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Brazil is an agricultural nation whose process of spraying pesticides is mainly carried out

by using aircrafts. However, the use of aircrafts with on-board pilots has often resulted
in chemicals being sprayed outside the intended areas. The precision required for spray-

ing on crop fields is often impaired by external factors, like changes in wind speed and

direction. To address this problem, ensuring that the pesticides are sprayed accurately,
this paper proposes the use of artificial neural networks (ANN) on programmable UAVs.

For such, the UAV is programmed to spray chemicals on the target crop field considering
dynamic context. To control the UAV flight route planning, we investigated several opti-

mization techniques including Particle Swarm Optimization (PSO). We employ PSO to

find near-optimal parameters for static environments and then train a neural network to
interpolate PSO solutions in order to improve the UAV route in dynamic environments.

Experimental results showed a gain in the spraying precision in dynamic environments

when ANN and PSO were combined. We demonstrate the improvement in figures when
compared against the exclusive use of PSO. This approach will be embedded in UAVs
with programmable boards, such as Raspberry PIs or Beaglebones. The experimental

results demonstrate that the proposed approach is feasible and can meet the demand
for a fast response time needed by the UAV to adjust its route in a highly dynamic

environment, while seeking to spray pesticides accurately.

Keywords: Unmanned aerial vehicle; agricultural applications; dynamic environments;
neural networks; evolutionary algorithms.

1. Introduction

Pesticides, also known as agrochemicals, are generally applied in agricultural

crop fields to increase productivity, improve quality and reduce production costs.

1660003-1

In
t. 

J.
 A

rt
if

. I
nt

el
l. 

T
oo

ls
 2

01
6.

25
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
E

R
N

 C
A

L
IF

O
R

N
IA

 @
 L

O
S 

A
N

G
E

L
E

S 
on

 0
7/

10
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218213016600034


February 15, 2016 12:6 IJAIT S0218213016600034 page 2

1st Reading

B. S. Faiçal et al.

However, prolonged contact (either directly or indirectly) with these products can

cause various diseases to humans, such as several types of cancers, complications

to the respiratory system and neurological diseases.1 It is estimated that about

2.5 million tons of pesticides are used each year throughout the world and this

amount is growing.2 Much of the pesticide is wasted during the spraying process

due to the type of technology employed. Evidence show that the drift of pesticides

is generally found at a distance of 48 m to 800 m from the target crop field; the

deviation can range from a distance of 5 km to 32 km downwind.3

The use of unmanned aerial vehicles (UAV) to carry out the task of spraying

pesticides can have several benefits, including (i) to reduce human contact with the

chemicals, which helps to preserve human health; and (ii) to improve the perfor-

mance of the spraying operation, by avoiding the presence of chemicals outside the

designated areas, which is important to protect the neighboring fields that may have

other crops, and protect nature reserves or water sources. The sets of control rules

to be employed in an autonomous UAV are very hard to put into effect and even

harder to fine-tune to each environmental feature. Due to the technical features of

each UAV, a fine-tuning phase must include the parameters of the algorithm. This

process must also take into account the type of crop being handled and the type of

pesticide being used.

The proposed architecture employs an UAV that has an attached spraying sys-

tem and is able to communicate with a wireless sensor network (WSN), which is

arranged in a matrix-like grid on the crop field. The WSN sends feedback on the

weather conditions and determines how the pesticide is actually being applied on the

target crop field. On the basis of the received information, the UAV appropriately

adopts a policy that allows it to correct its route. Hence, the main contributions

of this research are: (i) to investigate an evolutionary methodology capable of min-

imizing human contact with pesticides, (ii) to evaluate an evolutionary approach

that is able to reduce errors when spraying pesticides in areas where vegetables and

fruits are grown, (iii) to investigate techniques able to maximize quality in agricul-

tural production, and (iv) to increase the autonomy of the architecture proposed

by Faiçal et al.,4 in which the policy parameters were set out empirically and could

be applied regardless of the weather conditions.

