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ABSTRACT

Emerging Industrial IoT applications, such as smart factories, require reliable communication and robustness against
interference from co-located wireless systems. To address these challenges, frequency hopping spread spectrum (FHSS)
has been used by different protocols, including IEEE802.15.4-2015 TSCH. FHSS can be improved with the aid of blacklists
to avoid bad frequencies. The quality of channels in most environments shows significant spatial-temporal variation, which
limits the effectiveness of simple blacklisting schemes. In this article, we propose an enhanced blacklisting solution to
improve the TSCH protocol. The proposed algorithms work in a distributed fashion, where each pair of receiver/transmitter
nodes negotiates a local blacklist, based on the estimation of packet delivery ratio. We model the channel quality estimation
as a multi-armed bandit problem and show that it is possible to create blacklists that provide results close to optimal without
any separate learning phase. The proposed algorithms are implemented in OpenWSN and evaluated through simulations
in two different scenarios with about 40 motes, and experiments using an indoor testbed with 40 TelosB motes. Copyright
c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Industrial Internet of Things (IIoT) is emerging as
one of the biggest drivers for productivity growth in the
next decade [1]. Many IIoT-based systems require wireless
communication, which causes serious reliability problems
due to the non-deterministic nature of wireless links. In
the 2.4 GHz band – used by the IEEE802.15.4 standard
– ensuring reliability is a major challenge because of the
proliferation of networks that use this frequency band.
Techniques that exploit both space diversity and frequency
diversity are being employed by new protocols such as
IEEE802.15.4-2015 TSCH [2] to improve reliability and
throughput. These diversity techniques exploit the fact
that external interference and fading are different across
frequencies, and also vary in space and time.

Timeslotted Channel Hopping (TSCH) slices time into
slots and employs multiple frequencies. In addition, it
adopts Frequency Hopping Spread Spectrum (FHSS) to
smooth the impact of multi-path fading and external inter-
ference. Frequency Hopping is a technique that requires
network synchronization and changes the communication
frequency at every time slot. Each time slot in a TSCH
network has an associated channel offset that is converted
into a frequency by means of a pseudo-random hopping
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Figure 1. Packet delivery ratio of a particular link over a 24-hour
period. The 2 top plots show the 2 worst channels; middle, the 2
best; and bottom, the average PDR over all 16 channels and the
optimal PDR when selecting the best channel at every moment.

function. The frequency that is used might be any one
of the 16 available in the 2.4 GHz band defined in the
IEEE802.15.4 standard.
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If a simple blind hopping function is used, all the
frequencies are uniformly selected and transmissions
suffer the average level of interference. In any network,
link quality is coherent in the short term [3], which
means that links with a poor quality are likely to remain
in a bad state for a certain period, called “coherence
time”. Experiments in industrial environments show that
coherence time can last from hundreds of milliseconds to
seconds [4]. It is therefore preferable to avoid frequencies
in which the last transmissions failed. This fact encourages
the idea of blacklisting frequencies, and performing
selective hopping to improve the performance of FHSS [5].
When blacklisting is employed, the frequencies with bad
quality are temporarily excluded from the hopping list. The
exclusion of a particular frequency should persist as long
as the link quality at that frequency is poor, which requires
an efficient method to regularly estimate link quality.

Although frequency blacklisting has already been used
by other technologies, it is difficult to achieve an optimal
implementation. Building a blacklist centrally is not trivial,
since the quality of each frequency on all links need to
be collected and combined by a central agent. Moreover,
it is not effective, because link qualities are spatial-
dependent, which means that a frequency that is bad for a
particular link can be in a good state for others. Distributed
blacklisting is more effective, but requires coordination
and may even increase interference in networks that
employ simultaneous transmissions.

In this article, we introduce the Multi-hop And
Blacklist-based Optimized TSCH protocol (MABO-
TSCH). Our proposal employs a distributed blacklist for
improving the performance of multi-hop wireless networks
that have to cope with high levels of external interference
and multi-path fading.

In MABO-TSCH, the hopping sequence is locally
built with information exchanged between each pair of
communicating nodes. In addition, the hopping pattern that
must be used in each link is optimally chosen so that,
regardless of the neighbor’s blacklists, two interfering links
never use the same frequency. In this way, interference
between neighboring links is avoided, and optimal TSCH
schedules – with simultaneous transmissions at different
links – can be executed. The challenging task of channel
quality estimation is solved through Multi-Armed Bandit
(MAB) optimization.

The main contributions of the article are threefold:

(i) proposal of a solution for distributed blacklisting that
is optimized for multi-hop networks and compliant
with the IEEE802.15.4 TSCH standard;

(ii) a channel quality estimation algorithm based on
MAB optimization;

(iii) implementation and empirical evaluation of MABO-
TSCH protocol, both in simulation and on a 40-node
testbed.

The remainder of the article is organized as follows.
Section 2 outlines the motivation and background behind

our proposal. Section 3 lists the related literature that
exploits blacklisting techniques and MAB-based spectrum
sensing. Section 4 introduces MABO-TSCH, the proposal
of this article. Section 5 evaluates the performance of
the proposal through simulations considering two different
scenarios; the first with dataset from Tutornet testbed
with 40 nodes, and the second with dataset from Soda
testbed with 46 nodes. Section 6 evaluates its performance
experimentally on a 40-mote indoor testbed. Section 7
summarizes the lessons learned from the simulation and
testbed results. Finally, Section. 8 concludes this article.

2. MOTIVATION AND BACKGROUND

The recent IEEE802.15.4-2015 TSCH [2] standard is built
for critical low-power wireless applications. Several stud-
ies have demonstrated limitations of legacy IEEE802.15.4
because of its single-channel operation, which makes it
susceptible to external narrow-band interference and multi-
path fading [6, 7]. In real deployments, even on frequencies
with no other technology present (such as channels 25 and
26∗, which typically do not overlap with WiFi) the received
signal strength can vary by tens of dB over time.

To illustrate our motivation, we measure the connec-
tivity between 40 sensor nodes in an indoor testbed. In
this experiment, every node broadcasts 100 packets with
a length of 100 bytes. When one particular node is sending
packets, all others listen and record whether the packets are
received, and their corresponding RSSI. This sequence is
repeated for all 16 channels. Every 30 min, the experiment
is re-run. We execute 48 rounds, totaling a 24 h period.
Fig. 1 shows a very small subset of that data. It shows
the PDR (Packet Delivery Ratio) between two particular
nodes located approximately 15 m apart. The 4 upper plots
show the PDR of the 2 worst and 2 best channels. The
bottom 2 plots show the average PDR over all 16 available
channels, and the highest PDR across all frequencies.

