CASPaR: Congestion Avoidance Shortest Path
Routing for Delay Tolerant Networks

Michael F. Stewart, Rajgopal Kannan'
Department of Computer Science
Louisiana State University, USA

Amit Dvir
Cyber Technology Innovation Center
Department of Computer Science

Bhaskar Krishnamachari
Ming Hsieh Dept. of EE
University of Southern California, USA

Ariel University, Israel

Abstract—Unlike traditional TCP/IP-based networks, Delay
and Disruption Tolerant Networks (DTNs) may experience con-
nectivity disruptions and guarantee no end-to-end connectivity
between source and destination. As the popularity of DTNs
continues to rise, so does the need for a robust and low latency
routing protocol. This paper describes a novel DTN routing
algorithm referred to as Congestion Avoidance Shortest Path
Routing (CASPaR), which seeks to maximize packet delivery
probability while minimizing latency. CASPaR attempts this
without any direct knowledge of node connectivity outside of its
own neighborhood. Our simulation results show that CASPaR
outperforms well-known protocols in terms of packet delivery
probability.

Index Terms—DTN, Routing, Congestion Control

I. INTRODUCTION

Delay Tolerant Networks (DTNs) attempt to facilitate com-
munication where connected paths do not always exist. At-
tempts to use conventional Mobile Ad-Hoc routing (MANET)
protocols such as reactive [1], proactive [2], and hybrid [3]
approaches have resulted in failure. Successful DTN proto-
cols must adopt a single or multi-copy ’store and forward”
approach. This is an important but challenging problem [4]
especially considering that DTN devices are increasingly being
integrated into our everyday lives.

The development of a one-copy DTN protocol that ad-
dresses congestion avoidance, shortest path routing and is
capable of operating efficiently in a high-load network is the
motivation behind the Congestion Avoidance Shortest Path
Routing protocol (CASPaR). The algorithm is defined by
developmental guidelines: 1) no packet duplication, 2) route
packets fo or closer to their destinations and hold onto pack-
ets when appropriate and 3) integrate congestion avoidance
into the design. CASPaR’s goals are: 1) learn direct routes
to destinations, 2) avoid congestion, 3) dynamically correct
routes as the topology changes and 4) minimize latency by
moving packets over newly discovered routes. CASPaR must
negotiate node queue differentials between neighbors similar
to backpressure and map shortest paths without explicitly
discovering them. Here we present preliminary results showing
that CASPaR accomplishes these goals.
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The rest of the paper is organized as follows: Section II
defines the CASPaR protocol and describes its algorithm and
parameters. Section III describes the simulation environment
and parameters and lists each of the protocols simulated. Sec-
tion IV presents the experimental results. Section V provides
some concluding remarks and a look into future work.

II. CASPAR PrROTOCOL

CASPaR is a one-copy routing protocol consisting of two
interdependent mechanisms: 1) direct routing and 2) conges-
tion avoidance. The algorithm routes packets over connected
paths and employs a routing-protocol-dependent, proactive
congestion-avoidance mechanism [5] that uses an open loop
congestion control scheme based on buffer availability and
historical connectivity knowledge. This allows for alternate
route discovery to avoid congestion buildup. Ultimately, con-
gestion avoidance takes precedence over routing forcing a
direct-delivery-like mode of operation during heavy traffic.
Except for their 1-hop neighbors, nodes have no knowledge
of the network.

A. Principle of Operation

All nodes maintain an estimate, C(t), of the cost to deliver
packets to each destination node c. This cost attempts to track
the least congested and shortest paths to the destination based
on historical knowledge of connectivity to node c¢ and the
waiting time of packets to ¢ in node n’s queue. All nodes
in the network broadcast a Request For Costs (RFC) to its
neighbors when one of three things occurs: 1) a packet has
just been received from a neighbor, 2) a packet has just been
created or 3) the RFC periodic timer expires. Neighboring
nodes, upon receiving the RFC, respond with their destination
cost table which contains a list of all destinations and the cost
to send a packet to that destination. If node n’s estimate of
delivery costs to c is the lowest amongst its neighbors, then
n holds onto these packets in its buffer until it either meets
a neighbor with a better (lower) estimate or is connected to ¢
(we use a preference factor of 0.9 to give a slight preference
to node n holding onto these packets).

