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Abstract—A new routing policy, named Heat-Diffusion (HD),
is developed for multihop wireless networks subject to stochastic
arrivals, time-varying topology, and inter-channel interference,
using only current queue congestion and current channel states,
without requiring the knowledge of topology and arrivals. Besides
throughput optimality, HD minimizes a quadratic routing cost
defined by endowing each channel with a cost-factor. It also min-
imizes average total queue congestion, and so average network
delay, within the class of routing policies that base decision only
on current queue lengths and current channel states. Further,
within this class, HD provides a Pareto optimal tradeoff between
average delay and average routing cost, meaning that no policy
can improve either one without detriment to the other. Finally,
HD fluid limit follows graph combinatorial heat equation, which
opens a new way to study wireless networks using heat calculus,
a very active area of pure mathematics.

I. INTRODUCTION

Throughput optimality, i.e. utilizing the full capacity of a
wireless network, is critical to respond to increasing demand
for wireless applications. The seminal work in [1] showed that
the queue-differential, channel-rate-based Back-Pressure (BP)
algorithm is throughput-optimal under very general conditions
on arrival statistics and channel state probabilities. Follow-up
works showed that the class of throughput-optimal policies is
indeed large [4]-[7]. The challenge is then to develop one that,
in addition, is optimal relative to some other objectives.

We propose the Heat-Diffusion (HD), a throughput-optimal
policy that operates under the same general conditions and
with the same complexity as BP, while holding the following
important qualities: (i) HD minimizes average routing cost in
the sense of Dirichlet. Endowing each wireless link with a
cost-factor, possibly time-varying, we define Dirichlet routing
cost as the product of the link cost-factor and the square of the
link flow rate. This routing cost may reflect different topology-
based penalties, e.g. channel quality, routing distance, power
usage, etc. (ii) Consider the class of routing algorithms that
use only current queue occupancies and current channel states,
possibly together with the knowledge of arrival statistics and
channel probabilities. In this class, HD minimizes average total
queue congestion, which is proportional to average network
delay by Little’s Theorem. (iii) In the above-mentioned class,
suppose that the performance region built on the average delay
and the Dirichlet routing cost is convex. Then HD operates
on the Pareto boundary of this region by changing a control
parameter which compromises between these two objectives.

Similar to BP, also HD requires a centralized scheduling
whose complexity is prohibitive for practice. However, much
progress has recently been made to ease this difficulty by

deriving decentralized schedulers with the performance of
arbitrarily close to the centralized version [8], [9].

Related Work—The study of BP schemes has been a very
active research area with wide-ranging applications and many
recent theoretical results. In packet switches, max-weight
scheduling was extended to admit more general functions of
queue lengths with a particular interest on a-weighted sched-
ulers using a-exponent of queue lengths [5]. There has been
a non-proven conjecture that heavy traffic delay is minimized
when a— 0, where a discussion of this was given in [10] along
with some counterexamples. As another extension in packet
switches, [6] introduced Projective Cone Schedulers (PCS)
to allow scheduling with non diagonal weight assignments.
The work in [7] generalizes PCS using a tailored “patch-
work” of localized piecewise quadratic Lyapunov functions.
In wireless networks, shadow queues enabled BP to handle
multicast sessions with reduced number of actual queues that
need to be maintained [11]. Replacing queue-length by packet-
age, [12] introduced a delay-based BP policy. To improve BP
delay performance, [13] proposed place-holders with Last-In-
First-Out (LIFO) forwarding. Adaptive redundancy was used
in [14] to reduce light traffic delay in intermittently connected
mobile networks. Using graph embedding, [18] combined BP
with greedy routing in hyperbolic coordinates to obtain a
throughput-delay tradeoff. Some attempts have been made to
adopt the original framework for handling finite buffers [15].
There have also been several reductions of BP to practice
in the form of distributed wireless protocols of pragmatically
implemented and experimentally evaluated [16], [17].

Contributions—We derive HD from the combinatorial ana-
logue of classic heat equation on smooth manifolds. Translat-
ing “queue occupancy measured in packets” to “heat quantity
measured in calories,” the fluid limit of interference HD flow
takes the form of heat flow on a suitably-weighted directed
graph, in agreement with the Second Principle of Thermody-
namics. The key contributions of this work are as follows.

First, we introduce a new paradigm that might be called
“Wireless Network Thermodynamics.” This builds a deep
connection between wireless networking and well-studied do-
mains of physics and mathematics. In particular, it paves a
way to take advantage of powerful tools from heat calculus in
the analysis and optimization of stochastic, packet-based, time-
slotted queuing networks constrained by link interference.

Second, the new policy minimizes average network delay
in the class of all algorithms that make routing decision as a
pure function of current queue congestion and current channel
states, including the ones with perfect probability knowledge
on arrivals and channel states. This important class contains



stationary randomized algorithms [3], original BP policy [1],
and most BP derivations [4]-[17].

Third, the new policy reduces the Dirichlet routing cost to its
minimum feasible value. This is the first time a feasible routing
algorithm asserts the strict minimization of a cost function
subject to network stability, i.e. bounded average delay.

Fourth, in the above-mentioned class of routing algorithms,
through changing a Lagrange control parameter, HD provides
a Pareto optimal performance with respect to average delay
and the Dirichlet routing cost under the convexity assumption
on Pareto boundary. This means that no other policy in this
class can make a better tradeoff between these two criteria.

Last but not least, HD enjoys the same algorithmic structure,
complexity, and overhead as BP, giving them the same wide-
reaching impact. This also provides an easy way to leverage all
advanced improvements to BP to further enhance HD quality.
At the same time, it simplifies the way to practice via a smooth
software transition from BP to HD.