Channels 17 and 22 have a low PDR and variable
quality, resulting in connectivity problems at different
times during the 24 h period. Even the best channels (25
and 26) undergo considerable degradation at certain times;
the PDR goes as low as 20%. When using blind FHSS
(hopping over all 16 channels), the PDR perceived by a
network is equivalent to the average PDR over all channels.
The “Average” plot shows that blind FHSS is sufficient to
avoid connection failures. This is what standards such as
WirelessHART, ISA100.11a or IEEE802.15.4 TSCH use.

We want to go one step further. The bottom-most
plot in Fig. 1 shows that, in the ideal case where the
frequency with the highest PDR is used for each packet,
the PDR of the link jumps from approximately 60% to
approximately 90%. The hard (impossible) part is picking
the best frequency all the time, as there is no way for

∗In this article the terms frequency and channel are interchangeably used when
referring to the spectrum portion used for communication.
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nodes to know which frequency is best with infinite and
instantaneous knowledge.

The middle-ground we propose to explore is to learn
the subset of best frequencies, hop over them and blacklist
the others. Blacklisting can be divided into two distinct
phases. First, a pair of nodes – or a central coordinator –
decides when to include a given channel in the blacklist.
Since the quality of the channels varies over time, in a
second phase, each channel in the blacklist is re-evaluated,
and possibly removed from the blacklist. In this decision-
making process, a channel is added to the blacklist when its
quality falls below a certain threshold, and removed when
its quality is above a certain level.

An accurate link quality estimator (LQE) must be
implemented to determine the quality of a channel. The
authors in [8] provide a comprehensive survey of available
LQEs. Hardware-based LQEs only rely on the information
available from the radio chip, such as RSSI, LQI, and SNR.
Even though this information is part of the IEEE802.15.4
standard, and even though hardware-based LQEs do not
require additional computation, their degree of accuracy
is limited because they rely on parameters that need to
be fine-tuned. Software-based LQEs require additional
computation but achieve a better degree of accuracy
and stability. Most software-based LQEs leverage data
provided by hardware, such as RSSI and LQI, and improve
the estimates by employing different processing methods.

The state-of-the-art proposals for enhancing FHSS rely
on hardware-based link quality estimators that require fine-
tuning parameters and may become inefficient in networks
with a high variability of the link quality. The use of
blacklists without a good link quality estimator can cause
a deterioration in the network performance, since channels
with good quality may be accidentally blacklisted.

We propose a link quality estimation based on the
Multi-Armed Bandit problem. We employ an approximate
solution based on ε-greedy strategy [9], and analyze
how the algorithm adapts to dynamic scenarios. This
stochastic optimization solution depends on neither
hardware parameters nor sophisticated computation.

2.1. IEEE802.15.4 and Frequency Hopping

The TSCH operation is based on network synchronization
and individual schedules that are followed by each node.
The time in the TSCH network is sliced into slots, each
of which of a sufficient duration (typically 10 ms) to
accommodate a data packet of maximum size and an
acknowledgment packet (ACK), as well as all the required
guard times. It employs Time Division Multiple Access
(TDMA) with multiple frequencies. TSCH networks allow
more than one transmission to occur at the same time;
as long as simultaneous transmissions are on different
frequencies, collision-free operation is guaranteed.

In TSCH, every time slot is uniquely identified by
its Absolute Sequence Number (ASN), a counter that
increments at each time slot. Every node is aware of
the current ASN in the network. The schedule consists

Figure 2. Example of a TSCH schedule with 6 time slots and
3 channel offsets.

of a sequence of atomic resource units (time-frequency
allocations) that repeat over time. The group of atomic
resource units (called cells) is denoted as a slotframe. Each
cell can be shared (contention-based access is employed
using CSMA/CA), or dedicated (contention-free access is
guaranteed for a pair of nodes). Fig. 2 shows an example
of network and its TSCH schedule. Each link has an
associated cell, and each cell is uniquely identified by a
tuple (slot offset, channel offset). The slot offset sets the
location of the cell in time from the beginning of the
current slotframe; the channel offset is a “virtual channel”
that is translated into an actual frequency that is going to be
used. The translation is performed by the FHSS algorithm,
that follows a pseudo-random pattern and spreads the
packets across the 16 frequencies allocated in the 2.4 GHz
band.

Even though the TSCH standard specifies how the
hopping scheme should be implemented, the actual list
of frequencies to be used and the hopping sequence is
left out of scope. The standard states that the number of
allowed hopping sequences is arbitrary and each sequence
can cover either all or a subset of the available frequencies.
In addition, the sequence of channels can be static or
dynamically determined by an algorithm.

3. RELATED WORK

The authors in [5] conducted one of the first works that
demonstrate that frequency hopping improves the relia-
bility over single-channel operation. In their experiment,
blind frequency hopping reduced the average ETX by 56%
and reduced the network churn (changing parent in the
routing tree) by 38%. The authors evaluate different sizes
of blacklists and find that allowing the nodes to use the
best 6 channels (and blacklist the other 10) was the best
solution for their scenario. Their analysis was conducted
with trace-based simulations.

A few recent works have proposed TSCH enhancements
to improve FHSS. The authors in [10] propose an
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Adaptive TSCH (ATSCH) protocol, which is a distributed
blacklisting solution. It introduces two new features: (i)
a new type of time slot used for Noise Floor (NF)
estimation, and (ii) the blacklist information that is sent in
every Enhanced Beacon (EB). The quality of channels is
periodically estimated through RSSI measurements during
NF time slots; a blacklist is locally calculated by each
node and disseminated inside EBs. Results show that
a blacklist of size 6 can improve the average ETX by
8.1% when compared with blind hopping. It also shows
that blacklisting increases the average PDR of the whole
network and reduces its dispersion, i.e. the links become
stronger and more stable. The solution was implemented
in OpenWSN and tested in a real testbed with WiFi
and Bluetooth interference. Even though, to the best of
our knowledge, the proposal is the first realization of
an adaptive FHSS algorithm for TSCH networks, it is
not fully standards-compliant. The negotiation method
piggybacks the blacklist into EB, which is not efficient,
since EBs are expected to be exchanged every tens
of seconds, thus incurring a long delay for updating
the blacklist. The solution also does not guarantee that
neighbor nodes use the same blacklist, since EBs are
broadcast packets and may not be received by all the
neighbors.

As an improvement to the ATSCH solution, the
authors of [11] introduce an Enhanced TSCH (ETSCH)
variant, which has two main components: (i) a non-
intrusive channel-quality estimation (NICE) procedure that
measures energy during periods of silence in every time
slot, and (ii) an enhanced beacon hopping sequence list
(EBSL) that only makes use of the strongest channel for
broadcasting EBs and, thus, improves the reliability of
blacklist distribution. Results show that ETSCH provides
a 24% higher PRR and 50% shorter length of burst
packet losses, in scenarios with high level of interference,
when compared to ATSCH. Even though the proposed
link estimation procedure outperforms ATSCH, it is only
executed at the sink and requires a maximum acceptable
clock drift. It has not been evaluated, and does not seem to
be feasible, in multi-hop scenarios where there are large
clock drifts between the sink and leaf nodes. Using a
smaller subset of stronger channels for broadcast EBs is
an improvement for blacklist distribution, but still does
not guarantee that all the nodes use the same blacklist,
since there are no ACK packets for beacon transmissions.
Finally, both ATSCH and ETSCH fail to take into account
cases where simultaneous transmissions are scheduled in a
multi-hop network, where the blacklist may cause internal
interference.