This paper extends the previous work5 by presenting a proposal and an eval-

uation on how UAVs can be controlled in a highly dynamic environment, such

as environments with sudden changes in the speed and direction of the wind. To

this aim, we devised an ANN to be employed in real-world operations, which was

built with evolved values employing a PSO approach. We employ the PSO to find

near-optimal parameters for static environments and then train a neural network to

interpolate the PSO solutions in order to improve the UAV route in dynamic envi-

ronments. Neural networks have an intrinsic mapping and generalization features,

which make them a good choice for dynamic environments,6,7 while the evolution-

ary approach is a good mean to discovering non-trivial parameters.8,9 Combining
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the evolutionary technique with the neural approach in this work allowed us to

leverage the best capabilities of each technique. In such a way, we propose the use

of an ANN for quick decision-making, since in real environments the weather con-

ditions change suddenly and at short intervals of time. The new proposal provides

a significant advance in the optimization of an UAV route which can be used in real

environments, as a trained ANN is faster than running the evolutionary process of

PSO technique over and over again whenever the weather conditions are change-

able. Moreover, even if the employed hardware has enough resources to perform the

technique PSO quickly, the ANN will enable the intensity of the route adjustment

to be adjusted in a shorter time.

This paper is divided into six sections. Section 2 examines other studies related

to this paper. Following this, Section 3 provides an outline of the architecture to

clarify the scope of this paper and the optimization methodology proposed in this

work. The experiments and results are analyzed and discussed in Section 4, and then

compared with the results found in the literature. Finally, Section 5 summarizes the

conclusions obtained from the results and suggests how this paper might encourage

further studies in this field.

2. Related Work

There are several studies that suggest how UAVs or WSNs can be employed for mon-

itoring agricultural production, occasionally by integrating both technologies.10–12

However, this work differs in so far as it proposes a particle swarm optimization

algorithm to optimize the control rules of the UAV at runtime, based on feedback

provided by WSN about weather conditions in the agricultural field.

Valente et al.13 describe a WSN-based system and UAV to monitor vineyards.

The WSNs collect information about weather, soil and planting conditions and then

make it available to farmers. However, a field crop may be hundreds of meters away

from other fields and sometimes there are barriers (e.g. rivers and roads) that sep-

arate two crop fields. Thus, it may not be feasible or cost-effective to use cables to

connect the WSN. Although the use of powerful wireless devices allows communica-

tion between WSNs, this solution leads to higher energy consumption and involves

reducing the lifetime of the nodes. One solution that can be adopted to overcome

these limitations is the employment a UAV to fly over the crop fields and gather

information from each WSN, which can then be conveyed to a processing center.

Although this study demonstrates that UAVs and WSNs can be integrated to pro-

vide efficient solutions or improvements in an agricultural setting, no methodology

is employed for optimization at runtime. Additionally, a UAV is used as a mobile

node in a WSN without having any adverse effects on the environment.

Huang et al.14 devise a particular system for spraying pesticide. This system

should be coupled with a UAV that is capable of carrying approximately 22.7 kg.

The model used in this work is UAV SR200 (manufactured by Rotomotion). The

spraying system consists of four main components: (i) a metal tube with nozzles;
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(ii) a tank to store pesticide; (iii) a pump to move the liquid; and (iv) a mechanism

for controlling the activation of the spray. The spraying system can carry up to

5 kg of pesticide, which is enough to spray 14 ha; and it has a flight time of around

90 min. The main objective of this study is to validate the proposed system and

evaluate different types of spray nozzles. However, the weather conditions were not

taken into account. Additionally, it does not include a discussion of an evolutionary

methodology that is able to optimize control of this activity.

Faiçal et al.4 proposed an architecture formed of a UAV and WSN to spray

pesticide in crop fields. It is known that adverse weather conditions, such as high-

speed winds, can cause errors in the spraying process. The study shows how the

recommended architecture can reduce the risk of errors and increase control over

this activity. With the aid of feedback from the WSN on pesticide concentrations,

the route is gradually changed until the sensor node can identify the correct appli-

cation of the product. However, the parameters set for the route change are applied

in different weather conditions, which might impair the performance of this archi-

tecture. As mentioned earlier, this paper addresses this limitation by evaluating a

methodology that is employed for the fine-tuning of a parameter that ponders the

changes in the intensity of the route followed by the UAV.

3. Proposed Approach

3.1. UAV and WSN architecture for spraying on crop fields

Figure 1 illustrates how the UAV acts as an agent on the crop fields. The UAV is

equipped with a spraying system and a communication module, which enables data

exchange with a WSN arranged on the crop fields; it flies over the area and sprays

the pesticide in its entire length. The WSN is only depicted within the targeted crop

fields and is bounded by two dark dashed lines (from top left to bottom right) to

simplify the viewing image. At the top of Fig. 1, there are two arrows that indicate