Note: The page limit does not let us include the proofs, but
all the proofs are available in [27]. A very infant idea of HD
algorithm was introduced in [28].

II. PRELIMINARIES

We consider a wireless network operating in slotted time
with normalized slots n € {0,1,2,---}. The network is
described by a simple, directed connectivity graph with set of
nodes V and directed edges £. New packets randomly arrive
into different nodes, requiring a multihop routing. Wireless
channels may change due to node mobility or surrounding
conditions. Assuming the sets V' and £ change much slower
than channel states, we fix them during the time of our interest.
Then a temporarily unavailable link (due to, e.g. obstacle
effect, channel fading, etc.) is characterized by zero link
capacity. We assume that channel states remain fixed during a
timeslot, while they may change across slots.

In wireless networks, transmission over a channel can hap-
pen only if certain constraints are imposed on transmissions
over the other channels. An interference model specifies these
restrictions on simultaneous transmissions. Given an interfer-
ence model, a maximal schedule is a set of channels such that
no two channels interfere with each other, and no more channel
can be added to it without violating the model constraints.
We describe a maximal schedule with a scheduling vector
m € {0,1}/€l where m;; = 1 if the channel 4j is included.
Given a connectivity graph (V,E), we define the scheduling
set II as the collection of all maximal scheduling vectors.

For a link 47, the capacity ;;(n), which is frequently called
transmission rate in literature, counts the maximum number
of packets the link can transmit at the slot n. The actual-
transmission f;; (n), on the other hand, counts the number of
packets genuinely sent over the link at the slot n. Each link
is also endowed with a cost-factor p;;(n) > 1 that represents
the cost of transmitting one packet over the link at the slot n.

A discrete-time stochastic process z(n) is stable if

7 := limsup 1/7 Z;;; E{z(n)} < co (1)

T—>00

where E denotes expectation. Throughout this paper, an over-

bar notation will denote the lim sup expected time average as
defined in (1). A queuing network is stable if all its queues
are stable. For a routing policy, stability region is the set of all
traffic rate matrices that it can stably support. Network layer
capacity region C is the union of the stability regions achieved
by all routing policies (possibly unfeasible). A routing policy
is throughput-optimal if it stabilizes the entire capacity region.

A. Problem Statement

For a constrained network described above, we propose
HD algorithm that solves the three stochastic optimization
problems as follows. It is important to note that these problems
must be solved at the network layer alone. This is totally
different from cross-layer optimization [21]-[24] that aims to
control congestion by tuning arrival rates into the network
layer. With no control on arrivals, our basic assumption is
that the arrival rates lie within the network capacity region,
making the system stabilizable. Obviously, nothing prevents
one to install a flow controller on top of HD or develop an
HD-based Network Utility Maximization (NUM) protocol.

e Dirichlet routing cost minimization problem:

Minimize: R ::Zijeé‘ Pij (fij)2

Subject to:  Throughput optimality.
It is shown in [2], [3] that a stationary randomized algorithm
can solve the optimization problem (2). While such a policy
exists in theory, it is intractable in practice as it requires a full
knowledge of channel state probabilities. Further, assuming all
of the probabilities could be accurately estimated, the network
controller would still need to solve a dynamic programming
problem for each topology state, where the number of states
grows exponentially with the number of channels. However,
we show in Th. 8 that HD policy solves this problem without
requiring the knowledge of arrival statistics or channel state
probabilities, and without dealing with dynamic programming.

e Average network delay minimization problem:

Minimize: @ := Ziev G

Subject to:
Solving this problem for a general case requires the Markov
structure of topology process, plus arrival and channel state
probabilities. Then in theory, the solution is obtained through
dynamic programming for each possible topology along with
solving a Markov decision problem. By even having all of
the required information, the number of queue backlogs and
channel states increase exponentially with the size of network,
making dynamic programming and Markov decision theory
prohibitive. In fact, even for the case of a single channel, it is
difficult to implement the resulting stochastic algorithms [25].
While having a practical solution for a general case seems
dubious, we show in Th. 3 that HD policy solves this problem
within an important class of routing algorithms, without any
of the above-mentioned difficulties.

e Pareto optimization problem:

(1-8)Q+BR
1) Throughput optimality “4)
2) Network constraints

2

3)

Network constraints.

Minimize:

Subject to:

where 3 € [0,1] is a control parameter to trade average



delay for average routing cost, which also plays the role of
Lagrange multiplier. While even the corresponding single-
objective optimization problems are not easy to manage, we
show in Th. 9 that within the class of routing algorithms
defined in problem (3), HD policy solves problem (4) subject
to convex Pareto boundary on the feasible (Q, R) region.

B. Original Back-Pressure Policy

At every timeslot n, the original BP [1] for network layer
observes queue backlogs ¢;(n) and estimates channel capaci-
ties 11;;(n) to make a routing decision as follows.

1) BP weighing: For every link ¢j find queue differential
¢ij(n) == ¢;(n) — ¢;(n) and give a weight to the link as

wij(n) == pij(n) gij(n)* ®)

where 1 := max{0, z} for any z.
2) BP scheduling: Find the scheduling vector such that

7(n) = arg max Zijeé’ i wis (n) (6)
where ties are broken randomly.
3) BP forwarding: Over each activated link with w;;(n) > 0

transmit packets at full capacity p;;(n). If there is no enough
packets at node ¢, transmit null packets.

C. V-Parameter Back-Pressure Policy

To incorporate the Dirichlet routing cost R into the original
BP, the drift-plus-penalty approach [2], [3], which we refer
to as V-parameter BP hereafter, adds a usage cost to the link
queue-differential via replacing the link weight (5) with

wij(n) = pij(n)(qi;(n) = Vpig(n) pag(n))* (7
where V' € [0,00) determines the importance of routing
penalty. Note that the original BP is recovered for V' = 0.