The multi-armed bandit (MAB) problem is a classical
paradigm in stochastic optimization where an automated
agent seeks to maximize the total payoff obtained after a
sequence of trials. In MAB problems, the agents have to
choose a strategy that provides the best trade-off between
exploring the unknown environment and exploiting current
knowledge. We refer the reader to [9] for an overview of

the MAB technique and examples of practical applications.
Although MAB has been explored in theory for channel
allocation problems such as for opportunistic spectrum
access [12, 13, 14], there is few prior work demonstrating
a practical application of MAB to communication systems.

It is clear from the state-of-the-art that there are still
three open problems:

(i) how to design an optimized hopping sequence that
prevents interference between nodes that have been
scheduled for simultaneous transmissions;

(ii) how to create a distributed blacklist and ensure that
all the neighbors use the same;

(iii) how to implement a feasible channel estimation
mechanism that does not depend on hardware
resources and is adaptable to dynamic networks.

The goal of our MABO-TSCH proposal is to solve these
three open problems.

4. MABO-TSCH

Multi-Hop And Blacklist-based Optimized TSCH proto-
col (MABO-TSCH) consists of three key algorithms.

The first algorithm (Sec. 4.1) assigns channel offsets to
time slots to prevent interference. The adopted solution is
based on a graph coloring heuristic that associates multiple
orthogonal channel offsets to each non-leaf node, and
allows the use of different frequencies in each time slot.

The second algorithm (Sec. 4.2) ensures proper blacklist
negotiation between the nodes. Each pair of nodes (parent-
child in the routing tree) negotiates a local blacklist by
piggybacking blacklist information into the data or ACK
frames.

The third algorithm (Sec. 4.3) measures and classifies
the channels, and is responsible for building and
maintaining the blacklists. The channel classification
process is modeled as a multi-armed bandit problem with
an approximate solution based on ε-greedy strategy.

4.1. Channel Offset Assignment

The channel offset assignment must be executed from the
moment different pairs of neighbor nodes communicate
in the same time slot offset (i.e. at the same time)
to avoid intra-network interference. The channel offset
allocation can be of three types: link-based, receiver-based
or transmitter-based. In the link-based assignment, each
active link is associated with a channel offset. In the
receiver and transmitter-based types, the channel offset is
assigned to the receiver or transmitter nodes, respectively,
and all the time slots must be executed with the channel
offset associated with the participating nodes.

In data collection applications, most unicast transmis-
sions are directed towards the sink and most of the routing
trees have a large number of leaf nodes. Hence, link-based
and receiver-based channel offset assignments might be

4 Trans. Emerging Tel. Tech. 2017; 00:1–15 c© 2017 John Wiley & Sons, Ltd.
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more appropriate for multi-hop tree-based data collection
applications. Thus, MABO-TSCH uses a receiver-based
channel offset assignment

The channel offset assignment is a graph coloring
problem, which is known to be NP-hard. However,
heuristics such as greedy degree-ordering known as Welsh-
Powell [15] yield near-optimal results in most practical
cases.

In our proposed algorithm, we extend the Welsh-Powell
heuristic and associate multiple non-interfering channels to
each node. All the nodes are sorted in non-increasing order
according to their degrees in a graph that is constructed
with nodes as vertices and interfering links as edges.
The coloring problem is solved for the sorted array of
nodes (from the highest to the lowest degree), considering
all 16 available channel offsets as colors. After all the
nodes are colored, the algorithm repeats in order to find
multiple channel offsets for each node. The channel offset
assignment is completed when no more colors can be
assigned to any node.

Alg. 1 shows the algorithm for multiple channel offset
assignments. It is centrally executed and its results are used
by a Path Computation Element (PCE), that is responsible
for computing and disseminating the TSCH schedule. The
network graph should be obtained previously from the
network with any simple data collection application that
is able to gather PDR statistics. If it is built considering the
time schedule it can disregard the edges between nodes that
do not have time slots allocated at the same time, which
will increase the number of assigned channel offsets.

Even though PDR statistics change significantly over
time (as seen in Fig. 1), the channel assignment algorithm
does not require the most updated statistics to work
properly. If this algorithm is not executed regularly,
the outcome of blacklisting algorithms may become
degraded over time if optimal schedules are employed
(with minimum number of times slots). However, if non-
optimal schedules are used, less intra-network interference
happens, and the coloring algorithm plays a less important
role. In the extreme case of event-triggered application,
where there is only sporadic data traffic and no
simultaneous time slots are scheduled for two different
nodes, all channel offsets can be associated to all nodes. In
this case, Alg. 1 is not necessary, since there is no conflict
of transmissions within the network to be solved.

4.2. Distributed Blacklist Negotiation

The blacklist negotiation process must ensure that each
pair of nodes uses the same blacklist. Were they to use
a different blacklist, neighbor nodes would have their
radio turned on at different frequencies, and not hear
one another. Moreover, the information exchanged for
blacklist negotiation should not incur a large overhead on
the network.

The dissemination of blacklist information may be
based on either broadcast [10, 11] or unicast messages. In
the case of broadcast messages, there is no guarantee that

Algorithm 1 Channel offset assignment
Input:
G(V,E) - network graph with nodes as vertices and
interfering links as edges
C - list of 16 channel offsets
Output:
Nodes colored with multiple channel offsets

1: Sort vertices v1, v2, ..., vn in V in non-increasing
degree order

2: colored← true
3: while colored is true do
4: colored← false
5: for all vi in V do
6: find ci as the minimal color in C not assigned

to any vertex vj connected to vi
7: if ci exists then
8: colored← true
9: Add ci to the list of channel offsets of vi

10: end if
11: end for
12: end while

the information is correctly exchanged between neighbors.
Moreover, broadcast messages such as Enhanced Beacon
(EB), tend to have transmission intervals much larger than
the dynamics of the channels. Unicast messages provide
the guarantee that the negotiation is successful, but may
induce some overhead. When using unicast messages for
node-to-node blacklist negotiation, the blacklist can be
embedded in the data or ACK frame. When embedded
in the data frame, the overhead incurred by blacklist
information may affect the application performance,
since it uses part of the application payload. When
embedded in the ACK frame, no overhead is perceived
by the application, since the time reserved for the ACK
transmission is fixed and can accommodate a few extra
bytes.

