(Re)Enabling support for the CC2420 chip on the TinyOS
Simulator

Report for the EE652 Fall 2011 project at USC

Mo Zhu
Department of Electrical Engineering
University of Southern California
mozhu@usc.edu

Abstract

Simulation tools for networked devices are a valuable re-
source to speed up software development.

e TOSSIM (TinyOS SIMulator)[1]] is a network simula-
tor that is part of TinyOS [2] (an operating system for
networked wireless sensors).

e The CC2420 chip [3] is a radio frequency transciever

used in many wireless sensor devices.
The TOSSIM maintained as part of the main TinyOS

trunk does not implement simulation of the CC2420 chip.
This has been succesfully implemented outside the primary
TinyOS trunk in the past [4], however this support has not
been maintained with newer versions of TinyOS.

In this paper we describe in detail the process that was
followed to add CC2420 simulation support to the latest
TOSSIM. We also describe our evaluation method to confirm
that the implementation is functional and accurate. We pub-
lish the results of our evaluations and show that the CC2420
is succesfully simulated within the TOSSIM environment.

1 Introduction

The process of developing software systems for wireless
sensor networks (WSNis) faces some common challenges, in-
cluding: rapid development and deployment, obtaining re-
peatable results across tests, debugging, and collection of
data. These can ideally be addressed by providing a pow-
erful simulation suite.

1.1 Need for simulation

Considering that most WSN hardware sensors (motes)
are typically small, low-powered devices deploying code
onto these devices is not trivial. It often requires connecting
to a separate hardware interface (such as the USB/Serial port
on Micaz[6] or Tmote Sky[7]] motes). While this approach
provides the developer a great level of flexibility in configur-
ing the mote, it also becomes cumbersome to make repeated
changes, and to rapidly test and debug code on the mote. Fur-
thermore, if the software needs to be deployed onto a large
number of motes, it quickly becomes a very time-consuming
task to program each mote with a software update. Sensor
network testbeds have addressed this problem by providing
infrastructural support (i.e. a parallel hardware path to con-
figure motes), but this may not be accessible and/or cost-
effective for all users at all times. Data gathering can also

Srikanth Nori
Department of Computer Science
University of Southern California
snori@usc.edu

become a slow and time-consuming task. If the motes are
programmed to store data (such as test results, logs, etc.),
developers may need to spend considerable amounts of time
in retrieving the data from each mote.

Wireless transmissions are also very susceptible to en-
vironmental factors. Most WSN deployments use 802.15.4
protocols for communication, and this makes use of a net-
work frequency band that is unlicensed and shared with other
devices. This makes it susceptible to interference. Couple
this with the fact that wireless transmissions are heavily in-
fluenced by other loss factors such as multi-path fading or
diffraction and it becomes very difficult to obtain a controlled
environment in which to test a network protocol. The same
test performed at different times is likely to give widely vary-
ing results, often for reasons that are unrelated to the projects
concerns. This makes the development process complicated
since (especially in early stages of software development)
having a controlled environment where repeatable tests can
be performed can greatly speed up development and debug-
ging by allowing developers to focus on issues with the sys-
tem under development without worrying about environmen-
tal factors.

All these issues can be addressed by using a network
simulation environment. As stated in [[1]], a robust simu-
lator system greatly aids in systems research. Simulation
can provide a controlled environment for development and
experimentation, and a platform for performing repeatable
experiments. Experiments can be repeated with similar re-
sults, and the data is easier to analyze to localize issues.
Simulation can also be a cost-effective method for research
groups to work on wireless networks without making large
investments in testbeds. Developers can use simulations for
preliminary testing (with lesser investment into testing in-
frastructure) and later deploy and test code on real-world
testbeds.

1.2 TinyOS and TOSSIM

Simulation platforms operate in different ways. Some,
such as NS-2 [8]], provide a platform-independent environ-
ment for simulation. The algorithm to be simulated has to
be separately implemented and executed within the simula-
tor’s environment. It is unlikely that code written for the real
simulator can run on the final device on which it is being
deployed. On the other hand, simulators such as TOSSIM

provide a method where the same application code targeted
to be deployed on the end-device can be reconfigured and
deployed into the simulator environment with minimal user
intervention.

