Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing

Yi-Hsuan Kao and Bhaskar Krishnamachari
Ming-Hsieh Dept. of Electrical Engineering
University of Southern California
Los Angeles, CA, USA
Email: {yihsuank,bkrishna}@usc.edu

Moo-Ryong Ra
AT&T Research Lab
Bedminster, NJ, USA
Email: mra@research.att.com

Fan Bai
General Motors Global R&D
Warren, MI, USA
Email: fan.bai@gm.com

Abstract—With mobile devices increasingly able to connect to cloud servers from anywhere, resource-constrained devices can potentially perform offloading of computational tasks to either improve resource usage or improve performance. It is of interest to find optimal assignments of tasks to local and remote devices that can take into account the application-specific profile, availability of computational resources, and link connectivity, and find a balance between energy consumption costs of mobile devices and latency for delay-sensitive applications. Given an application described by a task dependency graph, we formulate an optimization problem to minimize the latency while meeting prescribed resource utilization constraints. Different from most of existing works that either rely on an integer linear programming formulation, which is NP-hard and not applicable to general task dependency graph for latency metrics, or on intuitively derived heuristics that offer no theoretical performance guarantees, we propose Hermes, a novel fully polynomial time approximation scheme (FPTAS) algorithm to solve this problem. Hermes provides a solution with latency no more than \((1 + \epsilon)\) times of the minimum while incurring complexity that is polynomial in problem size and \(\frac{1}{\epsilon}\). We evaluate the performance by using real data set collected from several benchmarks, and show that Hermes improves the latency by 16% (36% for larger scale application) compared to a previously published heuristic and increases CPU computing time by only 0.4% of overall latency.

I. INTRODUCTION

As more embedded devices are connected, lots of resource on the network, in the form of cloud computing, become accessible. These devices, either suffering from stringent battery usage, like mobile devices, or limited processing power, like sensors, are not capable to run computation-intensive tasks locally. Taking advantage of the remote resource, more sophisticated applications, requiring heavy loads of data processing and computation [1], [2], can be realized in timely fashion and acceptable performance. Thus, computation offloading—sending computation-intensive tasks to more resourceful servers, is becoming a potential approach to save resources on local devices and to shorten the processing time [3], [4], [5].

However, implementing offloading incurs extra communication cost due to the application and profiling data that must be exchanged with remote servers. The additional communication affects both energy consumption and latency [6]. In general, an application can be modeled by a task graph, as an example shown in Fig. 1. A task is represented by a node whose weight specifies its workload. Each edge shows the data dependency between two tasks, and is labelled with the amount of data being communicated between them. An offloading strategy selects a subset of tasks to be offloaded, considering the balance between how much the offloading saves and how much extra cost is induced. On the other hand, in addition to targeting a single remote server, which involves only binary decision on each task, another spectrum of offloading schemes make use of other idle and connected devices in the network [7], [8], where the decision is made over multiple devices based on their availabilities and multiple wireless channels. In sum, a rigorous optimization formulation of the problem and the scalability of corresponding algorithm are the key issues that need to be addressed.

In general, we are concerned in this domain with a task assignment problem over multiple devices, subject to constraints. Furthermore, task dependency must be taken into account in formulations involving latency as a metric. The authors of Odessa [11] present a heuristic approach to task partitioning for improving latency and throughput metrics, involving iterative improvement of bottlenecks in task execution and data transmission. However, this greedy heuristic does not provide any performance guarantee, as we show that it can be further

Fig. 1: A task graph of an application, where nodes specify tasks with their workloads and edges imply data dependency labeled with amount of data exchange.
improved by 36% in some cases. Of all optimization formulations, integer linear programming (ILP) is the most common formulation due to its flexibility and intuitive interpretation of the optimization problem. In the well-known MAUI work, Cuervo et al. [9] propose an ILP formulation with latency constraint of serial task graphs. However, the ILP problems are generally NP-hard, that is, there is no polynomial-time algorithm to solve all instances of ILP unless P = NP [12]. Moreover, it does not address the problems of general task dependency, which is often described by a directed acyclic graph (DAG). In addition to ILP, graph partitioning is another approach [10]. The minimum cut on weighted edges specifies the minimum communication cost and cuts the nodes into two disjoint sets, one is the set of tasks that are to be executed at the remote server and the other are ones that remain at the local device. However, it is not applicable to latency metrics. Furthermore, for offloading across multiple devices, the generalized version of the minimum cut problem, called minimum k-cut, is NP-hard [13]. Compared with the existing formulations and algorithms, we propose a formulation that aims to minimize the latency subject to a cost constraint. We show that our formulation is NP-hard and propose Hermes\(^\text{1}\), an algorithm that is a fully polynomial time approximation scheme (FPTAS). That is, the solution given by Hermes performs no more than \((1+\epsilon)\) times of the minimum objective, where \(\epsilon\) is a positive number, and the complexity is bounded by a polynomial in \(\frac{1}{\epsilon}\) and the problem size [14]. Table I summarizes the comparison of our formulation and algorithm to the existing works. To the best of our knowledge, for this class of task assignment problems, Hermes applies to more sophisticated formulations than prior works and runs in polynomial time with problem size but still provides near-optimal solutions with performance guarantee. We list our main contributions as follows.