After the exchange of a new blacklist, both the
transmitter and receiver must decide when to start using
it. This is a key point in the blacklist negotiation process
because if there is an information mismatch, a large
number of packets might be lost. In the worst case scenario,
if one of the involved nodes is a time synchronization
source, part of the network may be disconnected.

Blacklist negotiation has been efficiently implemented
in this work by adopting unicast messages and embedding
the blacklist information into the ACK or Data frames,
depending on the type of application that is employed.
In addition, we use bidirectional negotiation: parent nodes
are responsible for creating and disseminating blacklists to
their children if ACK-based negotiation is used; the reverse
occurs for Data-based negotiation. Blacklist information is
only used in unicast communication; transmissions that use
shared time slots (such as EBs) do not employ blacklisting.

ACK-based negotiation is used when constant traffic
flows from children to parent, since the measurement is
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performed by the parent node. The main advantage of
such approach is that no overhead is perceived by the
application.

Data-based negotiation is used when an event-triggered
application (e.g. alarm systems) is the main focus. Since
parents cannot predict when packets will arrive, the link
quality estimation has to be executed by the children.
In this case, a few bytes of data overhead are perceived
by the application, since blacklist information has to be
embedded into the data packets.

We mainly focus this article on data collection
applications that employs ACK-based negotiation. Alg. 2
shows the pseudo-code executed at the parent. Alg. 3
shows the pseudo-code executed at the children. We
evaluate Alg. 2 and Alg. 3 through simulations and real
experiments.

We also propose similar algorithms for the Data-
based negotiation, which is more appropriate for an
event-triggered application. Alg. 4 shows the pseudo-code
executed at the children. Alg. 5 shows the pseudo-code
executed at the parent. We evaluate Alg. 4 and Alg. 5
exclusively through simulations.

In all 4 algorithms, both nodes keep a table with
two rows: rusing and rnegotiating . Both rows have the
Data Sequence Number (DSN) of the last packet and the
blacklist information. Row rusing has the most recent
negotiated blacklist and must be used at the beginning
of each time slot. Row rnegotiating has the blacklist
information that is currently being negotiated, and has not
yet been used.

Algorithm 2 Blacklist embedded in ACK frame (algo-
rithm for the parent)

1: At the beginning of time slot, consider the blacklist
information in rusing

2: if data frame was successfully received then
3: FS ← DSN of received data frame
4: BL←Most recent local blacklist information
5: if rnegotiating has DSN equal to FS then
6: if maximum number of retransmissions is

reached then
7: BL← blacklist information from rusing

8: end if
9: Update rnegotiating with BL

10: else
11: Replace rusing by rnegotiating

12: Update rnegotiating with FS and BL
13: end if
14: Send ACK frame with FS, embedding BL
15: end if

At the beginning of every time slot, nodes use
the blacklist information in rusing and based on the
success/failure of packet exchange, the rnegotiating

may replace rusing and nodes can start a new
blacklist negotiation. It is important that rusing is only
replaced when rnegotiating is consistent on both sides.

Algorithm 3 Blacklist embedded in ACK frame (algo-
rithm for the child)

1: At the beginning of time slot, consider the blacklist
information in rusing

2: FS ← DSN of data frame to be sent
3: Send data frame with FS
4: if rnegotiating has DSN different than FS then
5: Replace rusing by rnegotiating

6: Update rnegotiating with FS and blacklist
information from rusing

7: end if
8: if ACK frame was successfully received then
9: BL← blacklist information from received ACK

frame
10: Update rnegotiating with BL
11: end if

Algorithm 4 Blacklist embedded in data frame (algorithm
for the child)

1: At the beginning of time slot, consider the blacklist
information in rusing

2: FS ← DSN of data frame to be sent
3: if rnegotiating has DSN different than FS then
4: Replace rusing by rnegotiating

5: Update rnegotiating with FS and blacklist
information from rusing

6: end if
7: if Maximum number of retransmissions is reached

then
8: MaxFlag ← 1
9: BL← Blacklist information from rnegotiating

10: else
11: BL←Most recent local blacklist information
12: end if
13: Send data frame with FS, embedding BL and

MaxFlag
14: if ACK frame was successfully received then
15: MaxFlag ← 0
16: Update rnegotiating with BL
17: end if

The IEEE802.15.4 standard specifies that the DSN is
incremented only after an ACK frame is received and every
ACK frame has its DSN copied from the Data frame that
it is acknowledging. Thus, the nodes can guarantee that
both ends have the same information after a packet with a
different DSN has been received on both sides.

The blacklist information that should be used when
transmitting packets with DSNn+2 is the one exchanged
DSN less than or equal to DSNn. Every packet has a
maximum number of retransmissions at the link layer,
which by default in our implementation is equal to
3 (a maximum of 4 trials). The proposed algorithms
are designed for networks with link-layer ACK and a
maximum number of retransmissions greater or equal to
1.

6 Trans. Emerging Tel. Tech. 2017; 00:1–15 c© 2017 John Wiley & Sons, Ltd.
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Algorithm 5 Blacklist embedded in data frame (algorithm
for the parent)

1: At the beginning of time slot, consider the blacklist
information in rusing

2: if Data frame was successfully received then
3: FS ← DSN of received data frame
4: BL← blacklist information from received data

frame
5: MaxFlag ← flag from received data frame
6: if Row negotiating has DSN equal to FS then
7: Update rnegotiating with BL
8: else
9: if MaxFlag is 1 then

10: Copy blacklist information from rusing to
rnegotiating

11: end if
12: Replace rusing by rnegotiating

13: Update rnegotiating with FS and BL
14: end if
15: Send ACK frame with FS
16: end if

The blacklist information that is negotiated in all
4 algorithms may be different depending on how this
information is used for estimating the channel quality
and optimizing the hopping sequence. In Section 4.3, we
discuss which types of blacklist information we use in
our proposal. It should be pointed out that the framework
proposed so far can be employed for any type of decision-
making and any type of blacklist information can be used.

4.3. Multi-armed Bandit Link Estimation

A multi-armed bandit can be formulated as a set of
K probability distributions B = {R1, R2, ..., RK}, each
associated with the rewards delivered by one of theK arms
(or levers). The distribution probabilities have expected
reward value µ1, µ2, ..., µK and are a priori unknown to
the player.

In an MAB problem, at each turn t = {1, 2, 3, ...}, an
arm with index i(t) is chosen and the player receives
the reward r(t) ∼ Ri(t). Let µ∗ = maxi=1,2,...,k µi, we
define the total regret for a sequence of trials with duration
T as:

RT = Tµ∗ −
T∑

t=1

r(t) (1)

We can think of regret as the difference between the
chosen strategy and an optimal strategy which always
chooses the best arm. A common formulation of the MAB
problem is the Bernoulli multi-armed bandit, where a
reward of x is obtained with probability p and otherwise a
reward of 0. Related work shows that simple approximate
heuristics, such as ε-greedy algorithm, achieve results
close to or better than sophisticated algorithms in most
settings [9, 16] of MAB problems.