TOSSIM is designed specially for TinyOS, and many
WSN protocols and applications are implemented using
TinyOS. As such, adding support for a particular radio plat-
form within TinyOS allows many users to make use of the
implementation. The design and internals of TOSSIM are
described in [1]. Some points relevant to this project are
stated here.

e TOSSIM operates by recompiling the same code that
runs on WSN hardware to run within the TOSSIM en-
vironment. It makes use of a modified compiler to com-
pile nesC component graphs into a format usable by the
simulation environemt.

e TOSSIM is a discrete event system simulator. The com-
piled code is then run within a system where a series of
events are passed into the code and excuted “transpar-
ently”. i.e. no modifications needed to run in a simu-
lated environment.

o Essentially, TOSSIM takes the software system and re-
places key hardware interfaces (such as the radio inter-
face, sensor interfaces, hardware clocks, etc) with sim-
ulated components.

e TOSSIM does not simulate bit level network interac-
tions. Instead, it models the behaviour of network in-
teractions. E.g, instead of modeling latency it models
contention and radio backoff, which are the causes of

latency.
Certain components within TinyOS cannot be used di-

rectly. For example, it would make no sense to attempt to
use the interface to the radio hardware directly in a simulator.
TOSSIM provides a mechanism to handle such situations
wherein components can have a parallel implementation that
will be used when the code is compiled for simulation. The
parallel implementation of that component may, e.g., inter-
face with the simulator components instead of interfacing
with the hardware. We make extensive use of this parallel
implementation to add support for the CC2420 chipset.

1.3 Motivation

The authors of TinyOS maintain TOSSIM as part of
TinyOS itself, and it is regularly updated to stay in synch
with the latest features that TinyOS provides. However
CC2420 is not supported as part of the primary TinyOS dis-
tribution. Consequently, many applications that make use of
C(C2420 specific features cannot be run within the simulation
environment.

The HiNRG team at JHU [9]] has added CC2420 support
to TOSSIM in the past [4]. However, as can be seen from
the version control snapshots, this has been implemented on
a TinyOS version that is several revisions behind the latest
revision [10].

The current revision of TinyOS adds support for many
more features as compared to the codebase that the JHU team
started with, such as:

e Support for multiple new platforms

e Support for source routing protocol

e Modified Printf implementation
As stated before, adding support for CC2420 to the lat-
est TinyOS would be very beneficial for developers to pro-
totype applications that use CC2420 features on TOSSIM
before moving them to real WSN testbeds and deployments.
Further, ensuring that it is on the latest version would allow
developers to make use of the newer features of TinyOS.

1.4 Contribution

Through the course of this paper, we hope to make the
following contributions:

Our primary objective is to describe the steps that we
took to add CC2420 support to TinyOS. We describe the
system architecture of the existing codebases that we started
with at a high level. We then go into more detail specifically
on the changes that we needed to make to enable CC2420
support. To the best of our knowledge, this is not available
today and would be a valuable addition to the TinyOS source.

We also describe our evaluation methodology and present
the results of our evaluation. We focus on one important
class of WSN applications - Collection. In particular, we test
our modified TOSSIM implementation by performing data
collection using the Backpressure Collection Protocol [[11]]
and describe the results that we obtained.

Furthermore, we attempt to describe the internals of
TOSSIM and TinyOS to an extent where it should be pos-
sible for the reader to understand and hopefully adapt it for
their own uses. We hope that this document can serve as a
guide for future developers interested in understanding some
of the internals of TinyOS and TOSSIM that are relevant to
simulation.

2 Related Work

In this section, we will review some of the previous work
done on wireless sensor networks. Two representatives are
reviewed and discussed in detail. The first one is TOSSIM
[[L], on which our project is based on. The other is COOJA
[5], which is the simulator for anther WSN operating system
Contiki.