1) **A new formulation of task assignment considering both latency and resource cost:** Our formulation is practically useful for applications with a general task dependency described by a directed acyclic graph and allows for the minimization of total latency (makespan) subject to a resource cost constraint.

2) **Hermes, an FPTAS algorithm:** We show that our formulation is NP-hard and provide Hermes that runs in \(O(d_{\text{in}}NM^2\epsilon^2)\) time and admits a \((1+\epsilon)\) approximation, where \(N\) is the number of tasks, \(M\) is the number of devices, \(d_{\text{in}}\) is the maximum indegree over all tasks and \(l\) is the length of the longest paths.

3) **Comparative performance evaluation:** We evaluate the performance of Hermes by using real data sets measured in several benchmarks to emulate the executions of these applications, and compare it to the previously-published Odessa scheme considered in [11]. The result shows that Hermes improves the latency by 16% (36% for larger scale application) compared to Odessa and increases CPU computation time by only 0.4% of overall latency, which implies the latency gain of Hermes is significant enough to compensate its extra CPU load.

II. Models and Notations

In this section, we formulate our optimization problem to solve for the optimal task assignment strategy.

A. Task Graph

An application profile can be described by a directed graph \(G(V, E)\) as shown in Fig. 1, where nodes stand for tasks and directed edges stand for data dependencies. A task precedence constraint is described by a directed edge \((m, n)\), which implies that task \(n\) relies on the result of task \(m\). That is, task \(n\) cannot start until it gets the result of task \(m\). The weight on each node specifies the workload of the task, while the weight on each edge shows the amount of data communication between two tasks. In addition to the application profile, there are some parameters related to the graph measure in our

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Dependency Graph</td>
<td>serial</td>
<td>DAG</td>
<td>general</td>
<td>subset of DAG</td>
</tr>
<tr>
<td>Objectives</td>
<td>energy consumption</td>
<td>communication cost</td>
<td>latency & throughput</td>
<td>latency</td>
</tr>
<tr>
<td>Constraints</td>
<td>latency</td>
<td>none</td>
<td>none</td>
<td>cost</td>
</tr>
<tr>
<td>Task Assignment</td>
<td>2 devices</td>
<td>multiple devices</td>
<td>2 devices</td>
<td>multiple devices</td>
</tr>
<tr>
<td>Algorithm Complexity</td>
<td>exponential</td>
<td>exponential</td>
<td>no guarantee</td>
<td>polynomial</td>
</tr>
<tr>
<td>Performance</td>
<td>optimal</td>
<td>optimal</td>
<td>no guarantee</td>
<td>near-optimal ((\epsilon)-approximate)</td>
</tr>
</tbody>
</table>

TABLE II: Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_i)</td>
<td>workload of task (i)</td>
</tr>
<tr>
<td>(d_{ij})</td>
<td>the amount of data exchange between task (i) and (j)</td>
</tr>
<tr>
<td>(r_j)</td>
<td>CPU rate of device (j)</td>
</tr>
<tr>
<td>(G(V, E))</td>
<td>task graph with nodes (resp. edges) described by set (V) (resp. (E))</td>
</tr>
<tr>
<td>(C(i))</td>
<td>set of children of node (i)</td>
</tr>
<tr>
<td>(l)</td>
<td>the depth of task graph (the longest path)</td>
</tr>
<tr>
<td>(d_{\text{in}})</td>
<td>the maximum indegree of task graph</td>
</tr>
<tr>
<td>(\delta)</td>
<td>quantization step size</td>
</tr>
<tr>
<td>(x \in [M]^N)</td>
<td>assignment strategy of tasks (1 \cdots N)</td>
</tr>
<tr>
<td>(T_{\text{ex}}(i))</td>
<td>latency of executing task (i) on device (j)</td>
</tr>
<tr>
<td>(T_{\text{tx}}^d(j))</td>
<td>latency of transmitting (d) units of data from device (j) to (k)</td>
</tr>
<tr>
<td>(C_{\text{ex}}(i))</td>
<td>cost of executing task (i) on device (j)</td>
</tr>
<tr>
<td>(C_{\text{tx}}^d(j))</td>
<td>cost of transmitting (d) units of data from device (j) to (k)</td>
</tr>
<tr>
<td>(D^t)</td>
<td>accumulated latency when task (i) finishes</td>
</tr>
</tbody>
</table>