The V-parameter BP yields a Dirichlet routing cost within
O(1/V) from its minimum feasible value to the detriment of
growing average delay by O(V) relative to that of the original
BP [3]. Therefore, the policy is not able to achieve minimum
routing cost subject to throughput optimality, i.e. finite delay.

Another issue is that the resulting tradeoff depends on both
V' and the network with two negative consequences: (i) The
same V leads to different tradeoffs in different networks.
(i) The resulting tradeoff changes by network topology and
arrival rates. Hence, finding a proper V is difficult in practice.

ITI. PARETO OPTIMAL HEAT-DIFFUSION POLICY

To provide a convenient way of unifying the new scheme
with the previous works on BP, we design HD with the same
complexity, in both computation and implementation, as BP.

A. Heat-Diffusion Algorithm

At every timeslot n, HD control policy for the network layer
observes link queue-differentials ¢;;(n) := ¢;(n) — ¢;(n) and
estimates channel capacities p;;(n) and channel cost-factors
pi;j(n) to make a routing decision as follows.

1) HD weighing: Every link first calculates the number of
packets it would transmit if it were activated:

Fij(n) == min{¢;; (n)gi;(n)*, pij(n)}

®)
pij(n) == (1=5) + B/pij(n)

TABLE 1
CONTRASTING HD POLICY WITH V-PARAMETER BP POLICY.

) BP pij(n)
£ HD  min{(1—8+ 8/pi;(n))qi; () ¥, pij(n)}
§ wij(n) BP 1 (1) (gi5(n) — Vpiz(n) pij(n)) +

HD  2(1—8+ B/pij(n))ai;(n)fij(n) — Fij(n)?
Scheduling m™(n) = argmaXren 2_;jecg TijWij (n)
Forwarding fij(n) = { [Efij (n)] ioft}:; ZI'JVEIT:i =1

where the Lagrange control parameter /3 is as defined in (4) to
make a tradeoff between queue occupancy and routing penalty,
and the hat notation denotes a predicted value which would
not necessarily be realized. Then the link weight

wij(n) == 2ij(n)qi; (n) fij(n) — Fij(n)*. ©)
2) HD scheduling: Find the scheduling vector, in the same
way as BP, such that

(10)

w(n) = arg max

where ties are broken randomly. .
3) HD forwarding: Over each activated link transmit f;;(n)
number of packets, meaning that

fis(n) = { [ fiz(n)] if mi5(n)=1

e mijwij(n)

0 otherwise ()
where f;;(n) represents the number of packets genuinely sent
over the link 4j at the slot n, and the ceiling function [x]
maps a real number z to the smallest following integer.

It is critical to discriminate among actual transmissions
fi5(n), transmission predictions f;;(n), and link capacities
i (n). Table 1 compares HD and V-parameter BP algorithms,
emphasizing the same structure and complexity.

Remark 1: In a very special case that all link capacities are
the same, i.e. y1;;(n) = p(n), and all link queue-differentials
are always less than it, i.e. ¢;;(n) < p(n), HD with 8 = 0 and
a-weighted policy of [5] with o = 2 become equivalent.

B. Highlights of Heat-Diffusion Design

HI: While BP is derived by link capacity u;;(n), HD
emphasizes on actual number of transmittable packets f;(n),
though indirectly it also takes into account the link capacity
through (8). Thus HD allocates resources based only on gen-
uinely transmittable packets, without counting on null packets
as is practiced in BP schemes.

A

e Q /=0 (Original BP) o
Z o &
S — g g
) ﬂ_o ?E o
£ =8
= g 2
2 2 o
=

o

= -
2 Vs oo
a

v

Average total queue congestion O

Fig. 1. Graphical description of HD Pareto optimality with respect to average
queue congestion and Dirichlet routing cost, contrasted with BP performance.
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Fig. 2. Performance of HD versus BP in the two-queue downlink.

H2: The link weight (9), which itself directly controls the
scheduling optimization problem, is taken quadratic in the
queue-differential g;;(n), where for ¢;;(n)g;;(n) < w;(n) is
simplified into w;;(n) = ¢;;(n)?q;j(n)?. This contrasts with
BP weighing w;;(n) = p;;(n)g;;(n) which is linear in g;;(n).
The quadratic weight is central to the HD key property (Th. 1)
which is fundamental to other HD qualities.

H3: Varying the Lagrange multiplier S makes a universal
tradeoff in performance that depends neither on the network
nor on the arrivals with the following significant results:

e For all 3 € [0, 1] the policy is throughput-optimal (Th. 2).

e For 3 = 0 the average total queue congestion (), and
so average delay, decreases to its minimum feasible value
within the class of routing algorithms that rely only on
current queue backlogs and current channel states (Th. 3).

« Raising § adds to the average delay in return for a lower
routing cost, where the exclusive merit of HD is to provide
the best tradeoff between these two criteria (Th. 9).

o For f = 1 the Dirichlet routing cost R reaches its least
feasible value (Th. 8) through an optimal tradeoff with
average delay. Note that in the V-parameter BP, delay grows
to infinity as routing cost is pushed towards its minimum.
Figure 1 graphically compares the operation of HD for

B €[0,1] with V-parameter BP for V' € [0,00), assuming

that the performance region has a convex Pareto boundary.

The performance region is restricted to all () achievable by

the class of routing algorithms that act based only on current

queue congestion and current channel states.