Fig. 1. Example of spraying in crop fields with the architecture proposed by Faiçal et al.4 This
architecture consists of a UAV (to spray) and WSN (to monitor). If the WSN detects an unbalanced
spray on its sensor nodes, the UAV changes its route to correct the spraying of the pesticide.
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the wind direction at a particular location. Through its communication link with

the WSN, the UAV is able to obtain information about the weather (e.g. speed and

direction of the wind) and the concentration of pesticides sprayed on the crops. If

an imbalance is detected in this concentration (e.g. the sensor on the left identifies a

higher concentration than the sensor on the right), possibly caused by the wind, the

UAV adopts a policy that involves changing its route to balance the application of

pesticides throughout the whole extent of the targeted crop fields. This policy also

helps to prevent overlapping when the chemical is applied. In Fig. 1, the correction

of the route is represented by small arrows between the images of the UAV.

A parameter called routeChangingFactor is employed in the route change func-

tion to set the degree of intensity (e.g. mild or sharp) so that the change can be

made. However, despite the importance of this parameter to ensure the success of

the spraying, its value is set empirically before the beginning of the flight and is

used for all weather conditions that occur during the spraying process. This charac-

teristic can affect the quality of the spraying; for example, a sharp correction might

be made in an environment where a low wind speed has been detected. Moreover,

an increase in the complexity of this environment might cause variable behavior.

In other words, the weather conditions can change during the activity, and this is

detrimental to the whole architecture if it has a static configuration.

The routeChangingFactor parameter is a weighting variable used in the calcula-

tion of the period of time assigned for a UAV route change.4 It defines if the route

change will be of mild intensity (low value, resulting in more time for a change

of route) or high intensity (high value, resulting in a short time to be re-routed).

Equation (1) illustrates the time that the UAV remains in change of route is set.

In this equation, ls (left sensor) and rs (right sensor) are data received from the

pair of sensors deployed inside the plantation and located in the spraying tracks

(see Fig. 1), τ is the routeChangingFactor and ∆ corresponds to the period of time

assigned for the route change.

∆ =
|ls− rs|

τ
. (1)

This equation is used by the UAV control policy, which sets a minimum threshold

for the difference between the values from the pair of sensor to decide whether the

route change should occur. If the difference is larger than the threshold, the UAV

control policy re-defines the duration of the route change (based on Eq. (1)), the

angle and the direction required for the aircraft.

To overcome the problems previously mentioned, this paper proposes a

methodology based on Particle Swarm Optimization to optimize the parameter

routeChangingFactor. As previously mentioned, the parameter of route change has

a large influence on spraying and, in addition, the architecture is employed in a

dynamic environment. Thus, it is worth investigating a methodology that is able

to find a value for the parameter routeChangingFactor (and is close to an optimal

solution). Figure 2 shows the behavior of the architecture when the optimization
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Fig. 2. Behavior of the architecture that employs the proposed optimization methodology. The
Control Station (A) is installed outside the target crop field, in a zone within communication

range of the UAV (B). During the spraying of the current crop field (D), the UAV sends a request

for weather information about the next crop field (E) to the WSN (C). When the requested
information is received, the UAV sends it to Control Station (A) where it will be used by the

optimization methodology. At the end of the optimization, the Control Station sends the new
configuration back to the UAV. The settings will be updated when the spraying of the current

crop field has been completed and the spraying of the next crop field is about to begin.

methodology is used. It assumes that a crop field is composed of several small

virtual subareas with a rectangular shape. Thus, if all the subareas are sprayed,

this results in a complete spraying of the crop field. Each subarea will be called a

“crop field” during this study. The UAV’s flight plan is designed to ensure that the

next crop field will be sprayed right after the work on the current crop field has

been completed. The route change, as described earlier, is made in the current crop

field (D). Running parallel with this activity, the UAV (B) queries the WSN (C)

about the weather conditions in the next crop field (E). At this stage the request

can reach the nodes that are deployed inside the next crop field by using multi-

hop links (not shown in the diagram). Only the endpoints of the communication

(source and destination) are shown for a clear image. As soon as the UAV obtains

weather information, this is sent to Control Station (A) to optimize the parame-

ter routeChangingFactor. At this time, the optimization methodology proposal is

executed on the basis of the weather information. At the end of the optimization,

the best value of the parameter is sent back to the UAV. When the spraying of

the current crop field (D) is finalized, the UAV updates its settings so that the

spraying of the next crop field (E) can start. It should be highlighted that the use

of a Control Station provides more powerful computation and, in addition, allows a

pilot (on the ground) to oversee the flight and, if necessary, intervene in the control

of the UAV.
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3.2. Optimization of control rules

The optimization methodology proposed in this paper is essentially composed of

an algorithm based on PSO.15,16 This algorithm searches for a non-optimal value

for the parameter routeChangingFactor and in one computation model of the en-

vironment evaluates the accuracy of spraying by applying the weather information

received from the WSN. Lastly, the algorithm returns the best solution (value per

parameter) and this is assessed so that it can be applied in the next crop field. One

important condition of this algorithm is that the computational cost (runtime)

should be lower than the time required for spraying a single crop field (subarea).