2.1 TOSSIM [1]

An accurate and stable simulator is the key to network
protocol development. TOSSIM is a simulator for TinyOS.
Obviously, the design of TOSSIM is closely related to that
of TinyOS. By using the simulator, we can capture network
behavior even when the network is at the scale of thousands
of nodes. A probabilistic bit error mode makes TOSSIM
expressive enough to capture a wide range of network inter-
actions, while remaining simple and efficient.

2.1.1 TinyOS aspects related to TOSSIM

TinyOS is not a conventional OS. It is a set of program-
ming resources for embedded system that enable application
specific services. The OS builds abstractions of hardware
as components. For example, calling the getData() com-
mand on a sensor component will cause it to later signal a
dataReady() event when the hardware interrupt fires. On the
other hand, some components are purely software implemen-
tation. However, the combination of split-phase operations
and tasks makes this difference transparent to application de-
velopers.

Another aspect worth mentioning is the “fan-in” and
“fan-out”, i.e. an event or command call path can traverse
several components simultaneously. This makes debug very
difficult if we do not have a decent simulator.

2.1.2 TOSSIM design principles

The compiling process determines the target is a mote ap-
plication or TOSSIM library. This is very easy for program-
mer if they want to turn to simulator for debugging. By only
replacing a few low-level TinyOS system components that
uses hardware resources, TOSSIM can capture mote behav-
ior at a fine grain, allowing a wide range of experimentation.

TOSSIM can simulate many motes at once because an
individual motes uses very limited CPU and memory

2.2 COOJA [5]

COOJA is a simulator for Contiki sensor node operat-
ing system. A novel cross-level simulator enables holistic
simultaneous simulation at different levels. The main dif-
ference between TOSSIM and COOJA is how several nodes
are represented in the different simulators. TOSSIM changes
the variables to arrays, where each element in an array corre-
sponds to a node. In COOJA, all the nodes are executed one
by one in the same process. In addition, TOSSIM only sup-
ports simulations of nodes at operating system level, while
COOIJA can work across instruction level, network level and
operating system level.

2.2.1 COOJA design principles

The key character of COOJA is that it enables cross-level
simulation: simultaneous simulation at many levels of the
system. It combines low-level simulation of sensor node
hardware and simulation of high-level behavior in a single
simulation

COOJA simulates networks in which each node can be of
a different type, not only in the application running in nodes,
but also the node hardware.

2.2.2 COOJA architecture
A simulated node in COOJA has three basic properties:

e Node data memory
e Node type

e Node hardware peripherals

Several nodes in the network may share one node type.
The levels supported by COOJA are as the following:

Network level - This can be very helpful when design-
ing and debugging a, for example, routing protocol. At this
phase, the hardware is usually not the focus. Instead, the
network itself is the most important. Thus factors like radio
medium quality and duty cycles are concerns.

Operating system level - COOJA simulates OS (Contiki)
by executing native operating system code. Since the whole
OS is executed, it is useful for example to test and evaluate
changes in the OS libraries.

Instruction set level - It is possible to add new nodes with
a very different underlying structure. For example, nodes
connected to a Java-base microcontroller emulator can be
used instead of a compiled OS (Contiki). Events in the node
are simulated at a bit level.

Although COOJA can simulate nodes at the three levels,
the individual node is always simulated at one of these levels.

The main advantage of doing this is that nodes from each of
the levels can co-exist and further interact with each other in
the same simulation

3 System design

In this section we focus on describing the internal archi-
tecture of TinyOS as relevant to data transmission and recep-
tion.

The primary interface for data send/receive in TinyOS
is the ActiveMessage. [[1] describes them as: “The TinyOS
packet abstraction is an Active Message. AM packets are an
unreliable data link protocol, and the TinyOS network stack
handles media access control and single hop packet transmis-
sion. Active Messages provide precise timestamps as well as
synchronous data-link acknowledgments.” Since we are pri-
marily concerned with packet transmissions and reception
we will focus on the operation of Active Messages.

Active Message ‘ Active Message | ‘ Active Message |

! ! {

AM Queus | ‘ AM Queus | ‘ AM Queus |

{ ! !

| |

‘CCEAED Active Message iTOSSIM Active Message | iTOSSIM Active Message |

¢ ¥ ' K '
CC2420TOSMNetwl

UniqueSend/Recv

CC2420 CSMA
Y

1
‘ CC2420Hardware | i TOSSIM Packet Model |
i

UniqueSend/Recv

CC2420 CSMA

1
| TOSSIM Packet Model |
!