B. Model

Path congestion and route connectivity are modeled by
minimizing the delivery costs along some path from source to



destination and is characterized by two convoluted parameters:
The first is Proximity Measure:
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while ¢ and 7 remain connected thus forcing ©¢ (t) equal to
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values that represent a default measure of connectivity. The
second parameter is the Net Destination Queue Waiting Time:
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where 7 is the current time and af, ; is the arrival time of
packet 4 at n destined for ¢. The queue waiting times of packets
are used as a proxy for congestion as opposed to backpressure
which uses queue size differentials. Hence, we model delivery
costs as an exponentially increasing function of net waiting
times of packets with an increasing discount factor based on
connectivity probability. The estimated delivery costs to ¢ via
n are calculated as:

Co(t) =Wi(t)(1 - 05(1) + Cr(t = 1) 3)

CASPaR’s delivery costs are calculated and transmission
costs between 1-hop neighbors set to 0. Setting 1-hop trans-
mission costs to 0 has the effects: a) If a connection from
source n to destination c exists then the delivery cost will be
0 everywhere along that path regardless of path length sinking
packets directly to destination c (see line 24 from Alg. 1) and
b) If a connection from source n to destination ¢ does not exist
then packets to ¢ will be spread over the network based on
congestion, radiating outwards towards the destination. When
one of these nodes becomes connected, a direct path to c is
created and packets are quickly routed to their destinations.

In addition to ©F(t) being set to 1, the historical cost,
Cg(t — 1), is reset to 0 when n and ¢ become connected at
time ¢. From the definition of W earlier, the marginal increase
in net waiting times at each time step are a function of queue
size to c. Thus as can be seen from the expression above,
lightly congested nodes along short paths to the destination
are favored (the more recently a node is in contact with
the destination and the smaller its queue size, the lower the
transmission cost) and therefore the net effect of the algorithm
is to reinforce delivery on short, less congested paths.

Proximity Measure and Net Destination Queue Waiting
Time, parameterize not only the shortest but least congested
paths. The Proximity Measure attempts to minimize the path
length while Net Destination Queue Waiting Time pulls pack-
ets towards neighbors with the smallest queues (similar to
a backpressure mechanism [6]) minimizing routing across
congested paths. This technique develops routes that chase
the destination.

Packets are transmitted in a lowest-cost first, longest-queue-
waiting-time second, priority order; the cheapest, oldest pack-
ets are transmitted first. A minimum node loop count (MLC)
is integrated into the algorithm so packets avoid repeatedly
traversing the same nodes. It is the minimum number of
consecutive unique nodes that must exist in a path before a
packet is allowed to revisit a node.

Algorithm 1 The CASPaR Algorithm

1: function UPDATE RANGE STATUS
2: for all destinations do
if destination c is within 1-hop of node n then
R%,t = true
else
Ry, = false

3
4
5
6
7: function UPDATE MEASURE OF PROXIMITY
8.
9
0
1

for all destinations do
Te(t) =T5(t) +1
if Ry , then Q7 (t) =TE(t)
5 (t) = Ll

10:
11:

5 (t)
12: function UPDATE QUEUE WAITING TIME
13: for all destinations do
14: Wi(t) = Zio(T — a5, )
15: function UPDATE DELIVERY COST
16: for all destinations do
17: if R}, , then Ce(t—1)=0
18: Ce(t) = WE)(1 — ©5 () + CE(t — 1)

19: function REQUEST FOR COSTS

20: Update Range Status ()

21: Update Measure of Proximity ()
22: Update Queue Waiting Time ()
23: Update Delivery Cost ()

24: Ce(t) = 2CC(t)

=15 > Calculate Self-Delivery Estimate

25: for all nodes j in 1-hop range of node n, for all destinations ¢ do
26: Select C7, = min(C%(t), C(t)) and relay r accordingly

27: Update C¢(t) = CS,

28: if » = n then Relay packet to node j

C. Example

The weighted graph in Figure 1 represents a small network
whose vertices are nodes n, ji, jo, J3,, ¢ and weighted edges
are the transmission costs between nodes (a weighted-edge
of 0 represents neighboring nodes). In this scenario, node n
is to deliver a packet to c (at the bottom left-hand corner of
each panel is the destination cost table). At T = 1, node
n broadcasts a RFC. Nodes j1, j2 and j3 respond with their
destination cost tables and n compares them against its self
delivery cost, shown in the destination cost table to be ¢ = 2.7,
J1 = 3, jo = 4 and js = 5. Node n is unaware of the state
of the network beyond its own neighborhood. After the RFC
responses are received, node n learns its neighbors: ji, jo
and j3 and that they can deliver a packet to ¢ for 3, 4 and
5 respectively. Node n deduces that a direct route to node ¢
doesn’t exist since a 0-cost wasn’t received. Node n selects
itself as the relay since its delivery cost is the minimum. At
T = 4, node n and j, are neighbors. Node jo responds with
the minimum cost of 1. Node n transmits the packet to jo
who transmits the packet to ji; provided that j; and j, are
still neighbors. Node j; would hold onto the packet if the
topology were identical at the time j; received it. However,
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the network changes quickly. The receipt of the packet from n
causes jo to initiate its own RFC and other nodes potentially
in the path might update their destination cost tables forcing
more route changes.

