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a b s t r a c t

We consider a fundamental game theoretic problem concerning selfish users contributing

packets to an M/M/1 queue. In this game, each user controls its own input rate so as to

optimize a desired tradeoff between throughput and delay. We first show that the original

game has an inefficient Nash Equilibrium (NE), with a Price of Anarchy (PoA) that scales

linearly or worse in the number of users. In order to improve the outcome efficiency, we

propose an easily implementable mechanism design whereby the server randomly drops

packets with a probability that is a function of the total arrival rate. We show that this

results in a modified M/M/1 queueing game that is an ordinal potential game with at least

one NE. In particular, for a linear packet dropping function, which is similar to the Random

Early Detection (RED) algorithm used in Internet Congestion Control, we prove that there

is a unique NE. We also show that the simple best response dynamic converges to this

unique equilibrium. Finally, for this scheme, we prove that the social welfare (expressed

either as the summation of utilities of all players, or as the summation of the logarithm of

utilities of all players) at the equilibrium point can be arbitrarily close to the social welfare

at the global optimal point, i.e. the PoA can be made arbitrarily close to 1. We also study

the impact of arrival rate estimation error on the PoA through simulations.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the past 20 years, the usage of the Internet has tran-

sitioned from being primarily academic/research-oriented

to one that is primarily commercial in nature. In the

current Internet environment, each commercial entity is

inherently interested only in its own profit. Developing
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network mechanisms that are designed to handle selfish

behavior has therefore gained increasing attention in

recent years. The game theoretic approach, which was

originally designed to model and guide decisions in eco-

nomic markets, provides a valuable set of tools for dealing

with selfish behavior [2–7].

In this work, we consider the network congestion prob-

lem at a single intermediate store-and-forwarding spot

in the network. Several users send their packets to a

single server with Poisson arrival rate. The server pro-

cesses the packets on a first come first serve (FCFS) ba-

sis with an exponentially distributed service time. This

is an M/M/1 queueing model [8]. There exists a trade-

off in this M/M/1 queueing model between throughput

(representing the benefit from service), and delay (repre-

senting the waiting cost in the queue). In the gateway
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congestion control context [9], a measure that is widely

used to describe this trade-off is called “Power”, which is

defined as the weighted ratio of the throughput to the de-

lay. When the users are selfish, we can formulate a basic

M/M/1 queueing game. In this game, we assume that the

users are selfish, and each control their own input arrival

rate to the server. Each user’s utility is modeled to be the

power ratio for that user’s packets.

This classic M/M/1 queueing game has been formulated

and studied in [10–14]. The results from these prior works

and our own results in this work are in agreement that the

basic M/M/1 queuing game has an inefficient Nash Equi-

librium. We are therefore motivated to design an incen-

tive mechanism to force the users to operate at an equi-

librium that is globally efficient. In particular, we focus on

the design of a packet dropping scheme implemented at

the server for this purpose. Our objective is that the drop-

ping scheme should be as simple as possible, and it should

minimize the Price of Anarchy (PoA, the ratio of the social

optimum welfare to the welfare of the worst Nash equilib-

rium) to be as close to 1 as possible.

A key contribution of this work is the formulation of a

modified M/M/1 queuing game with a randomized packet

dropping policy at the server. We consider a simple and

low overhead policy in our formulation, wherein the server

need only monitor the sum of the rates of all users in the

system. We show that this modified game with a packet

dropping scheme is an ordinal potential game [15], which

implies the existence of at least one pure Nash Equilib-

rium.

We show first that utilizing a step-function for packet

dropping whereby the server drops all the packets when

the sum-rate is greater than a threshold (and none when

the sum-rate is below the threshold), results in infinite

number of undesired Nash Equilibria which harms the PoA.

This raises the question whether a more sophisticated

approach can do better. We show that indeed this is possi-

ble. In particular, we develop an incentive mechanism with

a linear packet dropping that can improve the system ef-

ficiency to be arbitrarily close to the global optimal point

(i.e., a PoA arbitrarily close to 1). This mechanism is similar

to the Random Early Detection (RED) used for congestion

avoidance on the Internet [16]. We prove the uniqueness of

NE of the game with this mechanism. We also show that

best response dynamics will converge to the unique NE.

Our paper is organized as follows. Section 2 summa-

rizes the related work. We present the model of an M/M/1

queue game in Section 3. The social welfare and Price of

Anarchy are described in Section 4 to investigate the ef-

ficiency of the NE. Then, in Section 5, we propose to de-

sign an incentive packet dropping scheme implemented at

the server to improve the efficiency. Section 6 proves that

the game defined with packet dropping policy is an ordinal

potential game by giving the potential function. Section 7

shows the best response function. In Section 8, we show

the behavior when utilizing a simple step-function for

packet dropping. In Section 9 we propose the RED-like lin-

ear packet dropping incentive scheme. We show that with

this scheme, it is possible to make the Price of Anarchy ar-

bitrarily close to the optimal point. The uniqueness of NE

of such a game is proved in Section 10. In Section 11, we
show that the best response dynamics will converge to the

unique Nash Equilibrium. In Section 12, we undertake sim-

ulations to see how the process of statistically estimating

the input arrival rates in a real system would impact the

PoA. We conclude the work in Section 13.

2. Related work

Throughput-delay tradeoffs in M/M/1 queues with self-

ish users have been previously studied in [10–14]. A util-

ity function for each user is defined as the corresponding

application’s power and each user is treated as a player

in such a game and adjusts its arrival rate to handle the

trade-off between throughput and delay. Every user is as-

sumed to be selfish and only wants to maximize its own

utility function in a distributed manner.

Bharath-Kumar and Jaffe [10] wrote one of the earliest

papers on the formulation of throughput-delay tradeoffs in

M/M/1 queues with selfish users. The paper discusses the

properties of power as a network performance objective

function. A class of greedy algorithms where each user up-

dates its sending rate synchronously to the best response

of all other users’ rates to maximize the power is proposed.

Convergence of the best response to an equilibrium point

is shown in this paper.

