The Saturation Throughput Region
of p-Persistent CSMA

Y1 Gai, Shankar Ganesan, and Bhaskar Krishnamachari
Ming Hsieh Department of Electrical Engineering
Viterbi School of Engineering, University of Southern California
Los Angeles, CA 90089
{ygai, shankarg, bkrishna@usc.edu}

Abstract—Many modern wireless data networks employ Car-
rier Sense Multiple Access (CSMA) for efficient medium access.
The p-persistent CSMA protocol is an analytically tractable
version of CSMA that has been used successfully to model
practical medium access protocols such as the IEEE 802.11
Distributed Coordination Function (DCF). We present a closed-
form expression to characterize the access probabilities at the
boundary of the saturation throughput region of p-persistent
CSMA. This expression is a non-trivial generalization of the
elegant result, obtained by J. Massey and P. Mathys in 1985,
that the boundary of the saturation throughput region for slotted
Aloha corresponds to the users adopting independent access
probabilities that sum up to 1. We also present a closed form
expression for the throughput values obtained at the boundary
of the saturation throughput region of p-persistent CSMA for
the case of 2 users.

I. INTRODUCTION

Carrier Sense Multiple Access (CSMA) is a basic access
mechanism used for efficient medium access in wireless net-
works. It forms the basis of the medium access control (MAC)
protocols for many wireless network standards, such as IEEE
802.11 [1] and IEEE 802.15.4 [2].

The p-persistent CSMA algorithm is a simple version of
CSMA, first proposed in [3]. In homogeneous p-persistent
CSMA, users synchronously contend for access to the medium
with a common access probability p, whenever it is free. The
memoryless nature of this access model makes it the most an-
alytically tractable version of CSMA, and it has therefore been
widely studied, e.g., in [4], [5], [6], [7], [8], [9], [10], [11]. It
has been shown in [5], [6] that a p-persistent CSMA protocol
closely approximates the commonly-implemented version of
the CSMA protocol used in IEEE 802.11 (which employs
uniform backoff counters and binary exponential backoff) if
the value of p is chosen such that the average backoff intervals
of the two protocols are the same. For this reason, key results
on analyzing the saturation throughput of IEEE 802.11 and
enhancing its performance [5], [6], [10], have used this p-
persistent CSMA model as their basis.

Bianchi [5] proposed to analyze the backoff process of IEEE
802.11 with a discrete-time Markov chain model, and provided
an analytical model to compute the saturation throughput,
using the saturation throughput performance of p-persistent
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CSMA as an approximation. Cali et al. [6] derived the optimal
value of p for maximizing the throughput of p-persistent
CSMA, and used it to develop a distributed algorithm running
at each user to tune its backoff. Bruno ez al. [10] similarly
analyze the optimal value of p for maximizing the throughput
and minimizing the energy. All of these prior works use the
homogeneous p-persistent CSMA model, which assumes that
all users employ the same p, in which case all users have the
same expected throughput.

A natural generalization of the standard homogeneous p-
persistent CSMA algorithm is the heterogeneous p-persistent
CSMA, in which different users are allowed to pick different
values p;. In this case, because users will get different channel
access opportunities, the performance is characterized by a
throughput region, which describes the set of all feasible
throughput vectors which can be attained by different values
of p;. Such a model has been considered in a few recent
works [12], [13], [14].

The focus of this paper is on the following fundamental
question: what is the saturation throughput region for p-
persistent CSMA? We answer this question by providing a
closed-form expression that characterizes the vector of access
probabilities at the Pareto boundary of the throughput region.
We also provide an explicit characterization of the boundary
of the throughput region in terms of rates for the special case
of n = 2 users.

Consider n backlogged users contending for the medium.
Let T be the expected duration of packet transmission, and
o be the length of the contention period. We prove that the
boundary of the saturation throughput region for p-persistent
CSMA corresponds exactly to the access probabilities p;
satisfying the following relationship:
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Note that this is a necessary and sufficient condition for the
boundary of the throughput region.

Interestingly, the well known slotted Aloha protocol [15]
can be viewed as a special case of p-persistent CSMA, when
T = o. It was shown by Massey and Mathys in 1985 [16] that
the boundary of the saturation throughput region for slotted
Aloha corresponds exactly to the access probabilities summing
to 1, i.e. > p; = 1. Notice that our main result in equation
(1) includes their finding as a special case.



Massey and Mathys also showed that the boundary of the
saturation throughput region for slotted Aloha for two users
is characterized by the equation /S; + v/Sz = 1 where
S1 and Sy are the throughput values respectively for users
1 and 2. We also show in this paper that the corresponding
generalization for p-persistent CSMA is that the throughput
values at the boundary of the two-user throughput region
satisfy the following condition:
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II. PROBLEM FORMULATION

We assume there are n backlogged users in a heterogeneous
p-persistent CSMA system. Time is slotted, and packets are
only allowed to be transmitted as the beginning of each time
slot. Users do not attempt to transmit when the channel is busy,
but when it is idle, user ¢ transmits with access probability p;.
A transmission is successful when only one user transmits, else
there is a collision. We assume that the average transmission
duration is 7T, regardless of whether it is successful or a
collision. Denote .S; as the normalized saturation throughput
for user i, defined as the asymptotic time-averaged proportion
of the time that the channel is used for successful packet
transmissions by user .