Hence, the search space is restricted to one zone that has values of different acute-

ness (e.g. abrupt, smooth and moderate). Additionally, the delimitation of the

search space allows a faster convergence.

The optimization process is conducted in two ways simultaneously: (i) through

cooperation (group learning) and (ii) competition (single learning), by considering

the particles of a swarm. Each particle is initialized in a random position (possible

solution) within a search space. In each iteration of the algorithm, the velocity and

position of the particles are updated. The position found by the swarm with best

fitness (as well as the positions with best fitness found by each particle individually)

are considered for updating. As the positions of the particles are possible values for

the parameter routeChangingFactor contained in the search space, the velocity of

the particle indicates how far and in what direction this value will move (to a new

position). The new position of each particle is obtained by Eq. (2) (where: Xid is

the position and Vid is the velocity of particle i in an instant d), while the velocity is

updated in each iteration with Eq. (3) (where: wi is the inertia, C1 and C2 establish

the importance of social trend or individual (cooperation or competition), Pid is

the best position found by individual particle, Pgd is the best position found by

the swarm and, finally, rand() and Rand() are different random values for a good

exploration of search space).17

Xid+1 = Xid + Vid , (2)

Vid = wi ∗ Vid + C1 ∗ rand() ∗ (Pid −Xid) + C2 ∗ Rand() ∗ (Pgd −Xid) . (3)

Algorithm 1 shows details of the optimization process. The particles are initial-

ized in random positions inside the search space. The stop condition is defined by

the amount of iteration that the algorithm has to run. This stop condition allows

the average runtime to be analyzed in the worst case scenarios, when all the iter-

ations have been executed to find one possible solution. Following this, one stop

condition can be added with the aim of finalizing the algorithm after confirming

that convergence has occurred. It should be noted that the runtime in worst cases

should be shorter than the time required for spraying a crop field (subarea). In each

iteration, all the particles will have their positions evaluated and if the “fitness” of

a particle is the best found by the swarm so far, the algorithm stores this position.

On the other hand, if the position is not the best globally, but is the best of the
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Algorithm 1: Proposed algorithm to optimize the routeChangingFactor

parameter.

1: InitializeParticles(RandomPosition[1, 10])

2: for MAX ITERATION do

3: PARTICLES ← FirstParticle()

4: for ALL PARTICLES do

5: Result← FuncObjetive(PARTICLES)

6: if Result is best particle then

7: Stores the position in particle

8: end if

9: if Result is the best in the swarm then

10: Stores the position in swarm

11: end if

12: UpdateV elocity(PARTICLES)

13: NewPosition(PARTICLES)

14: PARTICLES ← NextParticle()

15: end for

16: end for

17: return BestGlobalPosition

particle, the algorithm also stores this position in the particle. Later on, the ve-

locity and the position of each particle are updated. When the algorithm achieves

maximum interaction, it is finalized and the best position found by the swarm is

returned.

The objective function (FuncObjetive) contained in the Algorithm, cited in

Line 5 of Algorithm 1, refers to an interaction with one project inside the

OMNeT++ software. The project is an implementation of a computational model

to evaluate the spraying.4 This interaction tests and analyzes the quality of spray-

ing in each position of all the particles. The OMNeT++a is a simulator of discrete

events based on C++ language to model networks, multiprocessors and other dis-

tributed and parallel systems.18 The OMNeT++ can be used to model several types

of networks, such as networks of queues, wireless and peer-to-peer types.19 Because

of its generic design, OMNeT++ has several frameworks established for specific

networks, such as Miximb for modeling wireless networks. This framework provides

detailed models for wireless channels, wireless connections, mobility models, mod-

els for dealing with obstacles and several communication protocols, especially for

MAC.20 Figure 3 shows the connection between the algorithm and OMNeT++.

aOMNeT++ Network Simulation Framework, http://www.omnetpp.org
bMiXiM project, http://mixim.sourceforge.net
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Fig. 3. Interaction between PSO technique and OMNeT++.