H4: Unlike BP that forwards the highest possible number
of packets over activated links, HD controls the packet for-
warding by limiting it to ¢;;(n)g;;(n) with the maximum
¢i; = 1 at B = 0 and the minimum ¢;; = 1/p;; at § = 1.
This reduces queue oscillation by the decrease of unnecessary
packet forwarding across the links, which itself reduces power
consumption and routing penalty. Forwarding a portion of
queue differentials rather than filling up the link capacities
also complies with resembling heat flow on the underlying
directed graph (Th. 5) that in effect minimizes time average
routing cost via Dirichlet Principle (Th. 8).

C. Illustrative Examples

To focus only on the policy itself, we take everything
deterministic in our examples here. This assures us that the
results purely show the policy performance not contaminated
by stochastic effects. We however know that all HD properties
are analytically proven for stochastic arrivals and random
topologies under very general conditions.

Two-queue downlink: Consider a base station that transmits
data to two downlink users, where at most one link can be
activated at each timeslot. Let link 1 be of capacity pu; = 3
(packets/slot) and link 2 of time-varying capacity po > 2.
Assume at every timeslot one packet arrives for each user. It is
easy to verify that for o < 1.5 the given arrival is beyond the
capacity region. The performance of HD and BP are compared
in Fig. 2 for ¢1 (0) = ¢2(0) = 0. The leftmost panel depicts the
timeslot evolution of g1 (n)+qz(n) for e = 18. The rightmost
panel depicts the steady-state average of total queue length as a
function of u5. In BP the average total queue length increases
linearly in po, while HD holds the optimal performance for all
admissible link capacities. This confirms H1 in the previous
subsection, i.e., the efficiency of scheduling based on actual
transmittable packets rather than link capacities.

Lossy link network: Consider the 4-node network of Fig. 3
with lossy links and subject to 1-hop interference model. The
links are labeled with both ETX and capacity, where ETX
is a quality metric defined as the expected number of data
transmissions required to send a packet without error over the
link. Assume at every timeslot a single packet arrives at node 1
destined for node d. Following [16], let p;; = ETX;;. For zero
initial conditions, Fig. 3 compares the performance of HD with
BP. While HD easily stabilizes the total queued packets at 1
for any 8 > 0, trying with different values of V' indicates the
weakness of V-parameter BP in aptly supporting the arrival.
This simplistically shows one of the impacts of entering the
link cost-factor p;; as a multiplicand in the HD formula (10)
rather than an addend in the V-parameter BP formula (7).
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Fig. 3. Performance of HD versus BP in the lossy link network.

Power minimization: Consider the sensor network of Fig. 4
subject to 1-hop interference model, i.e. two links with a
common node cannot transmit at the same time. Each link ij
has a noise intensity INV;; € [1,5] which is randomly assigned
at first and keeps constant during the simulation. We adopt
Shannon capacity p;; = ;5 logy(1 + P;;/N;;) with P;; the
power transmission and §2;; the bandwidth. Each timeslot two
packets arrive at nodes 1, 2, 3, and 4 destined for the node d.
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Fig. 4. Total queue backlog of HD versus BP in the power minimization.
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The aim is to minimize p;;(fi;)*> where p;; = Pi;/pij. For
simplicity, we fix P;; = 15 and §2;; = 5 for all links, so that
the capacity of each link is determined by its noise intensity.
Figure 4 displays timeslot evolution of total queue lengths
for HD with § = 0, and for the original BP, i.e. V = 0.
Besides minimizing the average queue congestion, we notice
little steady-state oscillations in HD contrary to large variations
in BP that verifies H4. Figure 5 displays the tradeoff between
queue congestion and power usage concurring with HD Pareto
optimality displayed by Fig. 1. The attention is drawn on
the rapid growth of queue lengths in V-parameter BP when
average power usage is pushed downwards. Figure 6 displays
timeslot evolution of total power usage for HD with 8 = 1,
and for V-parameter BP with V' = 10. Smaller oscillations in
HD endorses both HI and H4, showing the defect of capacity-
based scheduling and maximum packet forwarding in BP.
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Fig. 6. Timeslot evolution of total power consumption in HD versus BP.

IV. HEAT-DIFFUSION THROUGHPUT OPTIMALITY

Consider a general queuing network with ¢;(n) being the
integer number of packets in the node 7 at the slot n as before.
The state variables of the system are represented by the vector

q.(n) = [ql(n), ey Gd—1(n), qar1(n), . . ., qM(n)]
where ¢4(n) = 0 is dropped from the set of state variables.

Notation 1: Throughout the paper, we use a o subscript to
denote a reduced vector or matrix obtained by discarding the
entries corresponding to the destination node d.

Let a stochastic process a;(n) represent the integer number
of exogenous packets arriving into the node ¢ at the slot n.
Discarding aq(n) = 0, the vector of node arrivals

ao(n) :=[a1(n),...,a4-1(n),agi1(n),...,ap(n)].
Likewise, the vector of link actual-transmissions
f(n):= [fl(n), .. ,f|g|(n)]
where as before, f;;j(n) is the integer number of packets
actually sent over the link ij at the slot n.

Given a directed graph (V,£), let B denote the node-edge
incidence matrix in which B,y is 1 if node ¢ is the tail of
directed edge ¢, is —1 if ¢ is the head, and is O otherwise.
Then B, denotes a reduction of B through discarding the row
related to the destination node d. One can verify that B, f(n)
is a node vector with the entry corresponding to node 7 as

(Bof)in) =32, o Fo) =30 o fai)

where in(¢) and out(#) respectively denote the set of incoming
and outgoing neighbors of node <.