Our problem consists of estimating the quality of
each of the 16 channels to ensure that the best ones
can be employed in the blacklisting mechanism. In
our implementation, the channel estimation problem is
modeled as multi-armed bandit problem with Bernoulli
reward equals to 100 for successes and 0 for failures. Each
node is an autonomous agent with 16 arms corresponding
to the 16 available channels.

We choose ε-greedy as the strategy for implementing
our MAB-based channel quality estimation because the
algorithm is tractable enough to be embedded in the
sensor nodes. During each trial, the bandit selects the arm
(channel) that has the highest mean reward with probability
1− ε, and selects a random arm with probability ε. We
define µ̂i(t) as the empirical mean reward of arm i after
t trials. The average empirical reward for each channel
(µ̂ch(t)) is updated with exponential moving average so
that the most recent reward values have more significance
in the average reward calculation.

The MAB algorithm must be executed at one node for
each pair child/parent, and the blacklist information must
be embedded either in the data frames, or ACK frames,
as described in Section 4.2 If the blacklist information is
embedded in data frames, the MAB algorithm is executed
at the child node, while if the blacklist information is
embedded in ACK frames, it must be executed at the parent
node. On the basis of the current µ̂ch(t) obtained by the
ε-greedy algorithm, the node where the MAB algorithm
is being executed has to create the most accurate channel
quality estimation and create a blacklist information,
which will then be sent to the neighbor node.

We propose two different types of blacklist information:
a simple 2-byte blacklist bitmap, and an 8-byte rank list.
In the case of the blacklist bitmap, the k channels with the
highest average reward are not included in the blacklist (the
corresponding bits are equal to 0), while 16− k channels
with the lowest values are included in the blacklist.

In the case of the rank list, all the 16 frequencies are
sorted in non-decreasing order according to their current
µ̂ch(t), and the rank of the channel must be equal to its
position in the sorted array.

The overhead of both types of blacklist information
are restricted to a small increase in energy consumption
if ACK-based negotiation is used (with data collection
application), since the blacklist information fits into the
interval reserved for the ACK transmission within the
time slots. But it may represent at least 10% of the
data payload (plus the extra energy consumption) of
common 6LoWPAN data frames if Data-based negotiation
is employed. However, the event-triggered applications,
such as alarm systems, usually do not require large payload
and may easily support this overhead of up to 8 bytes.

We propose two different algorithms for employing
each type of blacklist information and implementing
the optimized frequency hopping. Alg. 6, called First
Good Arm MABO-TSCH, uses the simple 2-byte blacklist
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bitmap. Alg. 7, called Best Arm MABO-TSCH, uses the 8-
byte rank list.

Algorithm 6 First Good Arm MABO-TSCH frequency
selection
Input:
BL - 2-byte bitmapped blacklist
CL - list of available channels offsets
Output:
Frequency to be used

1: for all ci in CL do
2: freq ← ci converted into actual frequency
3: if bit corresponding to freq in BL is 0 then
4: return freq
5: end if
6: end for
7: return freq

Algorithm 7 Best Arm MABO-TSCH frequency selection
Input:
RL - 8-byte rank list
CL - list of available channels offsets
Output:
Actual frequency to be used

1: for all ci in CL do
2: freq ← ci converted into actual frequency
3: frequencies← frequencies

⋃
freq

4: end for
5: Sort frequencies in non-decreasing order of rank

according to RL
6: return freq with highest rank in frequencies

In Alg. 6, each of the available channel offsets is
translated into an actual frequency and the first frequency
that is not blacklisted is used. In Alg. 7 all available
channel offsets are translated into their corresponding
frequencies and the frequency with the highest rank is
used.

5. SIMULATION RESULTS

We first evaluate the performance of MABO-TSCH by
simulation to assess its effectiveness, evaluate the impact
of the different parameters, and compare its performance
with an optimal solution.

We use a custom-made simulator written in C. It
receives a set of connectivity traces as input, and calculates
the routing tree and the optimized TSCH schedule†. On
basis of the calculated TSCH schedule, and considering
the set of time-sparse connectivity traces, the simulator

† The source code of the simulator is available at http://anrg.usc.edu/
www/downloads/.

runs the appropriate FHSS algorithm to calculate network
statistics such as the number of received packets, packet
drop rate, etc. The connectivity traces used consist of
16 PDR matrices (PDRch

i,j is the PDR of link i→ j at
channel ch).

We consider the dataset obtained from two different
deployments. The first dataset consists of 5 different traces,
each with 32 connectivity snapshots of a 40-node network
from the Tutornet testbed‡, using TelosB motes. The
snapshots are obtained every 15 min, for a total of 8 h for
each trace, resulting in a 40-hour simulation (5 traces of
8 hours each). The transmission power is set to -15 dBm
to obtain PDR statistics that lead to routes with more than
2 hops. We name this dataset as “Tutornet” throughout the
paper.

The second dataset consists of one single trace with 17
connectivity snapshots from a 46-node network deployed
in a UC Berkeley office space (50m x 50m)§. The nodes
are also TelosB motes. Each connectivity snapshot was
obtained at different times of the day with several hours
separating them. To compare the results with the first
scenario (using Tutornet), we scaled the time of this second
dataset and considered that it was obtained continuously
with intervals of 15 min, similarly to the first set of traces,
which resulted in a 4.25-hour simulation. The power used
in the second dataset was 0 dBm. We name this dataset as
“Soda” throughout the paper.

We only have access to the testbed from which
“Tutornet” dataset was obtained, thus we use it for both
simulation and real implementation. “Soda” dataset is only
used for simulation. The simulation with “Soda” dataset is
mainly considered to confirm that the obtained results can
be generalized to multiple environments.

The simulator builds a fixed routing tree and
a fixed TSCH-compatible schedule considering the
algorithms proposed by the MultiChannel Collection
(MCC) protocol [17]. The only modification made in MCC
is the replacement of its graph coloring heuristic by Alg. 1,
in order to associate the time slots with multiple channel
offsets. The modified MCC creates a TSCH schedule with
multiple non-interfering channel offsets for each time slot,
as required for MABO-TSCH.

5.1. Different Types of FHSS

We simulate 5 different types of FHSS to evaluate the
effectiveness of MABO-TSCH. A TSCH variant is defined
for each type of FHSS. The only difference between all
5 variants is the algorithm used for translating channel
offsets into frequencies – in order words, the frequency
hopping sequence.