\(1\)Because of its focus on minimizing latency, Hermes is named for the Greek messenger of the gods with winged sandals, known for his speed.
complexity analysis. We use N to denote the number of tasks and M to denote the number of devices. For each task graph, there is an initial task (task 1) that starts the application and a final task (task N) that terminates it. A path from initial task to final task can be described by a sequence of nodes, where every pair of consecutive nodes are connected by a directed edge. We use l to denote the maximum number of nodes in a path, i.e., the length of the longest path. Finally, d_{in} denotes the maximum indegree in the task graph.

B. Cost and Latency

We use the general cost and latency functions in our derivation. Let $C_{ex}^{(j)}(i)$ be the execution cost of task i on device j and $C_{tx}^{(j,k)}(d)$ be the transmission cost of d units of data from device j to device k. Similarly, the latency consists of execution latency $T_{ex}^{(j)}(i)$ and the transmission latency $T_{tx}^{(j,k)}(d)$. Given a task assignment strategy $x \in \{1 \cdots M\}^N$, where the ith component, x_i, specifies the device that task i is assigned to, the total cost can be defined as follows.

$$
\text{Cost} = \sum_{i=1}^{N} C_{ex}^{(x_i)}(i) + \sum_{(m,n) \in \mathcal{E}} C_{tx}^{(x_m,x_n)}(d_{mn})
$$

(1)

As described in the equation, the total cost is additive over nodes (tasks) and edges of the graph. On the other hand, the accumulated latency up to task i depends on its preceding tasks. Let $D^{(i)}$ be the latency when task i finishes, which can be recursively defined as.

$$
D^{(i)} = \max_{m \in C(i)} \left\{ T_{tx}^{(x_m,x_i)}(d_{mi}) + D^{(m)} \right\} + T_{ex}^{(x_i)}(i).
$$

(2)

We use $\mathcal{C}(i)$ to denote the set of children of node i. For example, in Fig. 2, the children of task 6 are tasks 4 and task 5. For each child node m, the latency is accumulating as the latency up to task m plus the latency caused by transmission data d_{mi}. Hence, $D^{(i)}$ is determined by the slowest branch.

C. Optimization Problem

Consider an application, described by a task graph, and a resource network, described by the processing powers and link connectivity between available devices, our goal is to find a task assignment strategy x that minimizes the total latency and satisfies the cost constraint, that is,

$$
P : \min_{x \in [M]^N} D^{(N)}
$$

subject to

$$
\text{Cost} \leq B.
$$

The Cost and $D^{(N)}$ are defined in Eq. (1) and Eq. (2), respectively. The constant B specifies the cost constraint, for example, energy consumption of mobile devices. In the following section, we propose an approximation algorithm based on dynamic programming to solve this problem and show that its running time is bounded by a polynomial of $\frac{1}{\epsilon}$ with approximation ratio $(1 + \epsilon)$.

III. HERMES: FPTAS ALGORITHMS

In the appendix, we prove that our task assignment problem P is NP-hard for any task graph. In this section, we first propose the approximation scheme to solve problem P for a tree-structure task graph and prove that this simplest version of the Hermes algorithm is an FPTAS. Then we solve for more general task graphs by calling the proposed algorithm for trees a polynomial number of times. Finally, we show that the Hermes algorithm also applies to the dynamic environment.

A. Tree-structured Task Graph

We propose a dynamic programming method to solve the problem with tree-structured task graph. For example, in Fig. 2, the minimum latency when the task 6 finishes depends on when and where task 4 and 5 finish. Hence, prior to solving the minimum latency of task 6, we want to solve both task 4 and 5 first. We exploit the fact that the sub-trees rooted by task 4 and task 5 are independent. That is, the assignment strategy on task 1, 2 and 4 does not affect the strategy on task 3 and 5. Hence, we can solve the sub-problems respectively and combine them when considering task 6.