Initially the algorithm changes the settings and files of “Project spraying” so that

the position of the particle can be used as routeChangingFactor, apart from the

addition of real weather information (Stage 1). After that, the algorithm runs

“Project spraying” in OMNeT++ (Stage 2) and, finally, analyzes the log file to

determine the results of the spraying (Stage 3). In the source code of “Project

spraying” there is a dispersion model to estimate the movement of pesticide until

it reaches the planting [plantation ?].4 The fitness is calculated by estimating the

amount of pesticide sprayed outside of the target crop field.

Thus, the objective function used by the PSO technique consists of two stages:

(i) the execution of the computational model for the spraying of the agricultural

field with the parameters set by the algorithm; and (ii) an analysis of the concentra-

tion of pesticide deposited in the agricultural field. In the first stage, the algorithm

adjusts the computational model to the received weather conditions and the param-

eter routeChangingFactor being analysed, and runs the simulator to estimate how

the spraying will be performed in these conditions. This execution returns a matrix

with dimensions proportional to the size of the agricultural field and element val-

ues representing the concentration of the product deposited in each square meter.

It must be observed that the value of the parameter routeChangingFactor will be

changed during the optimization process. In the second stage, the pesticide concen-

tration matrix is analyzed and the amounts deposited outside the target area are

added to be used as the fitness value. Thus, the smaller the fitness, the better (more

accurate) is the spraying carried out with the considered routeChangingFactor.

3.3. Proposed approach for dynamic environments

One of the characteristics of the PSO is that the search for the best values occurs

in static environments. However, the evolutionary approach is often very time-

consuming, and hence, it is not trivial to employ it in embedded software for dy-

namic operations. The operation in this case is dynamic since the UAV can change

its speed and height or there may also be a change in the wind itself. Neural net-

works have intrinsic mapping and generalization features, which make them a good

choice for dynamic environments while the evolutionary approach is a good means

of discovering non-trivial parameters.
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Fig. 4. ANN topology.

For an approach which can handle dynamic environments, we designed and eval-

uated how a neural network can be built upon data from the evolutionary algorithm.

Hence, we ran the evolutionary technique in 27 static different environments and

used its results to train the neural network. The 27 different scenarios were built

in the light of the following variations: UAV speed (m/s) {10, 15, 20}; wind speed

(km/h) {0, 10, 20} and UAV height of operation (m) {10, 15, 20}. We ran the evo-

lutionary algorithm 10 times for each scenario, and obtained 270 different values.

These values were then used for training the ANN. It should be highlighted that

for each static scenario, the values obtained by the PSO were not the same, but

often similar. We evaluated 5 ANN with different topologies to investigate which is

the smallest neural network that can achieve the highest degree of accuracy.

Figure 4 shows the ANN topologies. The ANN inputs are the speed of the UAV,

wind speed and UAV height and the output is the parameter changeRouteFactor.

The results of the evaluation are given in Section 4.3.

4. Evaluation and Analysis of the Experimental Results

This section includes a description of our evaluations and examines our results.

It is subdivided into three subsections which aim to explain (i) the evaluation of

the optimization of the routeChangingFactor, (ii) the comparison resulting from the

evolutionary approach with pre-programmed rules, i.e. without optimization of rule

controls for route changes, as discussed by Faiçal et al.,4 and (iii) evaluation of the

application of the neural network for dynamic environments.
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Table 1. Results of the optimization of the
routeChangingFactor parameter. The first column

shows the set of evaluated PSO as P#I# meaning P

(number of particles) and I (number of interactions).

Convergence Average Time

Settings Rate (%) of Evolutions (s)

P3I20 96.77 18.617± 0.371

P3I50 100.00 45.927± 0.649

P3I100 100.00 93.854± 1.555

P5I20 100.00 30.705± 0.506

P5I50 100.00 77.162± 0.766

P5I100 100.00 158.995± 3.143

P10I20 100.00 62.549± 0.912

P10I50 100.00 157.957± 2.976

P10I100 100.00 313.335± 1.488

P15I20 100.00 93.606± 0.799

P15I50 100.00 235.189± 1.816

P15I100 100.00 480.359± 14.762

P20I20 100.00 125.088± 1.059

P20I50 100.00 312.894± 2.058

P20I100 100.00 628.324± 2.251

4.1. Optimization of the routeChangingFactor parameter

In this stage, the algorithm will search for the best possible value when applying it

as the parameter of route changes (taking into account the feedback obtained from

the weather information). The evaluated settings are called as: P#I#, meaning P

(number of particles) and I (number of interactions). Each configuration is repli-

cated thirty times to obtain a greater confidence level for future statistical analysis.