(a) (b) ()

Figure 1: Application architectures

A typical application utilizing the ActiveMessage has an
architecture as in Figure [I][(a)) When executed within the
simulated environment the architecture gets modified to the
one shown in Figure

It can be observed that certain layers in the application
change when run within the simulator. The CC2420 related
layers are replaced by the equivalent layers that are designed
for the TOSSIM. (Layers shown in dotted boxes indicate new
layers)

Figure [I][(b)] shows the default behaviour of TOSSIM
when it runs applications that utilize Active Messages. It can
be observed that there are no layers here that simulate the
CC2420 behaviour.

TinyOS applications are free to bypass the ActiveMes-
sage layer and directly interact with lower layers. Many ap-
plications, such as BCP, do make use of this functionality to
utilize CC2420 interfaces to provide advanced features, such
as snooping on broadcast packets or writing low level times-
tamps into outgoing packets. To enable simulation of such
applications, it is necessary to provide proper support for the
CC2420 radio stack within TinyOS.

The developers of [4] provided this exact feature. The ar-
chitecture of applications run within the simulation environ-
ment in [4] is as described in Figure [I][(c)] with additional
changes to the underlying simulator (explained in subsequent
sections) to support these features. The new replacement lay-
ers in this architecture are indicated with bold outlines.

3.1 Description of enhancements

Multiple changes were made at different layers of the
TinyOS system to enable CC2420 support. All of these
changes are taken from [4] into the latest TinyOS.

The enhancements can be summarized as:

e (CC2420 application level interface support (Pack-
etLink, ActiveMessage, etc).

e Packet level Link Quality Indication (LQI) and Re-
ceived Signal Strength Indication (RSSI) information.

e Multiple channel support for 802.15.4 link (upto 16-
channels).

We have described some of the critical changes here to
the best of our understanding. Many changes that were
primarily made for internal TinyOS purposes (e.g. include
paths, build settings, etc) have been left out for the sake of
brevity.

3.1.1 Simulation internals
e CpmModel modified to enable simulated reading of
(RSSI). Multiple changes done for this across Cpm-
Model, sim_mote, packet interface, etc.

e Duplicate suppression functionality added to enable
unique send/recv functionality.

e Support added to change radio channel (consequently,
noise and RSSI are simulated on a per-channel basis)

3.1.2 CC2420 modifications

The following modifications are provided specifically to
enable simulation of CC2420. These are a combination of
changes made in [4] along with additional changes needed
to integrate this with newer versions of TinyOS.

e Parallel CC2420ActiveMessage implementation pro-
vides AMSend, Receive, Snoop, AMPacket, Packet and
SendNotifier via TossimActiveMessageP. It also pro-
vides CC2420Packet, PacketAcknowledgements, Split-
Control and PacketLink via CC2420RadioC.

e Parallel CC2420RadioC implementation wires to the
appropriate low level components.

e Parallel CC2420 IEEE 802.15.4 implementation pro-
vides Ieee154Send/Receive and Packets functionality.

o IEEE EUI support added to CC2420ActiveMessage

e Parallel CC2420ControlC implementation provides
CC2420Config functions such as get/set ShortAddr and
get/set PanAddr.

e Parallel CC2420CsmaC implementation provides
CSMA level send/recv and RadioBackoff functions for
simulation

e Parallel CC2420PacketBody implementation provides
access to headers, metadata etc from packets

e Parallel PacketLink implementation provided for TEP
127 functionality [12]. Also includes dummy pack-
etlink layer.

e TOSSIM does not set CRC on outgoing pack-
ets (like CC2420), so disabled checking for CRCs
during packet reception when run in TOSSIM in
CC2420TinyosNetworkP

e Parallel CC2420Receive implementation provides a
packet Receive interface connected to TossimPacket-
Model

e Parallel Unique send/receive implementation provides
individual packet send/receive interfaces
Most of the modifications lie within modules related to
CC2420ActiveMessage. A graphical architecture is pre-
sented in Figure [2] In this figure: a block indicates a TinyOS
module, an arrow from src to dest indicates that dest module
provides a service that is being used by the src module, and
a number along an arrow represents the number of interfaces
utilized. Blocks with bold borders are critical - these repre-
sent the modules that have been modified to enable CC2420
simulation.