Douligeris and Mazumdar [11] extended Bharath-Kumar

and Jaffe’s work to the case with different weighting fac-

tors defined in the power function for different users and

provided analytical results describing the Nash Equilib-

rium. They showed that the equilibrium point that the

greedy best response dynamic algorithm converged to was

a unique Nash Equilibrium.

The work by Zhang and Douligeris [12] proved the

convergence of the best response dynamics for this ba-

sic M/M/1 queueing game under the multiple users case.

Thus all these prior works [10–12] studied only variants of

the basic game. Their work, along with ours, shows that

this basic game results in an inefficient outcome. Our work

is the first to develop a mechanism design for this prob-

lem that addresses this shortcoming by showing how to

achieve near-optimal performance using a packet-dropping

policy.

Dutta et al. [13] studied a related problem involving a

server that employs an oblivious active queue management

scheme, i.e. drops packets depending on the total queue

occupancy with the same probability regardless of which

flow they come from. They also consider an M/M/1 set-

ting with users offering Poisson traffic to a server with

exponential service time. The users’ actions are the input

rates and the utilities the goodput/output rates. The ex-

istence and the quality of symmetric Nash equilibria are

studied for different packet dropping policies. Although our

work also explores oblivious packet dropping schemes, it is

different from and somewhat more challenging to analyze

than [13], because our utility function reflects the tradeoff

between goodput and delay.

In another, more recent work, [14], Su and van der

Schaar have discussed linearly coupled communication

games in which users’ utilities are linearly impacted by

their competitors’ actions. An M/M/1 FCFS queuing game

with the power as the utility function is one illustrative
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Fig. 1. An M/M/1 queue.
example of linearly coupled communication games. They

also quantify the Price of Anarchy in this case, and in-

vestigate an alternative solution concept called Conjectural

Equilibrium, which requires users to maintain and operate

upon additional beliefs about competitors.

There have been also several other papers related to

queueing games, albeit with different formulations. Haviv

and Roughgarden [17] considered a system with multi-

ple servers with heterogeneous service rates. Arrivals from

customers are routed to one of the servers, and the routing

decisions are analyzed based on NE or social optimization

schemes. PoA is shown to be upper bounded by the num-

ber of servers for the social optimum. Wu and Starobinski

[18] analyzed the PoA of N parallel links where the delays

of links are characterized using unbounded delay functions

such as M/M/1 or M/G/1 queueing functions. Economides

and Silvester [19] studied a multiserver two-class queue-

ing game and developed the routing policy.

For more general surveys on game theoretic formu-

lations of networking problems, we refer the reader to

[4,20].

3. Problem formulation

We consider a M/M/1 FCFS queue game as shown in

Fig. 1. There are m users with independent Poisson arrivals

and the arrival rates are λ1, λ2, . . . , λm. There is a single

server and the service time is exponentially distributed

with mean 1
μ .

We consider each user as a player for this game and the

users are selfish. Each player wants to maximize its own

utility function by adjusting its rate sending to the queue.

Note that there is a tradeoff between the throughput

and delay for each user, i.e., given the rates of all other

users, if the input rate increases, the delay increases too.

In this paper, we consider the measurement of this trade-

off between the throughput and delay of the each user, and

it is known as the “power”, which is widely used in the

gateway congestion control context [9]. We consider the

power as the utility function of each user to measure its

throughput-delay tradeoff.1 For a given user i, the power

is defined as:

Power = Throughput
αi

Delay
(1)

where αi is a parameter chosen based on the relative em-

phasis placed on throughput versus delay. αi > 1 when

throughput is more important, while 0 < αi < 1 when

we want to emphasis delay more, and αi = 1 when the

throughput and delay are emphasized equally.
1 We note that other utility functions can be used, and we focus in this

research on the throughput-delay tradeoff.
For M/M/1 queue, the throughput for user i is Ti = λe
i

where λe
i

is the effective rate served by the server. The de-

lay for user i is calculated as: D = 1
μ−∑m

i=1 λe
i

.

So the power for user i can be expressed as:

Pi = Tαi

i

D
= (λe

i )
αi

(
μ −

m∑
i=1

λe
i

)
(2)

In this M/M/1 game with m players, each player is self-

ish and wants to adjust its arrival rate λi to maximize its

own utility function, given the arrival rates of all other

players. Throughout the paper, we assume that the queue

is stable and thus 0 ≤
m∑

i=1

λe
i

< μ.

When there is no dropping policy implemented at the

server, λe
i

= λi, and the optimization problem for each

player i is:

max Ui(λi, λ−i) = λαi

i

(
μ −

m∑
i=1

λi

)
(3)

s.t.
∑

λi < μ

λi ≥ 0 ∀i = 1, 2, . . . , m

4. Social welfare and price of anarchy

In [11] the above M/M/1 queue game is studied and a

unique pure NE is proved to be:

λNE
i = μαi∑m

k=1 αk + 1
,∀ i (4)

When αi = α,∀i, this unique NE is expressed as

λNE
i = μα

αm + 1
,∀ i. (5)

Now suppose all users cooperate to achieve the max-

imal system utility. We consider two ways to define the

social optimal function: the sum of the utilities of all the

users and the sum of the logarithm of the utilities of all

the users. Defining the social optimal function as the sum

of the utilities of all the users is a common way for eval-

uating the system efficiency and we present the analy-

sis results under this definition first. However, the fairness

among the users should also be considered and it is not

revealed under this definition; so we also consider a log-

sum-utility social welfare function which provides for util-

ity fairness.

We can measure the efficiency of the system using two

well known measures called the Price of Anarchy (PoA)

and Price of Stability (PoS), that respectively compare the

performance of selfish users in the worst and best case

Nash Equilibrium with the global optimum achievable with

non-selfish users. The definition of PoA and PoS of a game

G is:

PoA(G) � max
a∈E(G)

U(aOPT )

U(a)

PoS(G) � min
a∈E(G)

U(aOPT )

U(a)

where E is the set of all the Nash Equilibriums in game G.
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4.1. Sum-utility

The optimization problem is defined as:

max
∑

λα
i (μ −

∑
λi) (6)

s.t. 0 ≤
∑

λi < μ

λi ≥ 0 ∀i = 1, 2, . . . , m

Here we consider two cases:

(1) α > 1

We first calculate UOPT.

