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ABSTRACT

Energy-efficient tracking of a target using a sensor network has received significant attention in recent research.
Our earlier study on energy-quality tradeoffs in target tracking with binary sensors showed that optimal selective
activation of sensor nodes based on prediction of the target’s trajectory could achieve orders of magnitude savings
in the energy expenditure over naive and random activation, while achieving almost the same tracking quality. In
this paper, we consider a more realistic sensor model and extend the analysis of activation strategies to account
for the presence of noise in sensor measurements. Our results confirm that the best quality of tracking that can
be obtained with selective activation depends on the noise level in sensor measurements and that the optimal
radius of activation depends on the noise level and the density of deployment. We also show how duty cycling
with selective activation can be used to obtain flexible tradeoffs between the energy expenditure and quality of
tracking.
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1. INTRODUCTION

Advances in technology have made it possible to envision the ad-hoc deployment of large networks of wireless
sensor devices for a range of intelligence gathering and monitoring applications.1 One canonical application of
wireless sensor networks is the tracking of a mobile target in the operational area.

As a target moves through the operational area, specific nodes may be activated for the sensing task. The
particulars of the activation strategy can strongly influence both the energy usage (an important consideration in
energy-starved sensor networks)as well as the quality of tracking. We study these tradeoffs here, in the context
of a realistic sensor model that incorporates measurement noise.

Research work on target tracking with sensor networks has been motivated in large part by DARPA programs
such as SensIT.2 Some of the preliminary work on distributed algorithms in this area includes IDSQ,3,4 location-
centric tracking,5,6 tracking algorithms based on pheromones and extended Kalman filter techniques7,8 and
tracking with mobile nodes.9 Some attention has also been focused on deployment strategies for providing
desirable tracking coverage.10,11,12 There are also significant issues concerning multi-target tracking that are
just beginning to be addressed.13,14,15 The implementation and testing of a real distributed sensor network
collaborative tracking algorithm in a military context is described by Moore et al.16

As in our earlier work,17 our interest here is not in developing specific algorithms for tracking but in evaluating
the energy-quality tradeoffs involved with different general activation strategies. In that earlier work,17 in which
we had considered simple ideal binary sensors (which yield a 1 or 0 depending on their observation of a target
within sensing range), our results showed that selective activation of sensor nodes, based on prediction of the
target trajectory could achieve orders of magnitude savings in energy expenditure. In this work, we consider
a more realistic sensor model, whereby each node measures a distance-decayed signal from the target that is
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corrupted by measurement noise. In this context, we focus our attention on selective activation (SA) techniques,
showing that the optimal activation parameters depend critically upon the noise level and density of deployment.
We also show that duty cycling with selective activation can be used to flexibly effect different tradeoffs between
the energy expenditure and tracking quality.

The rest of the paper is organized as follows. In section 2, we present our sensor and target location estimation
models and describe the various activation strategies that we consider. We then describe our experiments and
their results in section 3. We present our concluding comments in section 4.

2. MODEL AND METRICS

We consider a sensor network of n nodes deployed in an operational region with a single target moving within
the region during the time interval [0, T ]. At time instant t, if the target’s position is X(t) = {x(t), y(t)} and
the sensors Sii = 1, 2, ...N are located at Xi = {xi, yi}, the signal strength from the target that is detected by
sensor Si is distance-decayed with noise, and is modelled as:

Bi(t) =
Bo

(1 + di(t)α)
+ Ni (1)

where Bo is the signal strength at the target’s location, α the propagation decay exponent, di(t) the instan-
taneous Euclidean distance between Xi and X(t), and Ni the measurement noise at sensor i which is modelled
as a Gaussian random variable with mean µ and unit variance.

We assume a signal strength-weighted technique for estimating the target position; i.e., if A is the index set
of all active sensors at time t, the target is believed to be at location Xb(t) = {xb(t), yb(t)}, which is given by
the following expression:

Xb(t) =

∑
i∈A

Bi(t)Xi∑
i∈A

Bi(t)
(2)

The metric we consider for the quality of target tracking is Q, the time average of the tracking error:

Q =
1
T

T∫
0

√
(x(t)− xb(t))2 + (y(t)− yb(t))2dt (3)

We consider three general sensor activation strategies for target tracking: naive activation, randomized
activation and selective activation. In naive activation (NA), all n sensors are switched on through the period of
operation. In randomized activation (RA), at any instant of time each node is switched on with a probability p.
Selective activation is considerably more sophisticated and requires the use of movement prediction mechanism.
At each time step, all nodes within a radius R from the predicted location are turned on. For our model, we
assume that R is chosen to be the average distance from the target at which the signal strength drops to a
particular fraction f1 of its original strength.

If µ = f2Bo be the mean value of the noise at each sensor, where f1 ∈ (0, 1) and f2 ∈ (0, 1), we have that

f1Bo =
Bo

(1 + Rα)
+ f2Bo

⇒ R =
(

1
f1 − f2

− 1
) 1

α

(4)

We can now easily characterize the energy expenditures of the three general activation strategies. In naive
activation (NA), if the sensors are homogeneous and each have an energy expenditure Ei = 1 (normalized) units,
the network has a total energy expenditure of ENA = n units. In randomized activation (RA), on average pN
sensors are active and expend a total expected energy of ERA = pN units. For selective activation (SA), since at



any point of time sensors within a circle of radius R are active, the expected energy expenditure with a density
of deployment ρ would be ESA = ρπR2.

Finally, we can perform duty-cycling with selective activation. For duty cycled activation, the activated
sensor nodes in the network turn on and off for times ton and toff respectively with a period TD. If used in
conjunction with SA, the energy expended would be ESADC = ton

TD
ρπR2.