1. Default TSCH

‡ The first dataset is available at http://anrg.usc.edu/www/
tutornet/.
§ The second dataset is available at http://wsn.berkeley.edu/connectivity/. The
dataset used is ”Soda”.
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In Default TSCH the channel translation is carried out
with a simple function that takes into account the channel
offset and the current ASN, and does not employ any
blacklisting technique. It follows (2):

freq = table[(channel offset+ASN)%16] (2)

where table is a look-up table with all 16 frequencies
randomly ordered.

2. Centrally Blacklisted TSCH
A central agent creates a list with N channels that

have more links with PDR below a given threshold, and
then disseminates this information to all the nodes in
the network. In the simulation, this blacklist is built by
means of the link quality traces and the threshold set to
90%. The results obtained from the simulation represent an
optimal centralized solution where the sink has a complete
knowledge of all link qualities and can disseminate the
best global blacklist to all the sensor nodes. This is not a
realistic solution, since it is not possible to keep a real-time
perfect link estimation at a centralized agent. All the nodes
are supposed to translate the available channel offsets in
every time slot using (2), and use the first frequency that is
not in the blacklist.

3. Optimal TSCH
It is assumed that all the nodes have knowledge of

the channel quality for all the links and are able to pick
the channel with the highest PDR. This solution can be
thought as a distributed blacklist where each pair of nodes
selects the best channel for each packet transmission,
among all channels that are allowed to be used. In this
ideal scenario, all nodes are supposed to translate all the
available channel offsets in each time slot using (2) and
pick the frequency with the highest PDR. This algorithm
is an optimal distributed solution and would achieve the
highest possible performance in the network.

4. First Good Arm MABO-TSCH
The First Good Arm MABO-TSCH employs a multi-

armed bandit problem using ε-greedy strategy, as described
in Section 4.3. In selecting the first best arm, the parent
constructs a simple 2-byte blacklist bitmap for each of
its children. The blacklist is then shared with the children
using the negotiation mechanism presented in Section 4.2.
First Good Arm MABO-TSCH uses Alg. 6 for selecting
the frequency that will be used in each time slot. The
conversion from channel offsets to frequencies follows (2).

5. Best Arm MABO-TSCH
The Best Arm MABO-TSCH uses an 8-byte ranking list

to select the best channel, as estimated by the ε-greedy
strategy. The 8-byte ranked list is also created for each
child and negotiated with the algorithms from Section 4.2.
It uses Alg. 7 and the channel offset conversion also
follows (2).

It is important to note that both First Good Arm
MABO-TSCH and Best Arm MABO-TSCH employ the

whole framework proposed in this work, which consists
of the three algorithms described in Section 4. First Good
Arm MABO-TSCH uses a smaller blacklist information
and, consequently requires less energy and overhead, but
should obtain average performance. On the other hand,
Best Arm MABO-TSCH uses a larger blacklist information,
which incurs more energy consumption, but should be able
to improve the performance even further. The objective of
both proposals is simply to compare the trade-offs of them;
obviously, the best solution that should be used, if possible,
is Best Arm MABO-TSCH.

5.2. Simulation Setup

The simulations are executed considering the two different
datasets, as described above. The first (“Tutornet”)
uses 32 connectivity snapshots (8-hour duration) from
a 40-node network. And the second (“Soda”) uses
17 connectivity snapshots (4.25-hour duration) from a 46-
node network.

Simulations are repeated with different traces for
“Tutornet” or with different seeds for “Soda”. Results are
presented with 95% confidence intervals. The schedule
used in the simulation has a slotframe with 101 time slots,
each time slot taking 15 ms. In each slotframe, every node
has one reserved time slot to send one packet upwards to
the sink node, and a sufficient number of reserved time
slots to forward packets from their children.

5.3. Tuning the Algorithms

Before comparing the 5 different types of TSCH,
we find their best parameters to obtain the best
results. Simulations are divided into two groups. We
first evaluate data collection applications with blacklist
information embedded into ACK frames. We then evaluate
event-triggered applications with blacklist information
embedded into Data frames.

5.3.1. Evaluating Data Collection Application
We set out by examining the case of data collection

application, where all sensor nodes transmit one packet
toward the sink in every slotframe. In this case, since all
the time slots are used for data transmission, the parent
nodes can build and maintain the blacklist using ACK
packets, following Alg. 2 and 3. It is important to note that
even though we simulate a saturated network (with packets
transmitted at every time slot), this is not a requirement for
the proposed algorithms. The only requirement for Alg. 2
and 3 is that the parent nodes are able to predict which time
slot will be used by children nodes to transmit data, since
parents have to differentiate between an empty time slot
and a time slot where there was a packet loss.

The overhead for data collection is minimal, just
requiring the extra energy used by blacklist information
transmission. The main purpose of this application is to
maximize the network throughput (i.e. the total the number
of received packets at the sink node over time).
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All 5 types of TSCH are simulated to tune the
optimal parameters in the algorithms. Initially, we consider
Centrally blacklisted TSCH and vary the number of
channels in the common blacklist (N ). The optimal value
of N was equal to 11 for “Tutornet” and 12 for “Soda”.
This is similar to the results obtained in [5], where the
optimal blacklist was found to be equal to 10.

We now aim to find the best parameters for ε-greedy
strategy. We first consider Best Arm MABO-TSCH and
vary ε. We initially considered fixed ε. The optimal value
of ε was found to be 0.05 for “Tutornet” and 0.025 for
“Soda”.

Following this, we consider the First Good Arm MABO-
TSCH solution and vary both ε and k parameters. In
this algorithm, the channels are sorted according to their
empirical reward, and the k channels with the highest
rewards may be employed in the hopping sequence. We
simulate First Good Arm MABO-TSCH with fixed ε
varying from 0.5 to 0.01 and k varying from 1 to 16. The
best ε was found to be 0.03 and the best k was 6, for
“Tutornet”. Finally, the best ε was equal to 0.02 and the
best k was equal to 5, for “Soda”.

We also investigate whether ε-greedy strategy with
decreasing ε can achieve better performance. For both
types of MABO-TSCH solutions (First Good Arm MABO-
TSCH and Best Arm MABO-TSCH) we set ε to 0.05 and
periodically reduced it by 0.001. The minimum value of
ε is 0.01; after reaching this value, ε is reset to 0.05.
In our simulations, we verify that a decreasing ε does
not significantly affect the number of received packets at
the sink and the cumulative regret was also very close.
It can be concluded that, similar to what was verified
by [16], a decreasing ε does not significantly improve the
performance of MAB-based algorithms.

Now, we compare all 5 types of TSCH solutions:
Default TSCH, Centrally blacklisted TSCH, Optimal
TSCH, First Good Arm MABO-TSCH. Best Arm MABO-
TSCH. For each, we use the best values of N , k and ε, as
found previously.