UOPT = max
λi

∑
λα

i

(
μ −

∑
λi

)
≤ max

λi

(
∑

λi)
α
(
μ −

∑
λi

)
(7)

= max
λ

λα(μ − λ) (8)

(8) shows the upper bound of UOPT and we can get

λ∗ = μα
α+1 for (8) to achieve its maximum value. We

note that equality holds in Eq. (7) when λi = λ∗ for

some i, and λi = 0,∀ j �= i. Hence this is also the so-

lution for POPT
sys . So when λi = λ∗ = μα

α+1 for some i,

and λi = 0,∀ j �= i, we get the optimal solution POPT
sys

as follows:

UOPT = ααμα+1

(α + 1)α+1

Then we calculate UNE when players are selfish.

When λNE
i

= μα
αm+1 ,∀ i as shown in Eq. (5):

UNE = mααμα+1

(αm + 1)α+1
(9)

Note that there is only one NE in the game, so PoA

and PoS are the same and they are derived as below:

PoA(G) = PoS(G) = UOPT

UNE
= (αm + 1)α+1

m(α + 1)α+1
(10)

In this case we find that the PoA and PoS are pro-

portional to mα .

(2) α < 1

The calculation is similar as above, and details are

omitted.

UOPT = max
λi

∑
λα

i

(
μ −

∑
λi

)
≤ m max

λi

(∑
λi

m

)α(
μ −

∑
λi

)
= max

λ
m1−αλα(μ − λ)

We also get λ∗ = μα
α+1 ,

UOPT = m1−αααμα+1

(α + 1)α+1

PoA and PoS are:

PoA(G) = PoS(G) = UOPT

UNE
= (αm + 1)α+1

mα(α + 1)α+1
(11)

In this case we find that the PoA and PoS are pro-

portional to m.

Thus in both cases, we find that the PoA and PoS

degrade linearly or worse with the number of users.
4.2. Sum-log-utility

Now let’s consider the sum of the logarithm of the util-

ities of all the users. The reason we consider the loga-

rithm function in the social welfare is because when all

users cooperate to achieve the optimum, fairness among

the users should also be considered, and a logarithmic

function would ensure this [21]. The social welfare opti-

mization problem is:

max

m∑
i=1

log

[
λα

i

(
μ −

m∑
i=1

λi

)]
(12)

s.t. 0 ≤
m∑

i=1

λi < μ

λi ≥ 0 ∀i = 1, 2, . . . , m

Note that for each player, maximizing the logarithm of

its utility function is equivalent to maximizing the utility

function itself. Therefore the NE remains the same as be-

fore.

Denote λ = ∑m
i=1 λi. We have the following theorem for

finding out the social optimum:

Theorem 1. The solution for the social welfare optimization

problem is: λ∗
i

= μα
m(α+1)

.

Proof. see Appendix A. �

Note that λNE
i

is shown in (4) and by substituting it into

(3), we get the power for user i as:

UNE
i = ααμα+1

(αm + 1)α+1

In general, the log-utility terms can be negative. To en-

sure that both the numerator and denominator terms in

the PoA and PoS are non-negative in this case, we use a

monotonic exponential mapping. Note that there is only

one NE in the game, so PoA and PoS are the same, and

they are derived as below:

PoA(G) = PoS(G) = eUOPT

eUNE

=

(
ααμα+1

mα (α+1)α+1

)m

(
ααμα+1

(αm+1)α+1

)m =
(

(αm + 1)α+1

mα(α + 1)α+1

)m

> 1 (13)

From (13) we can see that PoA increases monotonically

as m increases and goes to infinity as m goes to infinity. So

we want to implement an incentive mechanism to improve

the PoA.

5. An incentive packet dropping scheme

Note that λNE
i

= μα
αm+1 >

μα
m(α+1)

= λ∗
i
. This inspires us

to find an incentive packet dropping mechanism imple-

mented at the server and we wish this packet dropping

mechanism to be as simple as possible. So we consider the

case where the server need only monitor the sum of the

rates of all users in the system and implement the packet

dropping policy based only on this information. Then the

packet dropping function could be expressed as P (�λ ).
d i
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So the optimization problem for each user i with a drop-

ping policy in the system is:

max Ui(λi, λ−i)

=
(
λi

(
1 − Pd

(∑
λi

)))αi

×
(
μ −

∑(
λi

(
1 − Pd

(∑
λi

))))
s.t.

∑
λi

(
1 − Pd

(∑
λi

))
< μ

λi ≥ 0 ∀i = 1, 2, . . . , m

To facilitate the derivation, denote P(
∑

λi) = 1 −
Pd(

∑
λi) and thus P( · ) is the probability of keeping pack-

ets in the system. Then the optimization problem for each

player i is:

max Ui(λi, λ−i)

=
(
λiP

(∑
λi

))αi
(
μ −

∑(
λiP

(∑
λi

))))
s.t.

∑
λiP

(∑
λi

)
< μ (14)

λi ≥ 0 ∀i = 1, 2, . . . , m (15)

We denote the above game as Gp = (N, {Ai}, {Ui}).

6. Potential game

In this section, we prove that when the dropping func-

tion is a function which only depends on the sum of to-

tal incoming rates, the game is a potential game and thus

there exists at least one pure NE.

Definition 1. a game G = (N, {Ai}, {Ui}) is called an ordinal

potential game if there exists a global function φ : A −→ R

such that for every player i ∈ N, for every a−i ∈ A−i and for

every a′
i
, a′′

i
∈ Ai,

sgn(Ui(a′
i, a−i) − Ui(a′′

i , a−i))

= sgn(φ(a′
i, a−i) − φ(a′′

i , a−i)) (16)

where sgn(x) is the sign function that takes on the value

−1 when x < 0, 0 when x = 0, and 1 when x > 0. Also,

the following Theorem 2 holds for the existence of NE in a

potential game:

Theorem 2 (Monderer–Shapley, [15]). Every potential game

with finite-players, continuous utilities, and compact strategy

sets possesses at least one pure-strategy equilibrium.