3. EXPERIMENTS AND RESULTS

We simulate a virtual large scale sensor network to evaluate the performance of the various tracking strategies.
Sensors are placed on a 200 unit x 200 unit area with a default density ρ = 1 sensor/unit area (we also examine
the impact of varying density in one of the experiments). The target signal strength at source is Bo = 100 units.
To avoid edge effects in estimating uncertainty, our calculations are for trajectories in which the target stays
away from the boundaries of the region. In the results presented, the target is assumed to follow a representative
trajectory of the form y(t) = AxB(t)+CsinDx(t)+E. We assume all sensors are homogeneous and add Gaussian
noise with mean µ and unit variance to the signal measurements.

3.1. Naive Activation

We note that the signal detected by sensors far away from the target is dominated by noise. For instance, using
Bo = 100 units, the actual signal measured by a sensor Si which is distance di = 30units away would be close
to 0.01 units. If the noise levels are substantially higher than this, then the weighted signal-strength approach
can lead to increased tracking error. Hence, we set a threshold value for signal strength and values from sensors
detecting a signal lower than this threshold value are not included in estimating the target’s position. Figure 1
shows tracking error against the threshold signal strength for naive activation. The tracking error drops sharply
initially as the threshold is increased since more of the noisy readings are being eliminated. On increasing
the threshold further, the error increases slightly since some of the valid signals are being discarded. In our
simulation, Bd=1=50 and for ρ = 1 there are very few sensors above the threshold and hence tracking is not
possible for threshold values much greater than 50. For increasing values of the noise mean, the threshold for
good tracking increases as expected. The energy expenditure is 40000 units in all cases.

3.2. Random Activation

Figure 2 shows how RA can achieve lower energy expenditure for a small tradeoff in the tracking error. Since
random activation roughly corresponds to decreasing the density of sensor deployment, figure 2 indicates that if a
moderate tracking error is acceptable, the density and hence total number of sensors can be reduced significantly.
The energy expenditure is 10,000, 20,000 and 30,000 units for p= 0.25, 0.5 and 0.75 respectively.

3.3. Selective Activation

Figure 4 shows how the tracking error varies with energy for selective activation, with varying mean value of the
sensor noise. The points correspond to different radii of activation R, (which roughly behaves like the inverse
of the threshold in NA). Accordingly, as R is increased, the tracking error decreases since the likelihood of
activating sensors close to the target increases. When R is very high, a lot of sensors far away from the target
are activated. Their noisy readings and large numbers lead to erroneous estimation of the target position and
increase in tracking error. The least tracking error possible increases with increasing noise mean. Figure 5 shows
how the tracking error varies with energy for different activation radii and varying sensor density. Clearly, an
optimal activation radius exists and is determined by the density of the sensor deployment and the noise levels
in their readings. For the range of densities tested, we observe that increasing the density does not result in
significant gains in terms of the tracking performance.

Figure 3 compares the performance of the three activation strategies. We observe that for optimal settings,
SA can provide orders of magnitude energy savings with a tracking performance approaching that of NA. We
also found through our experiments that on increasing the rate of prediction in SA, it matches the quality of
tracking possible with NA in the limit.



Figure 1. Tracking Error vs Threshold for varying Noise Mean: Naive Activation

Figure 2. Tracking Error vs Threshold: Random Activation



Figure 3. Comparison of the best tracking possible with various activation strategies

Figure 4. Tracking error vs Energy for varying noise levels: Selective Activation



Figure 5. Tracking Error vs Energy for varying density of sensor deployment

Figure 6. Instantaneous tracking error vs Time: Duty cycling over Selective Activation



Figure 7. Tracking Error vs Energy for varying duty cycle: Duty cycling over Selective Activation

Figure 8. Tracking Error vs Energy for varying cycle period: Duty cycling over Selective Activation



3.4. Selective Activation with duty cycling (SADC)

Figure 6 shows the instantaneous tracking error vs time for SADC. The error is low during the on period and
increases during the off period during which we use the trajectory in the on period and a linear predictor for an
estimate of the target position.

Figure 7 shows the performance of SADC for varying duty cycle. We observe that by using a low duty
cycle and choosing radius of activation carefully, energy savings can be obtained if a moderate tracking error is
acceptable.

Finally, figure 8 compares the performance of SADC for varying time period TD. For the same duty cycle,
the tracking error increases with increase in TD due to longer contiguous off periods. Depending on the speed at
which the network can be switched on and off, SADC provides us a tuning knob to obtain various energy-quality
tradeoffs by the careful choice of duty cycle and activation radius.

4. SUMMARY AND CONCLUSION

We extend the framework introduced in our earlier work17 using a richer sensor model in which target detection
is based on determining the strength of a decaying signal from the target, with the measurements being corrupted
by noise. In the model we considered in this paper, the target position is estimated using the signal strength-
weighted positions.

We showed that SA, with optimal settings, can provide orders of magnitude energy savings with a tracking
performance approaching that of NA. We found that on increasing the rate of prediction in SA, it matches the
quality of tracking possible with NA in the limit.

We found that there is an optimal signal strength threshold for NA and RA strategies. We also found that
there is an optimal activation radius for SA that is determined by the density of the sensor deployment and
the noise levels in their readings. Increasing the density does not appear to affect the tracking performance
significantly and should be kept as low as possible. Depending on the speed at which the network can be
switched on and off, we conclude that SADC provides us a knob to obtain various energy-quality tradeoffs by
the careful choice of duty cycle and activation radius.

We are currently working to extend the simulation-based results presented here by developing mathematical
models that would yield a better analytical understanding of the energy-quality tradeoffs in sensor networks.
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