The algorithm is defined so that it will prefer the social trend (C2 = 0.75) to the

individual trend (C1 = 0.25) in the search. Another important parameter for run-

ning the algorithm is Inertia, which is used to strike a balance between local and

global searches, and is set to carry out local searches (wi = 0.1). This configuration

aims at a “quick pull” of the swarm of particles to a place considered promising

because it contains a better intensity than the others found so far. Moreover, it is

expected that the particles will carry out a thorough search in the region where

they are located. It is notable that both the ability not to remain stuck in local

minima and the convergence of the algorithm were considered in this study, which

showed a satisfactory performance.

Due to the low communication time, measured in Ref. 4, it can be assumed

that the communication time between the UAV and Control Station does not have

a significant influence on the total runtime. Thus, it can be assumed from this

experiment that the weather information is already in the Control Station.

This subsection shows the results when the PSO-based algorithm described in

Section 3.2 is employed. Table 1 shows the results of the first stage. Apart from
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B. S. Faiçal et al.

Fig. 5. Representation of the solutions found by the algorithm in the search space.

P3I20 setting, that has a 96.77% convergence rate, all the others have a 100%

convergence rate for the same value of fitness. Owing to particular features of

the problem, it is possible that a group of solutions has a fitness that is simi-

lar but not the same, since the difference between the values of the parameter

routeChangingFactor may be low enough to have no significant influence on the

spraying in specific situations.

It can be seen in Table 1 that the P3I20 setting is the only configuration that

does not have a convergence rate of 100%. Another important point in Table 1 is the

average time ± standard deviation (in seconds) for each setting of the algorithm.

The spraying of a target crop field is carried out in ≈ 65 seconds (in accordance

with the speed of the UAV) and as mentioned previously the runtime must be less

than the time required for spraying a target crop field. Hence, the settings that are

feasible for this application are P3I50, P5I20, and P10I20. These settings allow the

optimization of the parameter routeChangingFactor with an appropriate time (less

than 65 s) and with a convergence rate of 100%.

In conducting an analysis of the position of the solutions in search space and

visualizing the non-convergent solution, we have plotted all the solutions on the

basis of their value in search space (see Fig. 5). It can be seen that the proposed

algorithm is capable of finding a region in search space where values are appropriate

for the parameter routeChangingFactor in specific climatic conditions. This region

in search space is closely connected with features of the environment and tends not

to be an appropriate region for the next crop field, since it is a dynamic environment.

Thus, the algorithm should run before the spraying in each crop field is started to

reduce the risk of making a wrong decision. The non-converged solution originating

from the P3I20 setting, is marked as “A” in Fig. 5. Despite its proximity, this

solution does not belong to the region of appropriate solutions for the weather

conditions reported by the WSN.

After analyzing the optimization of the parameter routeChangingFactor, we con-

ducted experiments aimed at evaluating the precision of the spraying by using the

solution indicated by the algorithm.
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4.2. The spray operation on crop fields

This stage involves the use of the solution which has best fitness (found in the

previous stage) to evaluate the spraying on a target crop field. This selection cri-

terion is used to evaluate the best solution in the group of alternatives generated

by replications. If all the replications converge in a group of solutions with equal

fitness, one of the solutions is randomly selected. The spraying is carried out by

using the value selected as the parameter routeChangingFactor and the result is

compared with the results without optimization from Faiçal et al.,4 where a fixed

value was employed. It is worth noting that the environmental features are the same

for all the experiments and this is called Constant Light Wind by Faiçal et al.4 This

environment has a constant wind at a speed of 10 Km/h. The crop field used has

an area of 1100 m× 150 m and the area of the target crop field is 1000 m× 50 m.

The WSN has twenty-two nodes spread across the target crop field and the UAV

initializes the spraying at a height of 20 meters above ground and at a constant

speed of 15 m/s. At intervals of ten seconds, the UAV makes requests to the WSN

to obtain information about the quality of the spraying. These experiments are

replicated seventy times, to obtain a greater level of confidence for future statistical

analysis. In the following subsection, the results are shown and discussed.