Now we will prove that the M/M/1 queueing game with

a packet dropping function Pd(�λi) is a potential game.

Theorem 3. Gp is a ordinal potential game with potential

function

φ(λ1, λ2, . . . , λm)

=
(

μ − P

(∑
λi

) m∑
i=1

λi

)(
m∏

i=1

(
λiP

(∑
λi

))αi

)

Proof.

φ(λ′
i, λ−i) − φ(λ′′

i , λ−i)

=
(

μ − P(λ′
i + λ−i)

(
m∑
j �=i

λ j + λ′
i

))

×
(

m∏
j �=i

(
λ jP

(∑
λ j

))α j

)
λ′αi

i
P(λ′

i + λ−i)
αi

−
(

μ − P(λ′′
i + λ−i)

(
m∑
j �=i

λ j + λ′′
i

))

×
(

m∏
j �=i

(
λ jP

(∑
λ j

))α j

)
λ′′αi

i
P(λ′′

i + λ−i)
αi

=
(

m∏
j �=i

(
λiP

(∑
λi

))αi

)

×
[(

μ − P(λ′
i + λ−i)

(
m∑
j �=i

λ j+λ′
i

))
(λ′

iP(λ′
i+λ−i))

αi

−
(

μ − P(λ′′
i + λ−i)

(
m∑
j �=i

λ j + λ′′
i

))

× (λ′′
i P(λ′′

i + λ−i))
αi

]

=
(

m∏
j �=i

(
λiP

(∑
λi

))αi

)(
Ui(λ

′
i, λ−i) − Ui(λ

′′
i , λ−i)

)
�

Note that Gp has a finite number of players and con-

tinuous utilities. However its strategy sets are not compact

in (14) so we could not directly apply Theorem 2 to claim

there exists at least one NE in Gp. But we modify the Gp to

be the equivalent game as follows:

max Ui(λi, λ−i) =
(
λiP

(∑
λi

)))αi

×
(
μ −

∑(
λiP

(∑
λi

))))
s.t.

∑
λiP

(∑
λi

)
≤ μ

λi ≥ 0 ∀i = 1, 2, . . . , m

(17)

since any solution to the maximization problem in Gp will

not satisfy
∑

λiP(
∑

λi) = μ. Now strategy sets of Gp are

compact and thus there exists at least one NE in Gp.

Note that in the following when we describe PoA and

PoS for the packet dropping game Gp, we respectively com-

pare the worst and best NE obtained for this game with

respect to the social welfare (global optimum) that can be

obtained through cooperation without packet dropping.

7. Best response function

From now, for tractability, we consider the case αi =
α,∀i for our proposed incentive packet dropping scheme.
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Fig. 2. Step dropping function Pd(�λi).

Fig. 3. Illustration of Pd(�λi) and P(�λi).
∀i, let

∂Ui(λi, λ
′
−i

)

∂λi

= 0

If P(�λi) is differentiable with respect to λi, we will

have

αPμ − (α + 1)PP′λiλ−i

−(α + 1)PP′λ2
i − αP2λ−i − (α + 1)P2λi + αP′λiμ = 0

(18)

where P′ is the derivative of P(�λi) with respect to λi.

The above defines an implicit best response function

F(λi, λ−i) = 0 which shows the relationship between λi

and λ−i.

8. Step dropping function

An intuitive dropping policy that first comes to mind is

a step function as shown in Fig. 2.

The expression of Pd(�λi) is:

Pd(
∑

λi) =
{

0 :
∑

λi ≤ λ∗

1 :
∑

λi > λ∗ (19)

We have the following result for the corresponding

packet dropping game.

Theorem 4. λ′ is a N.E. if and only if
∑

λ′
i
= λ∗.

Proof. see Appendix B. �

Based on Theorem 4, the NEs of the game with the step

dropping function are not unique. PoS = 1 since there ex-

ists a NE with λi = λ∗
i
,∀i. However, in the sum-utility case,

PoA = mα−1 when α > 1, and PoA = m1−α when α < 1.

Moreover, PoA is infinite in the sum-log-utility case since

there exists a NE which has one user i with λi = 0. Hence

this is not a desirable result for improving the efficiency.

We therefore next consider a slightly more sophisticated

dropping function that has a linear profile.

9. Linear dropping function

We consider the game with the following linear func-

tion of P(�λ ) (and thus the packet dropping function
i
Pd(
∑

λi) = 1 − P(
∑

λi) is also a linear function.) Fig. 3 il-

lustrates Pd(�λi) and P(�λi).

P(
∑

λi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : 0 ≤

∑
λi ≤ r1

A

(∑
λi

)
+ D : r1 ≤

∑
λi ≤ r2

0 :
∑

λi ≥ r2

(20)

where{
A = 1

r1 − r2

D = −Ar2

P′ = ∂P

∂λi

= A

For linear dropping scheme, (18) becomes:

αPμ − (α + 1)PAλiλ−i − (α + 1)PAλ2
i

−αP2λ−i − (α + 1)P2λi + αAλiμ = 0 (21)

The above also defines an implicit function F(λi, λ−i) = 0.

Denote λe
i

= P(
∑

λi)λi and λe
−i

= P(
∑

λi)λ−i. First we

want find out if we could design a dropping policy in this

linear form such that the system could have a NE that is

the same as the social optimum. If not, we will then ex-

plore how much efficiency it could achieve.

Theorem 5. There does not exist a linear packet dropping

policy such that PoA = 1.