III. SIMULATION

The ONE simulator [7] is used to compare 8 DTN protocols:
Direct Delivery (DD) [8], Epidemic (EPI) [9], Prophet with
Estimation (PRO) [10], MaxProp (MP) [11], Backpressure
LaB (LaB), Spray and Wait (SaW) [12], Shortest Path (SP),
CASPaR (CASPaR). Shortest Path is based upon Dijkstra’s
algorithm where the shortest routes are calculated with each
update. It represents the upper-bound on the delivery perfor-
mance and is the standard by which all protocols are measured.
The simulation settings are: World size = 1km x 1km; Node
count = 100; Run time = 3,600 seconds; Transmit speed = 10
Mbps; Transmit range = 100 meters; Buffer-sizes tested = 0.2,
0.5, 1, 3, 5, 10 and 30 MB; Node speed = 0.5 - 1.5 meters
per second; Message TTL = 5 hours; Message period = 1
second; Message size = 100 KB; Node movement = Random
walk; Map = Open map; Minimum Loop Count = 5; 3, 600
messages are created during the 1 hour simulation; Source and
destination nodes are chosen randomly therefore each node is
just as likely as any other to source or sink messages; The
message time-to-live (TTL) is 300 minutes, explicitly set to
be greater then the total simulation time so that TTL doesn’t
play a role in dropped messages; Messages are only dropped
due to queue overflow or protocol-based metrics.

IV. SIMULATION RESULTS

Here we present results from Random Scenario simulations
focusing on performance metrics: Delivery Probability, Over-
head Ratio, Hop Count and Latency. Also reported are results
from two additional investigations: 1) latency frequency and
2) route distribution. All performance metric plots, for all
protocols except MaxProp, show 1-sigma uncertainties repre-
senting deviation between the 17 simulation runs. MaxProp’s
simulation times prohibited multiple runs.

A. Delivery Probability

Figure 2 shows as buffer size increases so does delivery rate
until a bounded maxima is reached. The maximum delivery
rate for all protocols except MaxProp is reached at < 10
MB buffer allowing for a good comparison between tested
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A CASPaR example iterating through 4 time periods and the transactions between a group of nodes in a small network.

protocols. Results show four distinct protocol behaviors: 1)
the SP group includes both CASPaR and Shortest Path routing
protocols and is characterized by its steep rise in delivery
probability settling close to or above 80 percent; 2) the Direct
group includes PRoPHET, Direct Delivery and LaB. This
group also has a relatively steep rise in delivery probability
but settles at < 50 percent; 3) Spray and Wait is in a group
by itself and can be identified by its slow rise, reaching a
maximum at > 10 MB buffer; 4) MaxProp, also in a group
by itself, is unique. Its delivery probability maintains a shallow
but constant rise reaching a maximum of 90 percent at a
30 MB buffer and still increasing. Shortest Path sets upper-
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Fig. 2. The delivery probability as a function of queue size. Most 1 —sigma
error bars can not be seen indicating small deviations between simulations.

bound on delivery rate (95 percent). Direct Delivery sets the
effective lower bound at 45 percent. It is considered the lower
bound due to its simplistic routing scheme; all protocols should
perform as well in this scenario. This result reveals that any
two nodes come in contact with each other 45 percent of
the time. CASPaR delivers > 55 percent of its packets with
a 1 MB buffer; twice the number of packets delivered by
the next best algorithm. This reveals that CASPaR delivers
packets more quickly or they are being more evenly distributed
across the network or both. Alternatively, Spray and Wait
performs poorly until its queue size reaches > 10 MB and
then barely outperforms CASPaR while MaxProp starts poorly
but outperforms all but Shortest Path at a > 25 MB buffer.

B. Latency

Average latency, defined by ONE as the average time for
all delivered packets to travel from source to destination,
may be the most meaningful metric. It provides both packet



delivery rate and an indirect performance metric for delivery
probability. However, average latency can be falsely biased
since only packets that reach their destinations contribute to
the reported average and it is these undelivered packets that, if
delivered, would raise the average latency. The buffer size must
be large enough so that packet drop is not a factor. Figure 3
shows this to be at > 10 MB for all protocols except MaxProp
and Epidemic. Regardless, median latency, as shown in Figure
4, provides a better approximation of true latency since the
average can be biased by extremely large latencies. To
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Fig. 3. The average end-to-end packet latency as a function of queue size.
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Fig. 4. The median latency as function of queue size.

illustrate, notice the CASPaR median latency is nearly half its
average and it is nearly a third for Shortest Path, an indication
that there are low-latency measurements skewing the average.
The median and average latencies of MaxProp, Spray and
Wait and the protocols in the Direct group are similar in value
indicating more balanced measurements. Figure 4 shows that
CASPaR performs quite well with a median latency of about
250 seconds. MaxProp exhibits unique behaviour as it rises
above 400 seconds at a 5 MB buffer but drops to < 100
seconds at a 30 MB buffer. Epidemic isn’t included due to its
extremely low delivery probability and high latency.