This subsection shows the results of the second stage of experiments. This in-

volved analyzing and discussing the results of spraying in a crop field by using

the solutions found by the PSO. In this stage, the experiments were conducted to

support the assessment of the proposal, which entailed optimizing the parameter

routeChangingFactor and ran parallel with the spraying of a crop field (in the first

stage) and applied the results of the optimization to subsequent crop fields (the

second stage). The results of spraying where the optimization method was used,

are compared with the results when there was no optimization as discussed by

Faiçal et al.4

The following settings were adopted: CL10, interval of ten seconds between each

of the requests of weather information from UAV to WSN; CL30, interval of thirty

seconds between each of the requests of weather information from UAV to WSN;

CLNO does not change its route. The settings that use an optimization parameter

are P5I20, P10I20, and P3I50. These results are obtained by the PSO.

Figure 6 and Table 2 show the results of spraying on target crop field, and

compare the results from Faiçal et al.4 with the results of the proposed PSO. It is

clear that there is an increase in the area with a correct application of pesticides

when the evolved routeChangingFactor parameter was applied. The CL10 is the

setting with the smallest error rate among all the non-optimized settings. However,

all the optimized settings surpass the precision rate usually achieved when spraying

a target crop field. Figure 7 displays a heat map to represent the chemicals sprayed

on the crop at the end of the simulation.

The Shapiro Wilk method, employed for the statistical analysis, shows that the

hypothesis of normality is rejected for one of the sets when there is a confidence level
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Fig. 6. Percent of pesticide spraying inside the target crop field. In this boxplot, the first three

results come from Faiçal et al.4 and the last three results were obtained in this work by the

proposed PSO.

Table 2. Correct spraying (%) in the target
crop field.

Settings Area with Correct Coverage (%)

CL10 72.871± 4.659

CL30 62.113± 3.591

CLNO 55.697± 0.657

P3I50 86.220± 2.538

P5I20 85.811± 2.894

P10I20 85.777± 2.520

of 95%. In view of this, we decided to use non-parametric tests in the subsequent

analysis.

The pairwise comparisons were performed by means of the Wilcoxon Rank Sum

Test (see Table 3) and show that there are significant differences between the results

that employ the methodology for optimization and the results when this method-

ology is not used. However, no significant differences were found when only the

settings based on the optimization methodology were analyzed. Additionally, the

Friedman Rank Sum Test is also applied to this data and shows a p-value of 0.000,

which suggests that there are significant differences between the results shown in

Fig. 6. As a result, it can be concluded that the use of the optimization method

for the parameter routeChangingFactor increases the efficiency of the control rules,

and reduces the errors when spraying in a crop field.

4.3. Use of ANNs for dynamic environments

This section analyzes the ANN trained to interpolate and generalize the data from

27 static scenarios evolved by the PSO. As previously stated, the 27 different sce-

narios were built in the light of the following variations: UAV speed (m/s) {10, 15,

20}; wind speed (km/h) {0, 10, 20} and UAV height of operation (m) {10, 15, 20}.
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(a) routeChangingFactor = 3.000

(b) routeChangingFactor = 6.000

(c) routeChangingFactor = 7.164

Fig. 7. (Color online) A heat map to represent the chemicals sprayed on the crop at the end of

the simulation. The green colour represents no pesticide and red represents the most concentrated

places. The thin black lines show the crop field that needs to have chemicals sprayed. (a) and
(b) Evaluations with empirical values. (c) Evaluation with routeChangingFactor obtained by the

PSO. We can see that when employing the routeChangingFactor obtained by the PSO we have the

best adjusts in the UAV track, attempting to keep the chemicals within the boundary lane. It is
worth to highlight that, as the simulation starts with wind, the UAV always starts the dispersion

of the chemicals outside the boundary.

Table 3. Results of Wilcoxon Rank Sum Test. There are

evidences of difference between the evolved values (P*) and
the non-evolved values (C*) from Faiçal et al.; (p-values

less than 0.05). There are no evidences of difference among
evolved values (p-values greater than 0.05).

CL10 CL30 CLNO P3I50 P5I20

CL30 0.000

CLNO 0.000 0.000

P3I50 0.000 0.000 0.000

P5I20 0.000 0.000 0.000 0.52

P10I20 0.000 0.000 0.000 0.52 0.79

We ran the evolutionary algorithm 10 times for each scenario, and obtained 270

different values.

We sought to obtain the smallest ANN that would provide the most accurate

values, since this also reduces the chance of overfitting during the training and

improves the generalization of the ANNs. Hence, we started evaluating neural net-

works with one hidden layer and with 1 to 5 neurons. No ANN with these topologies
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Fig. 8. Mean square error for 30 runs of each ANN topology.

was able to learn an accurate model from the data. therefore, the number of neurons

and the number of layers were increased, leading to the following topologies for the

first and second hidden layers: {2× 2, 4× 4, 6× 6, 8× 8, 10× 10}. The input layer

has 3 neurons and the output has one neuron (as described in Section 3.3).