Proof. Assume the above Theorem does not hold, when

P �= 0, substituting λi and λ−i with λe
i
/P and λe

−i
/P we

have,

αPμ − 1

P
(α + 1)Aλe

i λ
e
−i − 1

P
(α + 1)A(λe

i )
2

−αPλe
−i

− (α + 1)Pλe
i
+ 1

P
αAλe

i μ = 0


⇒ P(αμ − αλe
−i

− (α + 1)λe
i
)

= 1

P
[(α + 1)Aλe

i λ
e
−i + (α + 1)A(λe

i )
2 − αAλe

i μ]

Since λ∗ = μα
α+1 implies αμ = (α + 1)λ∗, we have

P[(α + 1)λ∗ − αλe
−i − (α + 1)λe

i ]

= 1

P
Aλe

i [(α + 1)(λe
−i + λe

i ) − (α + 1)λ∗]


⇒ P[(α + 1)(λ∗ − λe
−i

− λe
i
) + λe

−i
]

= 1

P
Aλe

i (α + 1)(λe
−i + λe

i − λ∗)
(22)

Note that Pλi + Pλ−i = λ∗ implies that λe
i
+ λe

−i
= λ∗. So

the right-hand side of the equality is 0. While the left-hand

side of the equality is Pλe
−i

. Since λe
−i

�= 0, so Pλe
−i

�= 0.

Thus the left-hand side of the equality is not 0 and this

leads to a contradiction. Therefore Theorem 5 holds. �

Theorem 5 shows that we could not design a linear

packet dropping policy with PoA = 1. The following theo-

rem shows that we could design an incentive packet drop-

ping policy such that PoA could be arbitrarily close to 1.
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Fig. 4. An example of our incentive packet dropping scheme.
Theorem 6. Given any ε, there exists a linear packet drop-

ping policy such that 1 < PoA ≤ 1 + ε.

Proof. Note (22) in the proof of Theorem 5 implies:

P2[(α + 1)(λ∗ − λe
−i − λe

i ) + λe
−i]

= Aλe
i (α + 1)(λe

−i + λe
i − λ∗) (23)

The right-hand side of (23) is greater than 0 only when

λe
−i

+ λe
i

< λ∗ (note that A < 0). Then given A and λe
i
, λe

−i

such that λe
−i

+ λe
i

< λ∗, we will have a solution for P2 and

thus we could get the value of D.

This means that we can design a packet dropping

scheme such that it has a NE that satisfies pλi + pλ−i −→
λ∗ from the left side (left approximation). If we can further

prove that the NE is unique in this game (see Theorem 8),

then give any ε > 0, we could find a linear packet drop-

ping policy at the server such that 1 < PoA ≤ 1 + ε. �

We propose Algorithm 1 to show how to design the pa-

rameters r1 and r2 in our proposed incentive packet drop-

ping policy to achieve a desired PoA such that 1 < PoA ≤
1 + ε given any ε. We denote λe = ∑

λe
i
. Line 1 ensures

that the sum of the rates will be less than μ before the

server starts to drop packets. p̃ is the value of P(�λ) at the

desired NE which is derived from the desired PoA. p̃ = 1 −
Pr{the packet dropping probability at desired NE}. Line 2

is the calculation of desired NE. The choice of λ̃ is based

on the desired value of PoA, i.e., given ε > 0, we could ac-

cordingly derive the value of a desired sum rate such that

1 < PoA ≤ 1 + ε. Since (λ̃e, p̃) is a solution of P(�λ), line

3 shows how to therefore get the expression of A and D.

Then at line 4, we could solve Eq. (21) given all the values

above and get the value of r2. Based on the result of r2, the

value of r1 is calculated.

Note that (21) is a quadratic equation for the parame-

ters A and D given the values of all the other variables. But
Algorithm 1 Parameter calculation for incentive packet

dropping scheme.

Input: PoA bound parameter ε
Output: r1 and r2 of our proposed incentive packetdrop-

ping policy in (20) such that 1 < PoA ≤ 1 + ε.

1: Pick any p̃ such that a
a+1 < p̃ < 1.

2: Calculate a desired sum ratẽλ, of which

λ̃ =
{

λ̃e

mp̃
,
(m − 1)λ̃e

mp̃

}
(24)

is the desired NE such that 1 < PoA ≤ 1 + ε. Note that

λe = p̃λ.

3: Suppose P(
∑

λi) = A
∑

λi + D pass through the point

(̃λ, p̃). Then we have

A = p̃

λ̃ − r2

, D = − p̃r2

λ̃ − r2

(25)

4: Insert the above values of the variables into (21) and

get the value of r2.

5: Insert the value of r2 into (25) and get the value of A.

Then r1 = 1
A

+ r2.
with Algorithm 1, we could always find a unique solution

as stated in Theorem 7.

Theorem 7. Algorithm 1 yields a unique linear packet drop-

ping scheme, i.e., unique values for r1 and r2 for any PoA

bound.

Proof. After inserting the value p̃, and λ̃ = { λ̃e
mp̃

,
(m−1)λ̃e

mp̃
}

into (21) at line 4, we have the equality

p̃2

[
(α + 1)(λ∗ − λ̃e) + (m − 1)λ̃e

mp̃

]
= p̃

λ̃e/p̃ − r2

λ̃e

mp̃
(α + 1)(λ̃e − λ∗) (26)

It is obvious that the above is a linear equation of the

variable r2. And thus we could get a unique solution of r2.

Therefore, there is always a unique solution of r1 and r2

provided by Algorithm 1. �

Our proposed packet dropping scheme is similar to

the Random Early Detection (RED) algorithm. It is simple

and easy to be implemented with low overhead at the

server. Fig. 4 shows an example of our linear packet drop-

ping policy with μ = 6, m = 2 and α = 2. (12) and (13)

are used to calculate the utility and PoA. Point A repre-

sents λ∗, which is then calculated to be 4 (λ1 = λ2 = 2).

We assume p̃ = 0.9, PoA bound parameter ε = 0.05. Im-

plementing Algorithm 1 with Matlab, we pick λ̃e = 3.9,

we then get r1 = 4.3012, r2 = 4.622, A = −3.1154, D =
14.4000. Point B represents the Nash Equilibrium with

our proposed packets dropping policy. Point C represents

the Nash Equilibrium of the original game without packet

dropping policy. The shaded area shows the cases where

packet dropping happens. For the comparison, the utilities

are shown in the figure and we can see that PoA is im-

proved from 1.3396 to 1.0455.
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Fig. 5. Illustration of local maximum point of Ui(λi, λ−i).