We define the sub-problem as follows. Let $C[i,j,t]$ denote the minimum cost when finishing task i on device j within latency t. We will show that by solving all of the sub-problems for $i \in \{1,\cdots,N\}$, $j \in \{1,\cdots,M\}$ and $t \in [0,T]$ with sufficiently large T, the optimal strategy can be obtained by combining the solutions of these sub-problems. Fig. 3 shows

![Fig. 2: A tree-structured task graph, in which the two sub-problems can be independently solved.](image)

![Fig. 3: The algorithm solves each sub-problem for the minimum cost within latency constraint t (the area under the horizontal line $y = t$). The filled circles are the optimums of each sub-problems. Finally, it looks for the one that has the minimum latency of all filled circles in the left plane $x \leq B$.](image)
Algorithm 1 Hermes FPTAS for tree-structured task graph

1: procedure FPTAS\textsubscript{tree}(N) \hspace{1cm} \triangleright \text{min. cost when task } N \text{ finishes at devices } 1, \cdots, M \text{ within latencies } 1, \cdots, K
2: \hspace{1cm} q \leftarrow \text{BFS}(G, N) \hspace{1cm} \triangleright \text{run Breadth First Search of } G \text{ from node } N \text{ and store visited nodes in order in } q
3: \hspace{1cm} for i \leftarrow q.\text{end}, q.\text{start} do \hspace{1cm} \triangleright \text{start from the last element in } q
4: \hspace{1cm} \hspace{1cm} if \ i \text{ is a leaf then}
5: \hspace{1cm} \hspace{1cm} \hspace{1cm} C[i, j, k] \leftarrow \begin{cases} C^{(j)}(i) & \forall k \geq q_\delta(T^{(j)}(i)) \\ \infty & \text{otherwise} \end{cases}
6: \hspace{1cm} \hspace{1cm} else
7: \hspace{1cm} \hspace{1cm} \hspace{1cm} for j \leftarrow 1, M, k \leftarrow 1, K do
8: \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \text{Calculate } C[i, j, k] \text{ from Eq. (4)}
9: \hspace{1cm} end procedure

As the application should always terminate at the local machine, it is reasonable to fix \(j \) and solve for the minimum \(k \). We summarize our algorithm for tree-structure task graph in Algorithm 1. Since the algorithm will be used as a basic block function for more general task graph, we neglect the combining step and simply focus on solving \(C[i, j, k] \).

Theorem 1. Algorithm 1 runs in \(O(d_{in}NM^2\frac{\Delta}{\epsilon}) \) time and admits a \((1 + \epsilon)\) approximation ratio.

Proof. From Algorithm 1, to find \(C[N, j, k] \) needs to solve \(NMK \) sub-problems, where \(K \) depends on the maximum dynamic range of the latency. Given a task \(i \) with workload \(m_i \), if it is executed at device \(j \), the execution delay can be expressed as

\[
T^{(j)}(i) = \frac{m_i}{r_j},
\]

where \(r_j \) is the CPU rate of device \(j \) and \(c \) is a constant. The largest single stage delay is determined by the slowest device executing the most intensive task. That is,

\[
T_{\text{max}} = \frac{c \cdot m_{\text{max}}}{r_{\text{min}}}.
\]

Hence, the maximum latency over all assignment strategies can be bounded by \(lT_{\text{max}} \), where \(l \) is the longest branch of the tree. If we set \(\delta = \frac{lT_{\text{max}}}{\epsilon} \), then

\[
K = \left\lceil \frac{lT_{\text{max}}}{\epsilon} \right\rceil = O(\frac{\Delta}{\epsilon}).
\]

Let \(d_{in} \) denote the maximum indegree of the task graph. For solving each sub-problem in Eq. (4), there are at most \(d_{in} \) minimization problems over \(M \) devices. Hence, the overall complexity is

\[
O(NMK \times d_{in}M) = O(d_{in}NM^2\frac{\Delta}{\epsilon}).
\]

Since both the depth and the maximum indegree of a tree can be bounded by a polynomial of \(N \), Algorithm 1 runs in polynomial time of problem size and \(\frac{\Delta}{\epsilon} \).

For a given strategy \(x \), let \(\tilde{L}(x) \) denote the quantized latency and \(L(x) \) denote the original one. Further, let \(\hat{x} \) denote the strategy given by Algorithm 1 and \(x^* \) denote the optimal strategy. As \(\hat{x} \) is the strategy with minimum latency solved by Algorithm 1, we have \(\tilde{L}(\hat{x}) \leq L(x^*) \). For a task graph
Algorithm 2 Hermes FPTAS for serial trees

```
1: procedure FPTAS\_path(N) \triangleright min. cost when task N finishes at devices 1, \cdots, M within latencies 1, \cdots, K
2: \hspace{1cm} for root i, l \in \{1, \cdots, n\} do \> solve the conditional sub-problem for every tree
3: \hspace{1.5cm} for j \leftarrow 1, M do
4: \hspace{2cm} Call FPTAS\_tree(i_l) conditioning on j with modification described in Eq. (7)
5: \hspace{1.5cm} for l \leftarrow 2, n do
6: \hspace{2cm} Perform combining step in Eq. (8) to solve C[i_l, j_l, k_l]
7: end procedure
```