Using these ingredients, the f-controlled, stochastic state
dynamics of a queuing network is captured by

4(n+1) = go(n) + as(n) — Bo f(n).
A. The Key Property of Heat-Diffusion Policy

(12)

Having (12), the next theorem formalizes the HD key prop-
erty which is central to the proof of Th. 2 on HD throughput-
optimality, Th. 3 on HD delay minimization, and Th. 5 on
the connection between HD fluid limit and combinatorial heat
equation leading to Th. 8 on HD routing cost minimization.

Theorem 1: At every timeslot n and for all 8 € [0, 1], the
HD policy maximizes the f-controlled functional

D(f,5,n) =2 f(n)' ®(n)Bsq,(n) = f(n)' f(n) (13)
subject to network constraints, where ®(n) = diag(¢(n))
denotes the diagonal matrix expansion of vector ¢(n) with

¢i;(n) = (1—B) + B/pi;j(n) as defined in (8).
B. Characteristic of Network Capacity Region

Let a stochastic process S(n) = (S1(n), -, S|g|(n)) rep-
resent channel states at the slot n, describing the uncontrollable
factors that affect link capacities and cost-factors. We assume
that S(n) evolves according to an ergodic stationary process
and takes values in a finite set S. Considering a connectivity
graph (V,E) together with a channel state process S(n), an
arrival rate vector @ is in the network capacity region C iff
there exists a set of link actual-transmissions such that

i = Zbeout(i) fzb B Zaein(i) f‘”
fij < ZS’GS s E{pij(n)|S(n) = S}.
C. HD Throughput-Optimality for All 3

To analyze the HD stability, we use a Lyapunov argument
which, unlike most of previous results in literature that use the
sum of squares of queues, involves a Lyapunov candidate with
nonsymmetric weighting matrix and no trivial interpretation of
a specific energy in the system. Let the functional

W(n) := qn)"(BoBJ) ' B.®(n)B; qy(n)

where M, (n) := (BoBJ) ' B,®(n)B/{ is a nonsymmetric
matrix. Note that for 5 =0 where ®(n)=1I with I the identity
matrix, or for the case that all links are of the same cost-factor
where ®(n)=al with & >0 a scalar, the Lyapunov function
W (n) reduces to the sum of squares of queue lengths.
Lemma 1: On a connected-topology network, M,(n) is
quasi-positive for all n in the sense that &' M, (n)x >0 for
any vector x, with equality if and only if & = 0. Further,

BIM,(n)x = ®n)Blz, vazeRVI-D,

(14)
15)



Lemma 2: For arbitrary vectors &,y € RIVI=DIKI
x' (M, (n)' + Mo(n)) y <na' Mo(n)y

for a scalar 1 which takes the value 1 if " M,(n)y < 0 and
the value 3 if " M,(n)y > 0.

Letting the Lyapunov drift AW (n) := W(n+ 1) — W(n),
exploiting Lem. 2, replacing fTB;'—MoqO with fT<I>BZ',—qo in
light of Lem. 1, and using the D(f, 3,n) expression of (13),

AW (n) < nas(n)' Ma(n)q.(n) — 1 D(f.5,n)
+ ao(n) M,(n)ao(n) + f(n)' Bs M,(n)B. f(n)
— f(n)" BI (Mo(n) + Mo(n)")ac(n) = 3 f(n)" £(n)

where 7 takes the value either 1 or 3 depending on if the
functional (a, — B, f)TMoqo is either negative or positive.

Now consider a traffic rate a, being interior to the capacity
region C, i.e. there exists a vector € with positive entries
such that a; + € € C. Thus by condition (14), there exists
a packet flow f’(n) such that B, f’ = @, + €. At the same
time, Th. 1 guarantees that D(f*,58,n) > D(f’,8,n) for
all B and at each slot n, where f*(n) represents the link
actual-transmissions provided by HD at the slot n. Then the
next theorem is proven by showing that the expected value of
Lyapunov drift AW (n) is bounded for all 8 € [0, 1].

Theorem 2: Suppose that arrivals and channel states are
ii.d. over timeslots. The HD policy is throughput-optimal for
all B € [0,1], meaning that it guarantees network stability
under all stabilizable arrival rates.

V. CONGESTION MINIMIZING POLICY AT 8 =0

The HD Pareto optimality stands on two pillars: minimiza-
tion of average delay @ for 3 = 0, and minimization of
Dirichlet routing cost R for 3 = 1. In this section we establish
the first pillar. Prior to stating the main result in Th. 3, we
propose two lemmas that are used in the proof.

Lemma 3: The HD policy with § = 0 maximizes

2f(n)' Boqo(n) — f(n)" B Bof(n)
at every timeslot n subject to network constraints.

Considering Lem. 3 and Th. 1 together, it turns out that both
the functional (13) at 8 = 0, where ®(n) becomes the identity
matrix, and the functional (16) are maximized for the same
control action f(n). It is worth to remark that the claim is not
about the same maximum value for these two functionals, but
about the same maximizing solution f(n).

Lemma 4: Suppose that a general routing policy stabilizes
an arrival rate vector a, resulting in timeslot queue occupan-
cies g,(n) and link actual-transmissions f(n). Then

2Cov{Blq,,f} — Var{B,f}= Var{a.}
where for two random variables X and Y, Cov{X,Y} :=
E{X'Y}-E{X} E{Y} and Var{X} := Cov{X, X }.

Having Lem. 3 and Lem. 4, the next theorem is proven in
the class of all routing algorithms whose routing decision is a
function only of current queue congestion and current channel
states. This important class includes all opportunistic max-
weight schedulers that do not incorporate the Markov structure
of topology process into their decisions, among them is BP [1]
and most its derivations [4]-[17]. It also includes all stationary

(16)

randomized algorithms that make a routing decision as a pure
(possibly randomized) function only of current channel states,
typically using the perfect knowledge of arrival statistics and
channel state probabilities.