Fig. 6. Illustration of local maximum point of U1
i,max

and U2
i,max

.

10. Uniqueness of NE

If we use the packet dropping scheme in Algorithm 1

we are guaranteed that the game Gp always has a NE with

the desired PoA bound. Now our question is whether the

scheme yields a unique NE. This is important not only

for finding out whether our proposed scheme is efficient

but also for the convergence issues. As surveyed in [22],

there are not many general results on equilibrium unique-

ness. We were unable to find any existing theorem that we

could use directly to prove the uniqueness of NE in our

M/M/1 queueing game. This makes the analysis of this in-

centive design problem more challenging.

Theorem 8. There is a unique NE for the M/M/1 Game with

the linear packet dropping scheme described in Algorithm 1.

To prove 8, we first prove the following three lemmas.

Lemma 9. |A| increases monotonically as (λ∗ − λ̃e) de-

creases where λ̃e is the total rate of all users at desired NE

(as in Algorithm 1).

Proof. Note that (26) is equivalent to:

p̃2

[
(α + 1)(λ∗ − λ̃e) + (m − 1)λ̃e

mp̃

]
= A

λ̃e

mp̃
(α + 1)(λ̃e − λ∗)

This means

(m − 1)λ̃e

mp̃(λ∗ − λ̃e)
= (α + 1)

(
|A| λ̃e

mp̃
− p̃2

)
(27)

Note that as (λ∗ − λ̃e) decreases, λ̃e increases and 1

λ∗−λ̃e

increases, so the left-hand side of (27) increase. This im-

plies |A| increases, and thus Lemma 9. �

Lemma 10. ∀λ−i < r1,
∂Ui(λi,λ−i)

∂λi
> 0 at λi = (r1 − λ−i)

+.

Proof. Note that P = 1 at r1, then

∂Ui(λi, λ−i)

∂λi

= αμ − (α + 1)Aλiλ−i − (α + 1)Aλ2
i − αλ−i

− (α + 1)λi + αAλiμ

= αμ − αλ−i − (α + 1)λi

− Aλi[(α + 1)(λ−i + λi) − αμ]

= αμ − (α + 1)(λ−i + λi) + λ−i

− Aλi[(α + 1)(λ−i + λi) − αμ]

= [αμ − (α + 1)(λ−i + λi)](1 + Aλi) + λ−i

= [αμ − (α + 1)r1](1 + Aλi) + λ−i

= [(α + 1)λ∗ − (α + 1)r1](1 + Aλi) + λ−i

= (α + 1)(λ∗ − r1)(1 + A(r1 − λ−i)) + λ−i

Denote (28) as g(λ−i). Then,

∂g

∂λ−i

= −(α + 1)(λ∗ − r1)A + 1. (28)

When |A| is large enough such that r1 > λ∗ and |A| >
1

(α+1)(r1−λ∗)
,

∂g
∂λ−i

< 0.
From Lemma 9 we know that as λ̃e gets closer to λ∗,

|A| increases. This means that when we design a dropping

policy with PoA approaching to 1, |A| could be large enough

such that r1 > λ∗ and |A| > 1
(α+1)(r1−λ∗)

.

So g(λi) achieves the minimum value when λ−i = r1.

Then

∂Ui(λi, λ−i)

∂λi

> (α + 1)(λ∗ − r1) + r1

= (α + 1)λ∗ − αr1

= αμ − αr1 > 0. (29)

�

Lemma 10 implies that given λ−i, Ui(λi, λ−i) which is a

function of λi, has a maxima at r1 − λ−i < λi < r2 − λ−i as

shown in Fig. 5.

Given λ−i, if λ−i + (μ−λ−i)α
α+1 < r1, then Ui(λi, λ−i) will

reach a local maximal point when λi = (μ−λ−i)α
α+1 as shown

in Fig. 6. Note that P(
∑

λ ) = 1 at this point. We
i
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U

U

U

denote this local maximal value as U1
i,max

. Then Ui(λi, λ−i)

will reach another local maximal point with λe
i

= (μ−λ−i)α
α+1 .

Note that P(�λi) < 1. We denote this local maximal value

as U2
i,max

.

Lemma 11. Given λ−i, if λ−i + (μ−λ−i)α
α+1 < r1, U1

i,max
<

2
i,max

.

Proof. Note that

1
i,max = (λ1

i )
α(μ − (λ1

i ) − λ−i),

where λ1
i

= (μ−λ−i)α
α+1 .

2
i,max = (Pλ2

i )
α(μ − (Pλ1

i ) − Pλ−i)

Denote λe
i

= Pλ2
i
. Note that λe

i
ranges from r1 to 0 and we

have r1 > λ1
i
. Also note that

max
λe

i

(λe
i )

α(μ − λe
i − Pλ−i) > max

λe
i

(λe
i )

α(μ − λe
i − λ−i)

since Pλ−i < λ−i. Thus, U2
i,max

> U1
i,max

. �

We show in Lemma 11 that given λ−i, Ui(λi, λ−i)

achieves the maximal point when P < 1 under the con-

dition that λ−i + (μ−λ−i)α
α+1 ≤ r1. When λ−i + (μ−λ−i)α

α+1 > r1,

there is only one maximal point for Ui(λi, λ−i). When

λ−i + (μ−λ−i)α
α+1 = r1, U1

i,max
and U2

i,max
will overlap, and

since r1 > λ∗, this case could not result in a NE and thus

we do not consider this case.

Lemma 9 , Lemma 10 and Lemma 11 show that given

λ−i, Ui(λi, λ−i) achieves the maximal point when P < 1.

Then we will prove the uniqueness of NE based on the ex-

pression P(
∑

λi) = A(λi + λ−i) + D.

Proof of Theorem 8. Suppose the Gp has more than one

NE. Note that the game is symmetric, so there must exist

one NE λ = {λ1, λ2, . . . , λm}, such that ∃ i, j, λi �= λj. This

means there exists a NE λ = {λi, λ−i} and a constant c such

that λ = {λi + c, λ−i − c} is also a NE.