The time between the end of one transmission and the start
of another can be treated as a renewal epoch, and using the
elementary renewal theorem [17], it can be shown that
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Denote the system saturation throughput vector as S =
(S1,52,...,5y). Then the saturation throughput region R is
defined as the set of all feasible S.

The boundary of the throughput region R consists of the set
of all Pareto efficient system throughput vectors. A throughput
vector S* is said to be Pareto efficient if there exists no
other throughput vector S’ € R that offers a throughput
improvement to at least one user without hurting any other
users. For a throughput vector S* to be Pareto efficient, for
all ¢, S must be the maximized value of the following
optimization problem:

max S,
st Sy =SIVjAi )
0<p;<1Vli<i<n
Thus every point on the boundary of the throughput region,

S*, represents the simultaneous solution of n interdependent
optimization problems.

III. ANALYSIS OF SATURATION THROUGHPUT REGION

Our key contribution is providing an simple and elegant
expression for the boundary of the saturation throughput region
(the Pareto frontier), as indicated in Theorem 1 below. The key
mathematical challenge we encounter and overcome is solving
the n simultaneous optimization problems in (4), which each
require the constrained maximization of implicit functions.

Theorem 1: At, and only at, all points on the boundary of
the saturation throughput region for p-persistent CSMA, the
access probabilities satisfy the condition in equation (1).

Proof: Note that if there exists any user with a access
probability 1, this will force the throughput of all the other
stations to be 0. This case, which corresponds to the corners
of the boundary of the throughput region, trivially satisfies
the given condition. So in the following, we focus on the case
when p; < 1 for all users. Note also that if there exist any
users with p; = 0, then they are effectively absent from the
system and neither receive any throughput nor have any effect
on the condition in equation (1); for simplicity, we therefore
restrict our focus to users with non-zero access probability in
the following, so that n refers to the total number of users
with non-zero access probability.

First, we prove that if the throughput vector S is at the
Pareto boundary, then the condition in equation (1) holds.

From equation (3), we have
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Substituting equation (6) into equation (3), the throughput

of user ¢ can be written as
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Further simplification of equation (7) yields
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Equation (8) defines an implicit function F(S;,p;) = 0
when given all S, j # i. Then the maximization problem is,
fixing all S;,j # 4,
max S;
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Using the method of Lagrange Multipliers, we define
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Applying KKT conditions, note that p; # 0, Vi, so A, = 0, Vi.
Also note that p; # 1, Vi, so A, =0, Vi.
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Solving this implicit differentiation yields
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(G1(Si, pi) — G2(Si,pi) — G3(Si, pi) + Ga(Si,pi)) H(pi) = 0.
(19)

Now we calculate the expression of the four parts on the
left hand side one by one. Using the definitions in (14)-(17)
and (18), and equations (3) and (5), the following expressions
can be derived:
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Now applying the result of equations (20)-(23) to equation
(19), we get:
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Note that equation (24) implies
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The left-hand sides of equations (25) and (26) are the same.
So we have
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Finally, we substitute equation (27) into equation (25), and we
get
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We have thus proved one direction, i.e., that if the through-
put vector is at the Pareto boundary, it satisfies the condition
in equation (1). We now consider the other direction, i.e.,
if the condition in equation (1) does hold, we prove that
the corresponding throughput vector must be on the Pareto
boundary.

This can be proved by contradiction. Assume there is an
access probability vector p = (p1,p2, . - ., pp) that satisfies the
condition in equation (1) that is not on the Pareto boundary.
Then there must be at least one S; that can be increased while
keeping the other S;,Vj # i fixed, to get to a point on the
Pareto boundary. However, given the form of the throughput
functions S; as given in equation (3), it can be shown that
this requires a strict increase in p;, Vi. However, it can also be
shown that the left hand side of equation (1) is monotonic in
all p;. Therefore, such an increase will cause that left hand side
to exceed 1, resulting in a point on the Pareto boundary that
does not satisfy the condition in equation (1). This contradicts
what we have already shown.
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Given the above analysis of the conditions on the access
probabilities, it is also possible to characterize the boundary of
the throughput region in terms of the Pareto optimal through-
put vectors directly. We present below the corresponding
expression for the case when n = 2.
Theorem 2: The Pareto boundary for the saturation
throughput region of p-persistent CSMA when n = 2 is
characterized by the following simple expression:

T
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Fig. 1. The boundary of the two-user saturation throughput region for p-
persistent CSMA
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Fig. 2. Access probabilities at the boundary of the two-user saturation
throughput region for p-persistent CSMA

Note that in the special case of slotted Aloha, when 1" = o,
this reduces to the condition /S + +/Ss = 1, as indicated
in [16].

Figure 1 shows the throughput region as % is varied, based
on Theorem 2. The corresponding access probabilities are
plotted in Figure 2. We can see in these figures that when
T = o, the curves do indeed correspond to the known results
for slotted Aloha. Interestingly, as the ratio % is increased
(i.e. longer packets are transmitted), while the saturation
throughput region of p-persistent CSMA expands and gets
closer to the ideal linear region, the access probabilities move
farther and farther away from a linear relationship.
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