove edges from conflict graph 

by adjusting transmit power for links
C h d b d• Converges when no more edges can be removed

• Must also adjust “Clear Channel 
Assessment” threshold
• Done in a separate phase using variant of 

existing algorithm (altruistic Echos)

• Centralized algorithm is quite simple• Centralized algorithm is quite simple -
distributed algorithm is a bit more involved
• Nodes exchange information about transmit 

power and RSS observed from neighbors
• Each node operates on local conflict graph
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UDP Throughput
• 36Mbps: F11 interferes with F22  using default txpower

– Concurrent transmission possible by reducing F11’s txpower
– Not fair even with default low CCA

• 48Mbps: no concurrent transmission
– fairness of the protocol is slightly worse because of relatively high CCA
– fairness can be achieved by reducing F11’s txpower
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Experiment with 8 nodes

• F11 interferes with F23 , but not with F22
Pair wise assumption inaccurate on F• Pair-wise assumption inaccurate on F34

• Default behavior is better than expected

Hardware We Would Like
• Per-packet transmit power and CCA threshold

• Only on Intel 2915/2200 with AP driver (kind of)

• Receiver threshold control separate from CCA
• Tied together on above platform
• Problem: cannot hear weak signals when CCA is 

high

• Accurate RSSI measurement and transmit 
power controlpower control
• Depends on card: linear RSSI readings on Atheros, 

linear transmit power control on Intel card 
• But have per-card offsets

20
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Dealing with Real Hardware
• Smoothing of RSSI readings

• Both to deal with occasional spurious reading and 
to get estimates that are stable enoughto get estimates that are stable enough

• Sensitivity of CCA offset and transmit power
• Need a certain margin to work reliably

• Calibration of transmit power control and 
RSSI readings
• Automated protocol to account for card offsets• Automated protocol to account for card offsets
• Really messy: 2 cards N cards

• Need to mix cards to get what you want
• Really ugly – you don’t want to know
• Cards were optimized for today’s WiFi

21

Summary
• Today’s cards provide several readings 

and controls that are useful in fighting 
interference
• RSSI, CCA, transmit power
• Linear on some cards

• But need to deal with different offsets 
on cards and some noise imprecisionon cards and some noise, imprecision

• Requires on the fly calibration
• Complexity depends on application
• Not clear you can avoid this

22
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More on Capture

23

Capture vs. Collision Delay

R
Preamble
(acquisition) Data

• Interference fixed at 82 dBm

T I
time

Interference
delay

• Interference fixed at -82 dBm
• Change target signal strength and delay
• 1 & 2 Mbps have strong capture after acquisition
• 5.5 & 11 stick with the stronger signal
• These results for Prism II cards!
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5.5Mbps
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More on Multi-Path
• Two-path channels
• Keep the primary path constant p p y p
• Change channel delay and strength of 

second path

29
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Impact of Delay and Attenuation (2 
Mbs)

31

32
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Impact of Delay and Attenuation (11 
Mbs)

33
Card design for indoor environments