We insert λ = {λi, λ−i} into (23) and we get:

[A(λi + λ−i) + D]2[(α + 1)(λ∗ − λe
−i − λe

i ) + λe
−i]

= Aλe
i (α + 1)(λe

−i + λe
i − λ∗)


⇒ (α + 1)(λ∗ − λe
−i

− λe
i
) + λe

−i

λe
i

= 1

[A(λi + λ−i) + D]2
A(α + 1)(λe

−i + λe
i − λ∗) (30)

We also insert λ = {λi + c, λ−i − c} into (23) and denote

c̃ = c
A(λi+c̃+λ−i−c̃)+D

= c
A(λi+λ−i)+D

. We have:

[A(λi + c̃ + λ−i − c̃) + D]2

[(α + 1)(λ∗ − λe
−i − c̃ − λe

i + c̃) + λe
−i − c̃]

= A(λe
i + c̃)(α + 1)(λe

−i − c̃ + λe
i + c̃ − λ∗)

⇒ (α + 1)(λ∗ − λe
−i

− λe
i
) + λe

−i
− c̃

λe
i
+ c̃

= 1

[A(λi + λ−i) + D]2
A(α + 1)(λe

−i + λe
i − λ∗) (31)

Note that the right-hand side of (30) and (31) are the

same and thus the left-hand side of (30) and (31) are equal

to each other. So,

(α + 1)(λ∗ − λe
−i

− λe
i
) + λe

−i

λe
i

= (α + 1)(λ∗ − λe
−i

− λe
i
) + λe

−i
− c̃

λe
i
+ c̃


⇒ (λe
i + c̃)(α + 1)(λ∗ − λe

−i − λe
i ) + (λe

i + c̃)λe
−i

= λe
i (α + 1)(λ∗ − λe

−i − λe
i ) + λe

i (λ
e
−i − c̃)


⇒ c̃(α + 1)(λ∗ − λe
−i − λe

i ) + c̃(λe
−i + λe

i ) = 0


⇒ c̃[(α + 1)λ∗ − α(λe
−i + λe

i )] = 0


⇒ c̃[αμ − α(λe
−i + λe

i )] = 0


⇒ c̃α[μ − (λe
−i + λe

i )] = 0


⇒ cα[μ − (λe
−i

+ λe
i
)]

A(λi + λ−i) + D
= 0.

Note that μ − (λe
−i

+ λe
i
) > 0. This implies that c = 0 and

therefore Theorem 8 holds. �

11. Best response dynamics and convergence

In this section, we show that the best response dynamic

[7], a simple learning mechanism, will lead the queuing

game to converge to the pure Nash equilibrium.

Best response dynamic is a straightforward updating

rule which proceeds as follows: whenever player i has an

opportunity to revise her strategy, she will choose the best

response to the actions of all the other players in the pre-

vious round. Mathematically, for a game G = (N, {Ai}, {Ui}),
let at

i
denotes the action of player i in iteration t,

at
i = arg max

a′
i
∈Ai

Ui(a′
i, at−1

−i
). (32)

In general, the best response dynamic is not guaranteed

to converge. However, if the process does converge, it is

guaranteed to converge to a NE. Now, we want to inves-

tigate the convergence of our proposed M/M/1 Game with

the packet dropping scheme, denoted as Gp in the previous

section.

Theorem 12. Best response dynamic will converge to the

unique NE for the M/M/1 Game with the proposed packet

dropping scheme.

Proof. There is an important result about the convergence

for ordinal potential game as shown in Theorem 21 in [7]:

if G is an ordinal potential game with a compact action

space and a continuous potential function, then the best

response dynamic will (almost surely) either converge to a

NE or every limit point of the sequence will be a NE.

We have showed in Theorem 3 that Gp is an ordinal

potential game, and although the original definition of the
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Fig. 7. Quiver plot for a two user example with μ = 10, α = 2, r1 =
7.0321 and r2 = 7.8222. The vector length are scaled to 1

14
of the origi-

nal length.
game does not have a compact action space, the equivalent

modification as shown in (17) has a compact action space.

We can also see that the potential function is continuous.

We have also proved in Theorem 8 that there is a unique

NE. Thus Theorem 12 holds. �

Fig. 7 is an illustration of Theorem 12 by the quiver

plot. In Fig. 7, on the lower triangle of a grid (i.e., the
Fig. 8. Simulation results of PoA under different service rates

Fig. 9. Simulation results of PoA under different service rates of
feasible operating domain), we plot vector summation for

a two-user rate control queuing game with μ = 10, α = 2,

r1 = 7.0321 and r2 = 7.8222. At each point, the vectors’

projections on λ1 and λ2 represent the best response for

the corresponding users in next iteration. To make the

plot neat, the length of each vector is scaled to 1
14 of the

original length. The figure shows that at each point,

the players in the best response dynamic move towards

the equilibrium point. The length of the best response

vectors are proportional to the distance from the equi-

librium point. At the equilibrium point, the step size of

the movement in the next iteration tends to zero, which

implies the convergence of the best response dynamic.

12. Impact of arrival rate estimation

For a real system implementation, the server needs to

estimate the total arrival rate from users in order to ap-

ply the incentive packet dropping scheme. The packets ar-

rive randomly over time, so there will be a difference be-

tween the estimated total rate and the average total rate.

This inaccuracy will cause a loss in the PoA. While apply-

ing the packets dropping scheme, we note that the closer

to 1 the desired PoA is, the steeper (on the linear part) the

packet dropping scheme is, and therefore, the greater the

impact of estimation inaccuracy will be. So as the desired

PoA approaches 1, on the one hand the PoA of the real

system should increase due to the implementation of the

incentive scheme, but on the other hand, the sensitivity to
of a 3-user system with α = 2 (sum-utility definition).

a 3-user system with α = 2 (sum-log-utility definition).
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Fig. 10. Impact of estimation length on PoA of a 3-user system with μ = 600, α = 2 (sum-utility definition).