The evaluated ANNs are feed-forward multi-layer perceptron and are trained

with the resilient backpropagation algorithm. The ANNs were built and trained by

employing the Stuttgart Neural Network Simulator (SNNS).c We ran the training

30 times for each of the ANN topologies and employed 3-fold cross validation.

The ANNs were trained for 2000 cycles, although we used the values of the best

generalization point. The results as mean square error (MSE) can be seen in Fig. 8.

The distributions were evaluated with statistical tests (Shapiro-Wilk) that

showed that most of the distributions cannot be accepted as normal distribu-

tions. Hence, the comparison between the distributions was carried out with the

Wilcoxon-Mann-Whitney test. When 1% of significance is considered, the com-

parisons between ANN88 and ANN1010 are equivalent. No other comparison of

distribution showed equivalence with the ANN1010 distribution. We can see that

there is an improvement from ANN22 to ANN88; however, as the statistical test

showed that ANN88 and ANN1010 are equivalent, the ANN88 was considered for

the deployment.

Figure 9 displays an execution of the ANN88. The black dots represent the

expected (original) values and the blue dots represent the values obtained by the

ANN. It can be seen that there is a good fit for most of the points; however, there are

points in which the obtained values differ from the expected. The reason for this is

that the PSO does not obtain single values while performing the evolution, i.e. there

is a group of good solutions within a range. Figure 5 can enable us to understand

which good solutions are between ≈ 3 and 6, and thus, this PSO response can be

interpreted as if the function being evolved has plateau regions. The current ANN

topology allows unique outputs for the same inputs, which might be interpreted as

a disperse value, although, the type of dispersion shown in the diagram does not

cStuttgart Neural Network Simulator, http://www.ra.cs.uni-tuebingen.de/SNNS
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Fig. 9. (Color online) Results of execution of the ANN88 for ≈ 75 different inputs. The black dots

represent the expected (original) values and blue dots represent the values obtained by the ANN.

lead to failure in the spraying operation because the obtained values are within a

suitable range.

5. Conclusions and Suggestions for Future Work

In this paper, we have proposed and evaluated a methodology based on PSO, for

fine-tuning the control rule of a UAV, and on an ANN to increase the support for

high dynamic environments. The simulations with PSO provide the optimization of

the parameter routeChangingFactor and thus reduce the error rate when spraying

pesticides on crop fields. In the first experiments, we evaluated a broad set for the

optimization method and the results show that it is possible to obtain 100% of

convergence. Applying such evolutionary methodology allowed us to increase the

precision of spraying pesticides so that ≈ 86% of the product can be applied within

a target crop field. The reason for this is that the optimization is performed during

the application and thus the parameter can be adapted to the weather conditions

of each target crop field. Although, taking into account that the spraying operation

might occur in highly dynamic environment due to changes in wind speed and

direction, we devised an ANN to be employed in the real-world operations. The

proposed ANN is trained with a dataset of near-optimal parameters obtained by

the PSO that evolves for a limited set of static environments. The ANN training

process allows it to interpolate the results as so it can be applied dynamically

for any configuration of the environment. Combining the evolutionary technique

with the neural approach in this work allowed us to leverage the best capabilities

of each technique. The presented proposal provides a significant advance in the

optimization of an UAV route which can be used in real environments, as a trained

ANN is faster than running the evolutionary process of PSO technique over and

over again whenever the weather conditions are changeable. Moreover, even if the

employed hardware has enough resources to perform the technique PSO quickly, the
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ANN will enable the intensity of the route adjustment to be adjusted in a shorter

time.

On the basis of the results obtained the following are recommended for further

studies: (i) an investigation of how more parameters can be optimized (e.g. the

height and speed of the UAV, the best starting-position for the next crop field, and

the pressure of the spraying system); (ii) an investigation of different methodolo-

gies for the fine-tuning control rules of UAV (e.g. Differential Evolution,21 Genetic

Algorithms,22 Hill-Climbing,23 NSGA-II24); (iii) an analysis of the feasibility of

embedding the optimization methodology in the UAV, leading to an autonomous

architecture; (iv) an investigation of the methodologies required for a weather-aware

router planner.
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M. Günes and J. Gross (Springer Berlin Heidelberg, 2010), pp. 35–59.
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