Figure 5 presents a more in-depth protocol latency analysis
for 10 MB buffers. Frequencies have been normalized so a
direct comparison can be made. MaxProp’s count is about
2,300 compared with approximately 50,000 for the others.
A closer look uncovers protocol and simulation behavior. For
example, all protocols, with the exception of MaxProp deliver
a proportionately high number of packets in the 0.125 second
bin indicating the likelihood that source and destination nodes
are within a 2-hop range at the time of packet creation. The
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Fig. 5. The frequency of latency distributions show in which time bin packets
are delivered for the compared protocols. 17 runs for each protocol (except
for MaxProp) is included in the analysis. The x-axis bin size is in log base 2
format to accentuate low latencies.
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frequency of delivered messages in the 0.125 — 1 second bins
drops quickly for all protocols except Shortest Path possibly
revealing the existence of multi-hop connected paths packet
creation time and provide a multi-hop latency measurement
of < 1 second. > 1 second bins are most likely a convoluted
measure of the average length of time routes remain discon-
nected as well as protocols ability to move packets closer to
their destination across disconnected paths. If so then Shortest
Path provides a good performance indicator and comparison
tool.

C. Overhead Ratio and Hop Count

Overhead ratio is proportional to energy expenditure and
defined by ONE to be O,(t) = (P.(t) — Py(t))/Ps(t) where
P, is the total number of packets relayed by time ¢ and Py
is the total number of packets delivered by time ¢. Not shown
in Figure 6 are: 1) MaxProp - overhead > 1700, 2) Direct
Delivery - overhead always 0, 3) PRoPHET - overhead about
6 but has high variation (about +/ — 12) and 4) Epidemic -
overhead > 4500. Since CASPaR and Shortest Path are one-
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Fig. 6. The overhead ratio required to transfer a packet from source to
destination as a function of buffer size.

copy protocols, the overhead is proportional to packet hops.
Figure 6 shows this to be about 40 while Shortest Path, LaB,
and Spray and Wait all maintain overhead ratios of about 5.
Figure 7 shows that CASPaR’s overhead ratio is reduced at
the expense of latency and delivery probability and vice versa.
Hop count is the number of nodes packets traverse from source
to destination. The final transfer to destination isn’t considered
a hop and therefore Direct Delivery’s hop count is always 0.
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Figure 8 shows the average number of packet hops in the
protocols tested. Shortest Path indicates the optimum average
hop count to be about 6.
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Fig. 8. The average number of nodes a packet traverses from source to
destination as a function of buffer size.

D. Route Distribution

Presumably, given a homogeneous set of packet desti-
nations, the more equally packets are distributed across a
network, the more efficiently it will function at high loads.
Figure 9 shows average queue deviation where CASPaR looks
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Fig. 9. Queue deviation integrated over 1 minute periods for all 60 minutes
of the simulation.

to more evenly distribute packets than compared protocols.
CASPaR’s variation is half that of Direct Delivery and Spray
and Wait and a bit lower than MaxProp.

However, Shortest Path experiences the largest variation
and yet by every metric, it out-performs all protocols. This
indicates that either high-performance does not depend upon

an even distribution of packets across queues or that the
network load applied during testing wasn’t heavy enough to
highlight the property. From results reported here, the stated
goal of minimizing latency and maximizing delivery can not be
met without compromise. Direct Delivery has 0 overhead but
performs poorly in regards to latency and delivery probability.
MaxProp delivers many packets at low latencies but requires
a larger buffer and high overhead. CASPaR is capable of out-
performing tested DTN protocols while maintaining relatively
low overhead.

V. CONCLUSION

We have developed an extensible one-copy protocol that can
handle a heavy network-load using small network resources.
We have shown that CASPaR improves network performance
where Spray and Wait and MaxProp also perform well under
the same experimental conditions but require larger buffers
and in the case of MaxProp, a much larger overhead. Future
CASPaR studies: 1) Various simulation parameters should be
applied to more extensively test CASPaR 2) A multi-path
CASPaR variant that out-performs its single-path sibling was
developed during the this study and should be further explored.
3) An investigation into a hybrid protocol; a combination of
CASPaR, MaxProp and Spray and Wait could yield interesting
results. 4) Determine the performance of CASPaR and Shortest
Path at higher network loads. Finally, an analytical model
capable of closely approximating the experimental algorithm
and its results must be developed.
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