![Fig. 4: A task graph of serial trees](image)

with depth \(l \), only at most \(l \) quantization procedures are taken. By the quantization defined in Eq. (3), it always over estimates by at most \(\delta \). Hence, we have

\[
L(\tilde{x}) \leq L(\hat{x}) - \delta \leq L(x^*) + l\delta \tag{5}
\]

Let \(T_{\text{min}} = c_{\text{max}} \), that is, the latency when the most intensive task is executed at the fastest device. As the most intensive task must be assigned to a device, the optimal latency, \(L(x^*) \), is at least \(T_{\text{min}} \). From Eq. (5), we have

\[
L(\tilde{x}) \leq L(x^*) + l\delta = L(x^*) + \epsilon T_{\text{max}} \leq (1 + \epsilon) \min \{ L(x^*) \} \tag{6}
\]

For a realistic resource network, the ratio of the fastest CPU rate and the slowest CPU rate is bounded by a constant \(\epsilon' \). Let \(\epsilon = \frac{1}{2} \epsilon' \), then the overall complexity is still bounded by \(O(n M^2 \frac{T_{\text{max}}}{\epsilon}) \) and Algorithm 1 admits a \((1 + \epsilon) \) approximation ratio. Hence, Algorithm 1 is an FPTAS.

As a chain is a special case of a tree, Algorithm 1 also applies to the task assignment problem of serial tasks. Instead of using the ILP solver to solve the formulation for serial tasks proposed previously in [9], we have therefore provided an FPTAS to solve it.

B. Serial Trees

Most applications start from a unique initial task, then split to multiple parallel tasks and finally, all the tasks are merged into one final task. Hence, the task graph is neither a chain nor a tree. In this section, we show that by calling Algorithm 1 in polynomial number of times, Hermes can solve the task graph that consists of serial of trees.

The task graph in Fig. 4 can be decomposed into 3 trees connecting serially, where the first tree (chain) terminates in task \(i_1 \), the second tree terminates in task \(i_2 \). In order to find \(C[i_3, j_3, k_3] \), we independently solve for every tree, with the condition on where the root task of the former tree ends. For example, we can solve \(C[i_2, j_2, k_2] \), which is the strategy that minimizes the cost in which task \(i_2 \) ends at \(j_2 \) within delay \(k_2 \) and given task \(i_1 \) ends at \(j_1 \). Algorithm 1 can solve this sub-problem with the following modification for the leaves.

\[
C[i, j, k[j_1]] = \begin{cases}
C_{i, j}^{(i)}(i) + C_{i, j}^{(x)}(d_{i, i}) & \forall k \geq q_i(T_{ex}^{(j)}(i) + T_{ex}^{(j)}(d_{i, i})), \\
\infty & \text{otherwise} \end{cases}
\]

To solve \(C[i_2, j_2, k_2] \), the minimum cost up to task \(i_2 \), we perform the combining step as

\[
C[i_2, j_2, k_2] = \min_{j \in [M]} \min_{k_x + k_y = k_2} C[i_1, j, k_x] + C[i_2, j_2, k_y] \tag{8}
\]

Similarly, combining \(C[i_2, j_2, k_2] \) and \(C[i_3, j_3, k_y] \) gives \(C[i_3, j_3, k_y] \). Algorithm 2 summarizes the steps in solving the assignment strategy for serial trees. To solve each tree involves \(M \) calls on different conditions. Further, the number of trees \(n \) can be bounded by \(N \). The latency of each tree is within \((1 + \epsilon) \) optimal, which leads to the \((1 + \epsilon) \) approximation of total latency. Hence, Algorithm 2 is also an FPTAS.

C. Parallel Chains of Trees

We take a step further to extend Hermes for more complicated task graphs that can be viewed as parallel chains of trees, as shown in Fig. 1. Our approach is to solve each chains by calling \(FPTAS_{\text{path}} \) with the condition on the task where they split. For example, in Fig. 1 there are two chains that can be solved independently by conditioning on the split node. The combining procedure consists of two steps. First, solve \(C[N, j, k_{spalt}] \) by Eq. (4) conditioned on the split node. Then \(C[N, j, k] \) can be solved similarly by combining two serial blocks in Eq. (8). By calling \(FPTAS_{\text{path}} \) at most \(d_{in} \) times, this proposed algorithm is also an FPTAS.

D. Stochastic Optimization

The dynamic resource network, where server availabilities and link qualities are changing, makes the optimal assignment strategy vary with time. For Hermes, which solves the optimal strategy based on the profiling data, it is reasonable to formulate a stochastic optimization problem of minimizing the expected latency subject to expected cost constraint. If both latency and cost metrics are additive over tasks, we can directly apply the deterministic analysis to the stochastic one by assuming that the profiling data is the 1st order expectations. However, it is not clear if we could apply our deterministic analysis for parallel computing as the latency metric is nonlinear. For example, for two random variables \(X \) and \(Y \), \(\mathbb{E}\{\max(X, Y)\} \neq \max(\mathbb{E}\{X\}, \mathbb{E}\{Y\}) \) in general. In the following, we exploit the fact that the latency of a
single branch is still additive over tasks and show that our deterministic analysis can be directly applied to the stochastic optimization problem.