Initially we focus on the results from “Tutornet”. Fig. 3
shows the total number of packets received at the sink for
all 5 different types of TSCH. Fig. 4 shows the average
regret per time slot. The average regret is calculated as
the total regret RT (Eq. (1)) divided by the number of
time slots. Fig. 5 shows the percentage of optimal channels
used. For this last statistic, we compare the channel chosen
by all non-optimal TSCH solutions in each time slot with
the channel chosen by Optimal TSCH.

Fig. 3 shows that both types of MAB-based solutions
(First Good Arm MABO-TSCH and Best Arm MABO-
TSCH) outperform Default TSCH and Centrally black-
listed TSCH. The average number of received packet is
43% higher when Best Arm MABO-TSCH is compared
with Default TSCH. The performance of Best Arm MABO-
TSCH is less than 10% lower than Optimal TSCH.

Figure 3. Total number of received packets at the sink
(Tutornet connectivity trace).

Figure 4. Average regret per time slot
(Tutornet connectivity trace).

Figure 5. Percentage of optimal channels utilized
(Tutornet connectivity trace).

Fig. 4 shows that Best Arm MABO-TSCH has the least
regret, and that the average regret per time slot converges
more quickly for this type of TSCH.
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Figure 6. Total number of received packets at the sink
(Soda connectivity trace).

In view of the channels that are employed during the
network operation, we conclude that Best Arm MABO-
TSCH chooses the best channel in approximately 75%
of the transmissions (Fig. 4), while Centrally blacklisted
TSCH employs the best channel in approximately 60% of
times. Even small improvements in the decision-making
process with regards to selecting the best channel can
dramatically improve the performance of the network.

Following, we analyze the results from “Soda”. Fig. 6
shows the total number of packets received at the sink. The
graphs of regret per time slot and percentage of optimal
channels show a behavior similar to the previous ones
(from “Tutornet”) and were not reproduced in the paper.

It can be concluded that the MABO-based solutions are
able to improve the performance in both environments.
Since when using “Soda” dataset the multiple runs were
executed with the same sequence of PDR statistics, only
changing the seed used in the simulation, the confidence
interval of results are very small. Besides, due to the
higher transmission power, a larger number of packets was
received per minute in the second set of simulations.

We can also verify that the optimal parameters are
environment-dependent, which may require that the tuning
process be periodically repeated to keep up with changes
in the network and be self-adaptive to each environment.
This is discussed in detail below.

5.3.2. Evaluating event-triggered application
We now examine the case of an event-triggered

application, where the sensor nodes have to forward a
packet towards the sink node at random moments. This
application is often found in alarm systems and the most
important factors that must be optimized is reliability,
which is the percentage of packets that successfully reach
the sink, and energy consumption. It is important to note
that, in any network, the reliability can be optimized
to 100%, as long as a sufficient number of link-layer
retransmissions are used on each hop. In the network

Figure 7. Reliability of packet transmissions
(Tutornet connectivity trace).

considered for the simulations, it was not possible to obtain
100% of reliability, even with an optimal policy and 3 link-
layer retransmissions. One reason that made us use traces
with such weak links was to test extreme cases of poor
network connectivity.

Since children nodes are those that are aware of which
time slots will be used for data communication, they must
be responsible for building/maintaining the blacklist, using
the data packets to embed this information. Alg. 4 and 5
should be used in this case. The overhead, in this case,
is perceived by the application because the available data
payload is reduced to up to 8 bytes (if the rank list is used
as blacklist information). In the experiment, each node
randomly chooses to transmit one packet at the beginning
of every slotframe with a probability p equal to 0.01.

We also simulate all 5 types of TSCH to find the optimal
parameters in the algorithms, similarly to Section 5.3.1.
Initially we consider “Tutornet” dataset. The optimal value
of N was equal to 12. The optimal value of ε was found
to be 0.125. And the optimal k was 4. Then, we consider
“Soda” dataset. In this case, the optimal value of N was
equal to 10. The optimal value of ε was found to be
0.06 and the optimal k was 5. The number of link-layer
retransmissions was equal to 3 in all the simulations.

Fig. 7 shows the average reliability of 5 different
types of TSCH. Fig. 8 shows the average number
of retransmissions per packet. These two last figures
considered the “Tutornet” dataset.

It can be seen in Fig. 7 that both MABO-based solutions
improved the average reliability from about 50% for
Default TSCH to almost 90%. They outperformed the
centralized solution by more than 10% of improvement.

Fig. 7 shows that the improvement in reliability is due
to the reduction in the number of retransmissions required.
While a blind frequency hopping required that every
packet is re-transmitted at least 1.4 times, blacklisting
solutions (both centralized and MAB-based) reduce the
average number of retransmissions to 0.8. Reducing the
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Figure 8. Average number of retransmissions per successfully
received packet (Tutornet connectivity trace).

Figure 9. Reliability of packet transmissions
(Soda connectivity trace).

number of retransmissions impact mainly the power
consumption of sensor nodes and the overall delay for
packets.

Finally, Fig. 9 shows the average reliability and Fig. 10
shows the average number of retransmissions per packet,
both figures obtained from simulations with “Soda”
dataset.

Since “Soda” dataset used a higher transmission power
(0 dBm), we can notice that reliability was close to
88% even for Default TSCH. The MABO-based solutions
increase the reliability from about 88% to 98%, and also
outperform the centralized solution. The average number
of retransmissions is also reduced from more than 1.0 to
about 0.3.

The results involving two different datasets show
that the algorithms adapt to different environments with
distinct profiles of interference and multipath fading. As
noticed previously, the environment changes the optimal
parameters to be employed in the algorithms. However,
the fine-tuning process should not incur major overhead on

Figure 10. Average number of retransmissions per successfully
received packet (Soda connectivity trace).

the network operation, since it can use PDR statistics from
regular traffic and the offline fine-tuning process takes only
a few seconds to be executed in a 40-node network.

6. EXPERIMENTAL RESULTS

To evaluate our solutions experimentally, we implement
First Good Arm MABO-TSCH and Best Arm MABO-
TSCH on OpenWSN [18]¶. The default OpenWSN
implementation is modified to disable the use of RPL
protocol. As in the simulation, we use a fixed routing
tree and static schedule based on MCC. The same set of
40 nodes is used as that from which the simulation traces
were gathered. Node #1 is set as the sink, the other 39
nodes as sensors. All nodes are located on the same floor
of the Tutornet testbed‖.

Similarly to the simulations settings, the time slots
size is set to 15 ms. The slotframe is formed of
101 time slots, and repeats approximately every 1.5 s.
Within each slotframe, there were 39 reserved time
slots used for unicast communication (in which the
blacklisting techniques are employed), 5 shared time
slots for beaconing, and 56 time slots used for serial
communication for logging and turning the radio off.