CC2420ActiveMessageC

CC2420RadioC

CC2420TinyOSNetworkC

eeeeee

[CC2420PacketC [CC2420ControlC l

Figure 2: CC2420ActiveMessage layer modifications

3.2 Illustration

An implementation of the Backpressure Collection Pro-
tocol (BCP) is used to illustrate the modifications that were
described in the previous section. The application performed
data collection - i.e. multiple source motes send data to a sin-
gle sink mote.

The BCP application architecture of packet transmission
layers without simulation is as illustrated in Figure [3][(a)l
The same with CC2420 simulation enabled with our en-
hancements, it is as illustrated in [3|[(B)} The blocks with
bold borders indicate the blocks that get modified to enable
simulation.

It can be observed that the reconfiguration needed for
simulation is transparent to the application code, only the
underlying substrate is modified to enable simulation.

CollectionApplication

CollectionApplication

‘ BCPForwardngngme‘ ‘ BCPRoutingEngine ‘

ActiveMessage 1

‘ CC2420ActiveMessageC ‘ ‘ CC2420Packe!C ‘

‘ BCPForwardingEngine

ActiveMessage

[TossimActiveMessageP] [CC2420P@CK9(C]

BCPRoutingEngine

[UniqueSendC] [TossimPacketModel]

PacketLink

Simulator

(@ (b)

Figure 3: BCP architecture

4 Evaluation

4.1 Evaluation method

To evaluate the operation of the modified simulation we
used the collection application described in the previous sec-
tion. The test was a WSN consisting of multiple source
motes transmitting data to a sink mote, as shown in figure

il

Figure 4: Test topology

We compare the throughput obtained in this applica-
tion when run in the simulator with our changes, with the
throughput obtained when run in the simulator as provided
in [4]. The results are presented in Figures [5and [g]

4.2 Evaluation results

In Figure [f]the expected goodput at sink if all nodes were
transmitting all packets succesfully should have been around
250. The losses are because of the network capacity being
saturated. The loss rates in both [4] and our modified code
are comparable.

4.3 Additional verifications

We ran some additional tests to ensure that neither exist-
ing functionality nor recently added functionality continue to
work. These tests include:

Sink goodput

Seconds

[

8 —— Our medifications

- JHU code

Figure 5: Nodes transmitting 2 packets per second to sink

Sink goodput

Pachets received

--%--- Latest code
——JHU Code

Figure 6: Nodes transmitting 50 packets per second to sink

e The TestRssi application succesfully reports appropri-
ate RSSI values in the simulator.

e TinyOS new reference implementation of Source Rout-
ing Protocol (TestSrp) application succesfully works in
the simulator.

S Conclusion

In this paper we have discussed the architecture level de-
tails of TinyOS and TOSSIM. We have also described the
steps taken in the implementation of CC2420 simulation sup-
port.

Based on the verification results, we can safely say that
the CC2420 simulation support has been restored onto the
latest TOSSIM. We have also been able to succesfully ver-
ify the collection application on a sample network, and have
verified multiple other applications on varying topologies to
confirm that the new system remains functioning along with
other TinyOS features.

We are currently working on some additional features,
listed in the next section.

6 Future work

There are certain CC2420 features that need to be im-
plemented and verified in a simulation environment. These
include:

e Low Power Listening mode implementation

e Security mode implementation

Further verification also needs to be done to confirm that
real-world results and TOSSIM results match and that simu-
lation remains faithful.

One of the key new features available within TinyOS is
the BLIP implementation [13] to enable IPv6 communica-
tion. This makes use of RPL routing as described in [14].
There are two activities related to this that we are pursuing:

Node Packets lost (JHU) Packets lost{Our code)
2 15 16
3 16 15
4 21 96
5 20 20
6 172 63
Total 244 210

Figure 7: Total packets lost per node

e Porting of BLIP with RPL as-is onto TOSSIM.

e Modification of BLIP to use BCP, and porting onto
TOSSIM.