Theorem 3: Suppose that arrivals and channel states are
ii.d. over timeslots. Consider a class of routing algorithms
that act based only on current queue backlogs and current
channel states. Within this class, the HD policy with 8 = 0
solves the average network delay minimization problem (3).

VI. CLASSICAL VERSUS COMBINATORIAL HEAT PROCESS

To formulate the graph heat diffusion, we use the theory of
combinatorial geometry where the notion of chains-cochains
provides a genuine counterpart for differential forms in geom-
etry. The details are found in [26] and references therein.

A. Continuous Heat Diffusion on Manifolds

On a smooth manifold M charted in local coordinates z,
let Q(z,t) be the spatial distribution of temperature, F'(z,t)
be the heat flux, and A(z,t) be the scalar field of heat sources
(with minus for sinks). The law of heat conservation entails

0 ,t .

% = —divF(z,t) + A(z,1).
Fick’s law states that heat flows from warm to cold regions
with the heat flow proportional to the temperature gradient,

F(z,t) = —0(2) VQ(z,1) (18)

where o(z) is thermal diffusivity quantifying how fast heat
moves through the material. Putting (17) and (18) together,
0 )t .
% = div(o(2) VQ(2,1)) + A(z,1).
To solve this equation uniquely, besides time initial condition,

one needs to prescribe conditions of @) on a boundary OM.

a7

19)

B. Continuous Heat Diffusion on Undirected Graphs

In the context of combinatorial geometry, we view a graph
as a simplicial 1-complex and transfer the elements of classic
heat equations to this cell complex as a discrete domain. In
doing so, the smooth manifold M is replaced by a 0-chain
vector representing the discrete domain, pointwise functions
Q(z,t) and A(z,t) are respectively replaced by O-cochain
vectors g(t) and a(t) (node variables), line integral F'(z,t)
is replaced by a 1-cochain vector f(t) (edge variable), and
thermal diffusivity o is replaced by an edge weight vector o.

As a 1-complex, the structure of a graph is fully described
by the node-edge incidence matrix B of Sec. IV, except that
we substitute edge direction for algebraic topological edge
orientation. Then on an undirected graph with node d as
the heat sink, the combinatorial analogue of the classic heat
equations (17)—(19) are given by

q(t) = -B f(t) +a(t), q(t)=0 (20
f(t) = diag(o) B q(t) 1)
4(t) = —Bdiag(c) B q(t) + a(t), qu(t) =0  (22)

where a dot on the top represents time derivative. Notice the
boundary M on the manifold is reduced to a single node d
on the graph, which absorbs all the generated heat.



Enforcing the boundary condition ¢4(t) = 0, one can
eliminate the sink d from (20)—(22). This yields the reduced
set of continuous-time graph heat equations

(1) = diag(o) Bl q, (1) (23)
do(t) = —Loq,(t) + ao(t) , Lo := Bo diag(o) Bs  (24)
where the o subscript denotes a reduced quantity as before.

The linear operator L. is called Dirichlet Laplacian with
respect to the node d, which is a positive definite matrix.

C. Continuous Heat Diffusion on Directed Graphs

On a directed graph, the combinatorial heat conserva-
tion (20) remains unchanged, but the Fick’s law (21) must be
modified to allow the flow in only one direction. Let the edge
orientation concur with the edge direction. Like the undirected
case, one can drop the sink d from the equations by fixing the
boundary condition g4(t) = 0. Then we obtain the reduced set
of continuous-time heat equations on a directed graph as

f(t) = diag(o) maX{O, B;rqo(t)}
(io(t) = 7LO QO(t) + G’O(t)
L, =B, diag(o) BJ diag (]I[quo(t)>0)

where 0 denotes the zero vector, max is taken entrywise, and

-

I,.0 is the entrywise indicator vector function. We call L,
the nonlinear Dirichlet Laplacian acting on a directed graph.

(25)

(26)

VII. WIRELESS NETWORK THERMODYNAMICS

Though defined on a directed graph, (25)—(26) still represent
a deterministic, continuous-time process with no link interfer-
ence. The latter, particularly, makes the wireless problem quite
intractable. Nevertheless, this section advocates a genuine
diffusion process on stochastic, time-slotted, interference net-
works by showing that the HD fluid limit follows combinatorial
heat equations on a suitably-weighted directed graph.

A. Fluid Limit of Heat-Diffusion Policy

Fluid limit of a stochastic process is the limiting dynamics
obtained by scaling in time and amplitude. Under very mild
conditions, it is shown that these scaled trajectories converge
to a set of deterministic equations called fluid model. Using
this deterministic model, one can analyze the rate-level, rather
than packet-level, behavior of the original stochastic process.
For the details, refer to [19], [20] and references therein.

Fluid limit: Let X (w,t) be a realization of a continuous-
time stochastic process X along a sample path w. Define
the scaled process X" (w,t) := X(w,rt)/r for any r > 0.
A deterministic function X (t) is a fluid limit if there exist a se-
quence 7 and a sample path w such that lim, . X" (w,t) —
X (t) uniformly on compact sets. For a stable flow network,
the existence of fluid limits is guaranteed if exogenous arrivals
are of finite variance. It is further shown that each fluid limit is
Lipschitz-continuous, and so differentiable almost everywhere.

Cumulative process: To develop a continuous-time approxi-
mation of the system, we model the network by its cumulative
processes. Let at°®(n) and £*°*(n) be the vector of cumulative
node arrivals and cumulative link transmissions up to the
slot n. Assuming a!°*(0)=0 and f**(0)=0,

o

a5(n) = q,(0) + ag(n) — Bof**" (n).