Let $\bar{C}[i, j, k]$ be the minimum expected cost when task i finishes on device j within expected delay k. It suffices to show that the recursive relation in Eq. (4) still holds for expected values. As the cost is additive over tasks, we have

$$\bar{C}[i, j, k] = \mathbb{E}\{\bar{C}^{(j)}_{ex}(i)\} + \sum_{m \in C(i)} \min_{x_m \in [M]} \{\bar{C}[m, x_m, k - \bar{k}_m] + \mathbb{E}\{C^{(x_m,j)}_{tx}(d_{mi})}\}.$$

The \bar{k}_m specifies the sum of expected data transmission delay and expected task execution delay. That is,

$$\bar{k}_m = q_{\bar{j}} \left(\mathbb{E}\{T^{(j)}_{ex}(i) + T^{(x_m,j)}_{tx}(d_{mi})\}\right).$$

Based on the fact that Hermes is tractable with respect to both the application size (N) and the network size (M), we propose an update scheme that is adaptive to dynamic resource network. The strategy is updated every period of time, which aims to minimize the expected latency in the following coherence time period. We will show how the proposed scheme adapts to the changes of network condition in Section IV.

E. More General Task Graph

The Hermes algorithm in fact can be applied to even more general graphs, albeit with weaker guarantees. In this section, we outline a general approach based on identifying the “split nodes” — nodes in the task graph with more than one outgoing edge. From the three categories of task graph we have considered so far, each split node is only involved in the local decision of two trees. That is, in the combining stage shown in Eq. (8), there is only one variable on the node that connects two serial trees. Hence, the decision of this device can be made locally. Our general approach is to decompose the task graph into chains of trees and call the polynomial time procedure $FPTAS_{path}$ to solve each of them. If a split node connects two trees from different chains, then we cannot resolve this condition variable and have to keep it until we make the decision on the node where all of involved chains merge. We use the task graph in Fig. 1 to show an example: as the node (marked with split) splits over two chains, we have to keep it until we make decisions on the final task, where two chains merge. On the other hand, there are some nodes that split locally, which can be resolved in the $FPTAS_{path}$ procedure. A node that splits across two different chains requires $O(M)$ calls of the $FPTAS_{path}$. Hence, the overall complexity of Hermes in such graphs would be $O(M^5)$, where S is the number of “global” split nodes. If the task graph contains cycles, similar argument can be made as we classify them into local cycles and global cycles. A cycle is local if all of its nodes are contained in the same chain of trees and is global otherwise. For a local cycle, we solve the block that contains it and make conditions on the node with the edge that enters it and the node with the edge that leaves it. However, if the cycle is global, more conditions have to be made on the global split node and hence the complexity is not bounded by a polynomial.

The structure of a task graph depends on the granularity of partition. If an application is partitioned into methods, many recursive loops are involved. If an application is partitioned into tasks, which is a block of code that consists of multiple methods, the structure is simpler. As we show in the following, Hermes can tractably handle practical applications whose graph structures are similar to benchmarks in [11].

IV. EVALUATION OF HERMES

First, we verify that indeed Hermes provides near-optimal solution with tractable complexity and performance guarantee. Then, we measure the CPU time for Hermes to solve the optimal strategy as problem size scales. Finally, we use the real data set of several benchmark profiles to evaluate the performance of Hermes and compare it with the heuristic Odessa approach proposed in [11].

A. Algorithm Performance

From Section III, the Hermes algorithm runs in $O(d_{mn}NM^2\bar{\epsilon})$ time with approximation ratio $(1 + \epsilon)$. In the following, we provide the numerical results to show the trade-off between the complexity and the accuracy. Given the task graph shown in Fig. 1, the performance of Hermes versus different values of ϵ is shown in Fig. 5. When $\epsilon = 0.4$ ($K = 98$), the performance converges to the minimum latency. Fig. 5 also shows the bound of worst case performance in dashed line. For our simulation profile, $\frac{r_{max}}{r_{min}} = 4$, the actual performance is much better than the worst case bound in Eq. (5).