Three solutions are examined in the experiments:
Default TSCH, First Good Arm MABO-TSCH and Best
Arm MABO-TSCH. For each setting, we execute 4 h
experiments with 5 repetitions each. The repetitions are
scattered throughout the day, including business and non-
business hours. Experiments with different algorithms are
repeated at similar times of the day to obtain close levels
of external interference. An extra node is used to measure

¶ As an online addition to this article, the source code is available at http:
//anrg.usc.edu/www/Downloads/.
‖ See http://anrg.usc.edu/www/tutornet/ for a map of the testbed
deployment.
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Figure 11. Total number of received packets at the sink in the
testbed-based experiment.

external interference levels, so we can quantify how similar
the interference is in different experiments.
ε is fixed at 0.05 for Best Arm MABO-TSCH. For First

Good Arm MABO-TSCH, ε is fixed to 0.03 and k is set to 6.
Fig. 11 shows the total number of packets received at

the sink. It is possible to see an average improvement of
about 23% for Best Arm MABO-TSCH, when compared
to Default TSCH. The larger confidence interval of First
Good Arm MABO-TSCH and Best Arm MABO-TSCH is
due to the fact that MAB algorithms need to adapt to
the environment dynamics and may suffer larger variation
at moments when the environment changes drastically
(i.e. when external interference increases).

Fig. 12 shows the total number of packets received
for each of the 5 repetitions of the experiment, and
the time each repetition is executed. Both MAB-based
algorithms outperform Default TSCH in all experiments.
During non-business hours (12am-9am), the improvement
is much higher than during business hours (9am-5pm),
when external interference increases. Even though all
experiments are repeated at similar periods of the day,
the external interference perceived by each experiment is
different, since we cannot control the use of WiFi in the
building.

From the noise measurements, we calculate the corre-
lation between the different experiments. We consider a
moving average with length 40 to filter the measurements,
and calculate the minimum correlation for all 16 channels.
All experiments had a cross-correlation of at least 0.25 on
all channels, except channels 15, 16, 17, 18, 19 and 22,
where the correlation was close to 0 (meaning that the
interference pattern was different at these channels). Even
though external interference patterns differ, we did not
identify any anomaly that could have drastically interfered
in the results. Such differences in external interference may
justify the slightly better performance of First Good Arm
MABO-TSCH during the interval of 3pm-7pm over Best
Arm MABO-TSCH.

Figure 12. Total number of received packets at the sink over
time.

Fig. 13 shows the channel usage in all 5 experiments
for each type of TSCH. Default TSCH uses all channels
equally, as expected, while First Good Arm MABO-TSCH
and Best Arm MABO-TSCH employ more often channels
with less interference, such as 20, 25 and 26. First Good
Arm MABO-TSCH and Best Arm MABO-TSCH still select
channels with high levels of interference because of the
limited number of channel offsets available in the optimal
schedule created by MCC. Hence, there is a trade-off
between the size of the schedule (which leads to higher
throughput) and the freedom to choose the best channel
at every time slot. It is also clear that the optimization
of the TSCH schedule influences the use of blacklists,
since optimal schedules restrict the set of channels that
can be used. For the purposes of maximizing throughput,
reducing the size of the schedule may be preferred (even if
it reduces the availability of channels). On the other hand,
when improving reliability in event-triggered applications,
the size of the schedule is less important, since being able
to pick the best channels is the crucial factor to reduce the
number of retransmissions per packet.

7. LESSONS LEARNED

From results both in simulation and real experiments,
MABO-TSCH showed that online learning is a viable
solution for the best channel selection problem. Below we
pinpoint a few lessons learned from this work:

(i) MABO-TSCH is effective for both periodic and non-
periodic data traffic;

(ii) If we want to optimize the overhead and utilize ACK
packets to embed the blacklist information, periodic
data traffic is required, since the parent has to know
when packets are expected. In multi-hop scenarios,
however, such configuration may lead to errors in
channel quality estimation, since hops closer to the
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Figure 13. Channels used by all leaf nodes (light bars are failed
transmissions and dark bars successful).

sink node will face more errors due to packets losses
at links closer to the leaf nodes;

(iii) In simulation, MABO-TSCH outperforms an ideal
centralized solution and gets results close to
the optimal solution, which demonstrated the
effectiveness of online learning;

(iv) In simulation, MABO-TSCH has been shown to
require large intervals to converge, which may justify
the worse results obtained in real experiments, and
require fine adjustment to other network parameters.
One solution is to dynamically adapt the moving
average weight used for average reward calculation,
such that measurements after intervals with high loss
are more relevant;

(v) MABO-TSCH has been shown to improve the per-
formance of event-triggered applications. However,
in this type of traffic, the channel quality estima-
tion is a major challenge, since the rate of packet
transmissions is low and, hence, the estimation pro-
cess is affected. One way of overcoming this issue
is to leverage lower-layer packets, such as RPL’s
keep-alive messages, to improve the channel qual-
ity estimation. Since such lower-layer messages are
not critical, they could be scheduled such that all
channels would be periodically sampled in a round-
robin fashion, helping the channel quality estimation
to obtain a better picture of the environment.

The development of MABO-TSCH is, to the best of
our knowledge, the first work to employ online learning
in TSCH networks.

8. CONCLUSIONS AND FUTURE WORK

This article introduces MABO-TSCH, a solution for
distributed blacklisting that is optimized for multi-hop

networks and compliant with the IEEE802.15.4 TSCH
standard. The solution comprises of three main algorithms.
The first algorithm assigns multiple channel offsets for
each time slot, so that each link has a set of frequencies
to choose from, all of them orthogonal to other scheduled
links, completely avoiding interference between nodes in a
multi-hop network. The second algorithm provides a pair-
wise blacklist negotiation mechanism with little overhead.
The third algorithm offers a channel quality estimation
based on multi-armed bandit problem that is able to
achieve near-optimal results without any type of learning
phase or hardware requirement.

Considering the main scenario studied, with a 40-node
indoor network, MABO-TSCH outperforms the default
blind frequency hopping with a 43% higher throughput
in the simulation, and 23% higher throughput in the real
experimentation. MABO-TSCH selects the best frequency
approximately 75% of the times. It improves network
performance even when just a limited number of channels
offsets are available to be employed in each time slot.

Creating optimal TSCH schedules limits the set of
frequencies that the blacklisting mechanism can use. There
is a trade off between the optimality of the schedule
(its length), and the usefulness of blacklisting. An open
question is how the joint optimization of schedules and
blacklisting mechanism can improve even further the
performance of networks in highly dynamic environments.

Even stochastic online algorithms such as MAB-based
require the use of parameters that may impact the reactivity
of the learning process in dynamic scenarios. In this work
we employed ε-greedy strategy and were able to obtain
great improvement with fixed single ε value. However, it
is clear that dynamically adjusting ε would improve even
further the results. This is another open question to be
explored in future works.

We also intend to integrate MABO-TSCH with the RPL
routing protocol and use distributed scheduling based on
the 6top protocol being standardized by the IETF 6TiSCH
working group.
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