Let f;;(n) be the predicted number of packets that the link ij
would trans/_rr\ﬂt if it were activated in the slot n, and form
the vector f(n). Also let Tx(n) be the cumulative number
of timeslots in which the scheduling vector 7 € II has been

selected. Assuming T3 (0) = 0, it is not difficult to verify that
£ () :Zﬂen > (Tn(k) = Tn(k—=1))(m @ £ (k)

where ® denotes the entrywise product.

General equations: Given a sample path w, we extend a
time-slotted process to be continuous-time via linear interpo-
lation in each interval (n,n+ 1). Let exogenous arrivals occur
at the beginning of each timeslot, so that a'°*(¢) represents
the cumulative arrivals by the time t. Assuming normalized
timeslots with the period of time unit, we obtain a set of

continuous-time, stochastic, basic equations as

a5(t) = q,(0) + ag™ (t) — Bof''(t) 27
Frovt) = Zﬂen T (t)(m © F(t)) (28)

: 1 if 7 is chosen at time ¢
7::"6(;) - {0 otherwise (29)
Z - T.(t)=t with T (t) nondecreasing.  (30)

The equality (28) entails the existence of a § > 0 such that
S = I =D gmia T (Te () = Te(2)
for any ¢’ € [t,t + 0]. This states the fact that if a link has
a positive flow of packets at time ¢, the number of packets
transmitted by the link in the interval [¢,¢'] C [t,t+ 4] is equal
to the amount of time the link has been activated during [¢, ]

multiplied by its transmission rate prediction at time ¢.

To get a deterministic first-order approximation, all stochas-
tic input variables and all time-varying system parameters are
replaced by their expected time average values. Therefore,

alt(t) =ast. 31
Likewise, the cost factor p;;(n) is replaced by p;; and the
capacity p;;(n) is replaced by 7r;; for each link ij € £.

Particular equations: While (27)—-(31) hold for any stable
network operating under an arbitrary non-idling control policy,
each policy determines f(¢) and T, (¢) in its own particular
way. Specifically, referring to (8)—(11), HD enforces

Tt Hb min{ E(Bl—qo(t))+, ﬁ} (32)
w(t) F Fit)o (28 Blg,() - FH) (3
7(t) = argmaxper 7 w(t) 34)

where min is taken entrywise and w(t) is the vector of weights
assigned by HD policy to each link at time t.

Theorem 4: Define the HD fluid model as the collection of
deterministic continuous-time equations (27)—(34). Then on a
network controlled by the HD policy, every fluid limit X(t) =
(@, (1), F*°4(t), T (t)) satisfies the HD fluid model.

With the transmission prediction (32) and the link weigh-
ing (33), the immediate result is that the HD key property of
Th. 1 in the packet-level is valid in the rate-level too.

Corollary 1: In the fluid limit, the HD control policy max-
imizes the continuous-time f-controlled functional

D(f,B,t)=2f(t) ®Bsq,(t) — f(t)' f(t)

subject to network constraints.



B. Thermodynamic-Like Packet Routing

Consider a wireless network with packets being routed
under HD policy with S € [0,1] (microscopic flow). Thus
at every timeslot, the policy activates a particular set of links
to send a specific number of packets over them. Obviously,
each link transmits packets at some slots and is switched off
at some other slots. We claim that looking at the average flow
in limit (macroscopic flow), it takes the form of the heat flow
on the underlying directed graph with suitably-weighted edges.

To formalize this claim, consider a directed graph of the
same incidence matrix as that of the wireless network and
with the edge weights o;; = ngJ Associate with each arrival
a;(n) on the wireless network a corresponding heat source
with intensity a; on the graph, and set the node corresponding
to the destination node on the wireless network as the heat
sink. The flow of heat on the graph is governed by (25)—(26),
providing us with the following reference heat model:

F*(t) = ® max{0, Bl q:(t)}
q(t) = —Lq5(t) + @
L} = B,® B! diag(Ip1q: (1)=0)-
Then the next theorem shows that the HD fluid model complies
with the above reference heat model. Note that ¢;; depends
not only on the average link cost-factor p;;, but also on the
Lagrange control parameter /3, i.e. varying (3 leads to different
edge weights on the graph, and so to different graph topology.

Theorem 5: Consider a wireless network with the reference
heat model (35)-(36), and suppose that the heat flow (35)
meets the link capacity constraint (15). Then the HD fluid
model (27)—(34) with 8 € [0, 1] asymptotically converges to
the nonlinear graph heat equations (35)—(36). In particular, the
HD fluid model with 8 = 0 converges to the heat equations on
an unweighted directed graph, and the HD fluid model with
B =1 converges to the heat equations on a weighted directed
graph with the edge weights 1/5;;.

Remark 2: The assumption that the reference heat flow (35)
satisfies the link capacity constraint (15) indeed guarantees that
the flow of heat on each link remains lower than the expected
time average of link capacity fi;;. Thus it guarantees that for
a given arrival rate vector a,, it is possible in principle to
stabilize the network such that the fluid limit asymptotically
follows the directed graph heat equations. Also worth to
observe that the assumption intrinsically deals with network
topology, arrival rates, link capacities, and link cost-factors,
bearing a theoretically deep and comprehensive concept.

(35)

(36)

VIII. ROUTING COST MINIMIZING POLICY AT 5 =1

To establish the second pillar of HD Pareto optimality, this
section shows, via Dirichlet Principle, that the routing cost R
reaches its minimum feasible value under HD with S=1. In
fact, we prove a more general result showing that HD with
any 3 € [0,1] solves the 3-dependent optimization problem

Minimize: Zijeé’ m

Subject to:

(37
Throughput optimality

where for 5=1 we get ¢;; = 1/p;; that recovers the problem
of Dirichlet routing cost minimization as defined in (2).