7 References

[1] Philip Levis, Nelson Lee, Matt Welsh, and David Culler.
2003. TOSSIM: accurate and scalable simulation of en-
tire TinyOS applications. In Proceedings of the 1st in-
ternational conference on Embedded networked sensor
systems (SenSys ’03). ACM, New York, NY, USA, 126-
137.

[2] TinyOS project website [Online]. Available: http://
www.tinyos.net

[3] Texas Instruments CC2420 product page [Online].
Available: http://www.ti.com/product/cc2420

[4] (2009, Jan.). Git snapshot of TinyOS source with
CC2420 support in TOSSIM [Online]. Avail-
able: http://hinrg.cs.jhu.edu/git/?p=mike/
tinyos-2.x.git

[5] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T.
Voigt. Cross-level sensor network simulation with cooja.
In Proceedings of SenseApp 2006, Tampa, Florida,USA,
2006.

[6] MicaZ mote product website [online]. Avail-
able: http://www.memsic.com/products/
wireless—sensor-networks/wireless-modules.
html

[71 Tmote Sky product brochure [online]. Avail-
able: http://sentilla.com/files/pdf/eol/
tmote-sky-brochure.pdf

[8] The NS-2 network simulator [online]. Available: http:
//isi.edu/nsnam/ns/

[9] HiNRG at JHU [online]. Available: http://hinrg.cs.
jhu.edu/

[10] TinyOS latest main trunk [online]. Available:
http://code.google.com/p/tinyos-main/
source/checkout/

[11] Scott Moeller, Avinash Sridharan, Bhaskar Krishna-
machari, and Omprakash Gnawali. 2010. Routing with-
out routes: the backpressure collection protocol. In Pro-
ceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN
’10). ACM, New York, NY, USA, 279-290.

[12] David Moss, Philip Levis, TEP 127 - Packet Link
Layer [online]. Available: http://www.tinyos.net/
tinyos-2.x/doc/txt/tepl27.txt

[13] Berkeley Low Power IP [online]. Available:
http://smote.cs.berkeley.edu:8000/tracenv/

wiki/blip
[14] P. Thubert et al, "RPL: IPv6 Routing Protocol
for Low power and Lossy Networks” , IETF

draft [online]. http://tools.ietf.org/html/
draft-ietf-roll-rpl-19

http://www.tinyos.net
http://www.tinyos.net
http://www.ti.com/product/cc2420
http://hinrg.cs.jhu.edu/git/?p=mike/tinyos-2.x.git
http://hinrg.cs.jhu.edu/git/?p=mike/tinyos-2.x.git
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://sentilla.com/files/pdf/eol/tmote-sky-brochure.pdf
http://sentilla.com/files/pdf/eol/tmote-sky-brochure.pdf
http://isi.edu/nsnam/ns/
http://isi.edu/nsnam/ns/
http://hinrg.cs.jhu.edu/
http://hinrg.cs.jhu.edu/
http://code.google.com/p/tinyos-main/source/checkout/
http://code.google.com/p/tinyos-main/source/checkout/
http://www.tinyos.net/tinyos-2.x/doc/txt/tep127.txt
http://www.tinyos.net/tinyos-2.x/doc/txt/tep127.txt
http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
http://tools.ietf.org/html/draft-ietf-roll-rpl-19
http://tools.ietf.org/html/draft-ietf-roll-rpl-19

	Introduction
	Need for simulation
	TinyOS and TOSSIM
	Motivation
	Contribution

	Related Work
	TOSSIM tossim03
	TinyOS aspects related to TOSSIM
	TOSSIM design principles

	COOJA cooja06
	COOJA design principles
	COOJA architecture

	System design
	Description of enhancements
	Simulation internals
	CC2420 modifications

	Illustration

	Evaluation
	Evaluation method
	Evaluation results
	Additional verifications

	Conclusion
	Future work
	References