Fig. 6 shows the performance of Hermes on 200 samples of application profiles. Each sample is selected independently and uniformly from the application pool with different task workloads and data communications. The result shows that for every sample, the performance is much better than the worst case bound and converges to the optimum, that is, the approximation ratio converges to 1. On the other hand, if we fix the application profile and simulate the performance of Hermes under dynamic resource network, Fig. 7 shows that the solution converges to the optimal one, which minimizes the expected latency and satisfies the expected cost constraint.
C. Benchmark Evaluation

In [11], Ra et al. present several benchmarks of perception applications for mobile devices and propose a heuristic approach, called Odessa, to improve both makespan and throughput with the help of a cloud connected server. They call each edge and node in the task graph as stages and record the timestamps of each of them. To improve the performance, for each data frame, Odessa first identifies the bottleneck, evaluates each strategy with simple metrics and finally select the potentially best one to mitigate the load on the bottleneck. However, this greedy heuristic does not offer any theoretical performance guarantee, as shown in Fig. 9 Hermes can improve the performance by 36% for task graph in Fig. 1. Hence, we further choose two of benchmarks, face recognition and pose recognition, to compare the performance between Hermes and Odessa. Taking the timestamps of every stage and the corresponding statistics measured in real executions provided in [11], we emulate the executions of these benchmarks and evaluate the performance.

In dynamic resource scenarios, as Hermes’ complexity is not as light as the greedy heuristic (86.87 ms in average) and its near-optimal strategy needs not be updated from frame to frame under similar resource conditions, we propose the following on-line update policy: similar to Odessa, we record the timestamps for on-line profiling. Whenever the latency difference of current frame and last frame goes beyond the threshold, we run Hermes based on current profiling to update the strategy. By doing so, Hermes always gives the near-optimal strategy for current resource scenario and enhances the performance at the cost of reasonable CPU time overhead due to resolving the strategy.

As Hermes provides better performance in latency but larger CPU time overhead when updating, we define two metrics for comparison. Let Latency(t) be the normalized latency advantage of Hermes over Odessa up to frame number t. On the other hand, let CPU(t) be the normalized CPU advantage of Odessa over Hermes up to frame number t. That is,

$$\text{Latency}(t) = \frac{1}{t} \sum_{i=1}^{t} (L_O(i) - L_H(i)),$$

$$\text{CPU}(t) = \frac{1}{t} \left(\sum_{i=1}^{C(t)} CPU_O(i) - \sum_{i=1}^{t} CPU_O(i) \right),$$

where \(L_O(i)\) and \(CPU_O(i)\) are latency and update time of frame \(i\) given by Odessa, and the notations for Hermes are similar except that we use \(C(t)\) to denote the number of times that Hermes updates the strategy up to frame \(t\).

To model the dynamic resource network, the latency of each stage is selected independently and uniformly from a distribution with its mean and standard deviation provided by the statistics of the data set measured in real applications. In addition to small scale variation, the link coherence time is 20 data frames. That is, for some period, the link quality degrades significantly due to possible fading situations. Fig. 10 shows the performance of Hermes and Odessa for the face recognition application. Hermes improves the average latency of each data frame by 10% compared to Odessa and increases CPU computing time by only 0.3% of overall latency. That is, the latency advantage provided by Hermes well-compensates its CPU time overhead. Fig. 11 shows that Hermes improves the average latency of each data frame by 16% for pose recognition application and increases CPU computing time by 0.4% of overall latency. When the link quality is degrading, Hermes updates the strategy to reduce the data communication, while Odessa’s sub-optimal strategy results in significant extra latency. Considering CPU processing speed is increasing under Moore’s law but network condition does not change that fast, Hermes provides a promising approach to trade-in more CPU for less network consumption cost.
V. RELATED WORK ON MACHINE SCHEDULING

To the best of our knowledge, no prior work has studied the polynomial time algorithm to solve the task assignment problem on multiple devices, taking both latency and costs into account. The integer linear programming is a common formulation, however, it is NP-hard to solve in general.

In this section, we compare our task assignment problem with machine scheduling problems, which are mostly NP-hard. Theoretically, researchers have become interested in better understanding their approximability. That is, the existence of polynomial time approximation algorithm and corresponding approximate ratio. In [15], Schuurman et al. study the approximability of scheduling problems and propose ten open problems. The most related category to our problem, called the makespan minimization problem, is defined as

Definition 1. Given a set of machines \(M = \{1, \ldots, m\} \) and a set of jobs \(J = \{1, \ldots, n\} \), and \(p_{ij} \) specifying the processing time for job \(j \) being executed at machine \(i \), the goal is to assign each job to one of machines such that the makespan is minimized. That is,

\[
\min \max_{i \in M} \sum_{j \in S_i} p_{ij} \\
\text{s.t. } \cup_{i \in M} S_i = J.
\]

If the job processing time does not depend on machines, that is, \(p_{ij} = p_j \) for all \(ij \), then the problem is called the makespan minimization on identical machines. On the other hand, if \(p_{ij} = \frac{p_j}{s_i} \), where \(s_i \) is the speed metric of the \(i^{th} \) machine, like our assumption in the formulation, then we call them uniform machines. The precedence constraints make the problem more interesting and harder to solve. In general, the task precedence can be described by a DAG, which is equivalent to our task graph. In the following, we use the standard three-field notation \(P|\text{prec}|C_{\max} \) to denote the problem of makespan minimization on identical machines under precedence constraints. Similarly, \(Q|\text{prec}|C_{\max} \) denotes the case for uniform machines.