Fig. 11. Impact of estimation length on PoA of a 3-user system with μ = 600, α = 2 (sum-log-utility definition).
estimation error will reduce the gain in PoA. Therefore, the

achieved PoA in practice may not be arbitrarily close to 1.

We show this fact in Figs. 8–11 where we show sim-

ulation results from a 3-user queue with α = 2. In these

simulations, we discretize time into slots. The server es-

timates the mean arrival rate from the previous time slot

and applies the packet dropping function corresponding to

a desired PoA to all packets in the current slot (the users

contribute arrivals at a constant rate that corresponds to

the equilibrium input for this desired PoA). The running

time for all the simulations is 105 time slots. Figs. 8 and

9 show the simulation results of PoA under different ser-

vice rates for both the sum-utility definition and sum-log-

utility definition with the instantaneous arrival rate to the

server as the estimated arrival rate. We can see that as the

service rate varies from 500 to 5000 packets per time slot,

the optimal point of PoA (i.e. the lowest achievable PoA) is

getting closer to 1 because the estimation inaccuracy de-

creases. Also, the empirically achieved PoA is getting closer

to the desired PoA.

Note that when the service rate is low, the achievable

PoA we get could be very bad as shown in Figs. 8(a)

and 9(a). In these cases, using more history data/longer

estimation lengths will help to increase the estimation

accuracy and improve PoA. The comparison results under

different estimation lengths for μ = 600 packets per time

slot are shown in Figs. 10 and 11. These simulation results

illustrate a tradeoff between the optimal PoA and the

overhead in computing and storage: while estimating with

more history data will increase the estimation accuracy
and therefore increase PoA, it increases the overhead in

terms of computing and storage.

13. Conclusion

In this paper, we have designed a novel incentive mech-

anism for M/M/1 queueing games with throughput-delay

tradeoffs. Because the original game yields an inefficient

Nash equilibrium, we propose to implement a linear packet

dropping mechanism at the router. We show how the pa-

rameters of this mechanism can be optimized to ensure

system efficiency that is arbitrarily close to the social wel-

fare solution. Further, we prove that the proposed mod-

ification has a unique NE, and that the simple best re-

sponse dynamics converges to this solution. Future work

could consider extensions of this work to consider non-

homogeneous users, other queuing models beyond the

M/M/1 model, more complex arrangements of multiple

routers in a network, as well as other system issues that

may arise in practical implementations.

Appendix A. Proof of Theorem 1

Proof.

m∑
i=1

log

[
λα

i (μ −
m∑

i=1

λi)

]
= α log

(∏
λi

)
+ m log(μ − λ)
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≤ α log

(∑
λi

m

)m

+ m log(μ − λ) (A.1)

= m log

(
λ

m

)α

(μ − λ))

Denote f (λ) = λα(μ − λ). So maximize (12) is equiva-

lent to maximize f(λ). Take the derivative of f(λ) and let it

equals 0. We get:

∂ f

∂λ
= 0 ⇒ λ∗ = μα

α + 1

Note that equality holds in (A.1) only when λ1 = λ2 = · · · =
λm. This implies λ∗

i
= λ∗

m = μα
m(α+1)

�

Appendix B. Proof of Theorem 4

Proof. (⇐
)

Suppose
∑

λ′
i
= λ∗. ∀i, let

∂U(λi,λ
′
−i

)

∂λi
= 0. We get the op-

timal point λ∗∗
i

= (μ−∑
j �=i λ

′
j
)αi

αi+1 .

Note that

λ′
i = λ∗ −

∑
j �=i

λ′
j = αμ

α + 1
−

∑
j �=i

λ′
j (B.1)

=
(μ − ∑

j �=i λ
′
j
)αi − ∑

j �=i λ
′
j

αi + 1
<

(μ − ∑
j �=i λ

′
j
)αi

αi + 1
= λ∗∗

i

Also, ∀λi < λ∗∗
i

,
∂U(λi,λ

′
−i

)

∂λi
> 0, which means U(λi, λ

′
−i

)

increases monotonically with respect to 0 ≤ λi < λ∗∗
i

,

so U(λ′
i
, λ′

−i
) > U(λi, λ

′
−i

),∀λi ∈ [0, λ′
i
). Also note that

U(λi, λ
′
−i

) = 0,∀λi ∈ (λ∗
i
,μ − ∑

j �=i λ
′
j
). Hence λ′

i
∈ Bi(λ

′
−i

).

Therefore, λ′ is a N.E.

(
⇒)

Suppose λ′ is a N.E., ∀i, λ′
i
∈ Bi(λ

′
−i

).

∀λ′
−i

, consider the following two cases:

(1)
∑

j �=i λ
′
j
≤ λ∗

Denote λ′′
i

= λ∗ − ∑
j �=i λ

′
j
. Then 〈λ′′

i
, λ′

−i
〉 is a N.E., λ′′

i
∈

Bi(λ
′
−i

). U(λ′′
i
, λ′

−i
) = U(λ′

i
, λ′

−i
) > 0. So λ′

i
≤ λ∗ − ∑

j �=i λ
′
j
=

λ′′ (if not so, U(λ′
i
, λ′

−i
) = 0).

Note that U(λi, λ
′
−i

) increases monotonically with re-

spect to 0 ≤ λi < λ′′
i

. Therefore, λ′ = λ′′. ∑
λ′

i
= λ∗.

(2)
∑

j �=i λ
′
j
> λ∗

Under this case, since �λ′ > λ∗, we have Bi(λ
′
−i

) =
0,∀i. Then

∑
j �=i λ

′
j
≥ λ∗ holds for all i. ∀i, λ′

i
< μ −∑

j �=i λ
′
j
< μ − λ∗ = μ − μα

α+1 = μ
α+1 . So

m∑
i=1

λ′
i <

μm

α + 1
< μ ⇒ m < α + 1 (B.2)

However, note that

λ∗ = μα

α + 1
<

∑
j �=i

λ′
j <

μ(m − 1)

α + 1
⇒ m > α + 1 (B.3)

Since (B.2) and (B.3) contradict each other, there is no

N.E. λ′ such that
∑

j �=i λ
′
j
> λ∗. �
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