A. Classic Dirichlet Principle

Consider the classical heat diffusion equations (17)-(19)
subject to constant heat sources A(z). In steady-state thermal
conduction, the amount of heat entering any region of the
manifold is equal to the amount of heat leaving out the region.
Thus while partial derivatives of temperature with respect to
space may either be zero or have nonzero values, all time
derivatives of temperature at any point will remain uniformly
zero. This leads to the classic Poisson equation

div(o(z) VQ(2)) + A(z) =0
which formulates the stationary heat transfer by substituting
zero for the time derivative of temperature in (19). Then

Dirichlet Principle states that the Poisson equation has a
unique solution that minimizes the Dirichlet energy

B@) = [ (3o@INQ@I - @A)

among all twice differentiable functions ()(z) that respect the
boundary conditions on OM.

B. Dirichlet Principle on Undirected Graphs

To derive the combinatorial analogue of Poisson equation
on undirected graphs, one identifies classic div with the
boundary operator B, and classic gradient V with the minus
of coboundary operator —B . Fixing ¢q(t) = 0 yields

—L,q,+a,=0
which correctly realizes (24) in steady-state condition. Like the
classic case, this equation has a unique solution that minimizes
the combinatorial Dirichlet energy

1
E(g.) = 5 a.Loq, — q. a..

C. Dirichlet Principle on Directed Graphs

Essentially, the Poisson equation on a directed graph should
capture the steady-state behavior of nonlinear diffusion pro-
cess (26) subject to constant heat sources a,, leading to

~L,q,+as=0. (38)
The difficulty arises from the fact that contrary to the linear
Laplacian L, on undirected graphs, the L, is an operand-
dependent operator that retains neither linearity nor sym-
metricity. Thus the easy way of proving Dirichlet Principle on
undirected graphs is ceased to exist here as we can not claim
that quo in (38) is the directional derivative of %q;rl_:oqo.
Nevertheless, the next theorem extends the concept of Dirichlet
Principle to directed graphs with nonlinear Laplacian.

Theorem 6: On a directed graph with the nonlinear Dirich-
let Laplacian Eo, the Poisson equation (38) has a unique
solution that minimizes the Dirichlet-like energy

—

1 -
E(g.) = 5 a.L.q, — q)a..

D. Dirichlet Routing Cost Minimization

(39)

The framework of Th. 6 is not yet aligned with what we
need for the optimization problem (37). The next theorem
resolves this incongruity by showing that minimizing the func-
tional (39) is indeed the dual of minimizing energy dissipation
on the directed graph with a zero duality gap.



Theorem 7: Considering the Poisson equation (38), min-
imization of the Dirichlet-like energy (39) is equivalent to
solving the constrained optimization problem

Minimize: Eg(f) := f' diag(o)"'f
Subject to: Bof = ao
which represents total energy dissipated on the graph.

It is worth to compare Th. 7 with the celebrated law of
minimum dissipative energy on electrical networks. In essence,
Th. 7 extends this law to directed graphs, or to resistive-
diode networks for that matter. Then the upshot is due to the
connection between heat diffusion process on a directed graph
and HD fluid limit on a wireless network, which brings circuit
theory and wireless networking together.

Theorem 8: Consider a wireless network with the reference
heat model (35)-(36), and suppose that the heat flow (35)
meets the link capacity constraint (15). Then the HD policy
with 5 € [0, 1] solves the $-dependent constrained optimization
problem (37). In particular, supposing that the heat flow (35)
with ¢;; = 1/p;; meets the link capacity constraint (15),
the HD policy with S = 1 solves the Dirichlet routing cost
minimization problem (2).

IX. PARETO OPTIMAL PERFORMANCE

Minimizing average delay and minimizing average routing
cost are often conflicting objectives, meaning that as one
decreases the other increases. This leads to a natural multi-
objective optimization framework. Then the ideal operating
points are on the Pareto boundary since they correspond to
equilibria from which any deviation will lead to the perfor-
mance degradation in at least one objective.

We have shown that HD with 5 = 0 minimizes the average
network delay @ within the class of all routing algorithms that
depend only on current queue congestion and current channel
states (optimization problem (3)). We have also shown that
under the assumption of Th. 8 on link capacities, HD with
$ =1 strictly minimizes the Dirichlet routing cost R among
all stabilizing routing algorithms (optimization problem (2)).
Now consider the region built on the joint variables (@, R) in
which @ is achievable by the aforementioned class of routing
algorithms and assume that this region has a convex Pareto
boundary. Then the next theorem claims that the HD with
B € [0, 1] operates on this Pareto boundary.

Theorem 9: Defining Q@ as in (3) and R as in (2), consider
the region of all joint variables (@, R) with ) obtained by
routing algorithms that act based only on current queue back-
logs and current channel states, and suppose that this region
has a convex Pareto boundary. Also consider the reference heat
model (35)-(36) with q% = 1/pi;, and suppose that the heat
flow (35) meets the link capacity constraint (15). Then the
HD policy with 5 € [0, 1] operates on the Pareto boundary of
(@, R) region, solving the Pareto optimization problem (4).

X. CONCLUSION

We have introduced the new Heat-Diffusion (HD) routing
policy that can provide a Pareto optimal tradeoff between
average network delay and Dirichlet routing cost. In particular,
HD reduces the Dirichlet routing cost to its minimum feasible

value, and within an important class of routing algorithms,
achieves the minimum average delay. Besides these, HD is
strongly connected to the classical world of Thermodynamics
that we believe opens the door to a rich array of theoretical
techniques to analyze and optimize wireless networking.
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