There are some positive and negative results. We only list the most related results to our problem and direct the readers to more relevant literature [15], [16]. The negative results disprove the existence of the polynomial time approximation algorithm under the assumption P \(\neq \) NP. For example, a strongly NP-hard problem remains NP-hard even if the numbers in its input are unary encoded. Garey et al. [17] show that if P \(\neq \) NP, a strongly NP-hard problem cannot have an FPTAS. For simpler problem where the precedence constraints are chains, Du et al. [18] show that \(Q|\text{chain}|C_{\max} \) is strongly NP-hard. On the positive side, Graham et al. [19] design the list scheduling algorithm for \(Q|\text{prec}|C_{\max} \) and show that it is a \((2 - \frac{1}{m})\) approximation algorithm. There also have been some improved results recently [20], [21].

We further compare our task assignment problem with a specific category of machine scheduling problems, \(Q|\text{prec}|C_{\max} \). From complexity respective point of view, the number of quantization levels, \(K = \frac{iT_{\max}}{s} \), can be encoded in polynomially many unary bits, hence, the overall complexity \(O(d_m N M^2 K) \) implies that our problem is not strongly NP-hard. On the other hand, our task graph is a subset of general DAG, in which the application starts from an initial task and terminates at a single task. Moreover, we do not consider the maximum number of available processors on each device. That is, the number of tasks being executing at the same time must not exceed the number of processors on the device. If our offloading strategy leads to this situation, some tasks must have to be queued, which results in longer latency. Considering the modern mobile devices have up to 8 cores of processing cores [22] and is applicable to multi-threading computing, and the observation that the task graphs are in general more
VI. Conclusions

We have formulated a task assignment problem and provided an FPTAS algorithm, Hermes, to solve for the optimal strategy that makes the balance between latency improvement and energy consumption of mobile devices. Compared with previous formulations and algorithms, to the best of our knowledge, Hermes is the first polynomial time algorithm to address the latency-resource tradeoff problem with provable performance guarantee. Moreover, Hermes is applicable to more sophisticated formulations on the latency metrics considering more general task dependency constraints as well as multi-device scenarios. The CPU time measurement shows that Hermes scales well with problem size. We have further evaluated the application execution by using the real data set measured in several mobile benchmarks, and shown that our proposed on-line update policy, integrating with Hermes, is adaptive to dynamic network change. Furthermore, the strategy suggested by Hermes performs much better than greedy heuristic so that the CPU overhead of Hermes is well compensated. Existing works have been using pipelining techniques to improve both makespan and system throughput. It would further improve the performance if we can extend Hermes to also make decisions on pipelining strategies.

APPENDIX

Proof of NP-hardness of problem P

We reduce the 0-1 knapsack problem to a special case of P, where a binary partition is made on a serial task graph without considering data transmission. Since the 0-1 knapsack problem is NP-hard [23], problem P is at least as hard as the 0-1 knapsack problem.

Assume that $C^{x_0}_{x} (i) = 0$ for all i, the special case of problem P can be written as

$$P' : \min_{x_i \in \{0, 1\}} \sum_{i=1}^{N} (1 - x_i) T^{(0)}_{x}(i) + x_i T^{(1)}_{x}(i)$$

s.t. $\sum_{i=1}^{N} x_i C^{(1)}_{x}(i) \leq B.$

Given N items with their values $\{v_1, \ldots, v_N\}$ and weights $\{w_1, \ldots, w_N\}$, one wants to decide which items to be packed to maximize the overall value and satisfies the total weight constraint, that is,

$$Q : \max_{x_i \in \{0, 1\}} \sum_{i=1}^{N} x_i v_i$$

s.t. $\sum_{i=1}^{N} w_i v_i \leq B.$

Now Q can be reduced to P’ by the following encoding

$T^{(0)}_{x}(i) = 0, \forall i$

$T^{(1)}_{x}(i) = -v_i$, $C^{(1)}_{x}(i) = w_i$.

By giving these inputs to P', we can solve Q exactly, hence,

$Q \preceq_P P' \preceq_P P$.

ACKNOWLEDGMENT

This work was supported in part by NSF via award number CNS-1217260.

REFERENCES

