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Abstract

While sensor networks are going to be deployed in diverse application specific contexts, one unifying view is to treat

them essentially as distributed databases. The simplest mechanism to obtain information from this kind of a database is

to flood queries for named data within the network and obtain the relevant responses from sources. However, if the

queries are (a) complex, (b) one-shot, and (c) for replicated data, this simple approach can be highly inefficient. In the

context of energy-starved sensor networks, alternative strategies need to be examined for such queries.

We propose a novel and efficient mechanism for obtaining information in sensor networks which we refer to as

ACtive QUery forwarding In sensoR nEtworks (ACQUIRE). The basic principle behind ACQUIRE is to consider the

query as an active entity that is forwarded through the network (either randomly or in some directed manner) in search

of the solution. ACQUIRE also incorporates a look-ahead parameter d in the following manner: intermediate nodes

that handle the active query use information from all nodes within d hops in order to partially resolve the query. When

the active query is fully resolved, a completed response is sent directly back to the querying node.

We take amathematical modelling approach in this paper to calculate the energy costs associated with ACQUIRE. The

models permit us to characterize analytically the impact of critical parameters, and compare the performance of AC-

QUIREwith respect to other schemes such as flooding-based querying (FBQ) and expanding ring search (ERS), in terms of

energy usage, response latency and storage requirements. We show that with optimal parameter settings, depending on the

update frequency,ACQUIREobtains order ofmagnitude reduction over FBQandpotentially over 60–75% reduction over

ERS (in highly dynamic environments and high query rates) in consumed energy. We show that these energy savings are

provided in trade for increased response latency. The mathematical analysis is validated through extensive simulations.
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1. Introduction

Wireless sensor networks are envisioned to

consist of large numbers of devices, each capable

of some limited computation, communication

and sensing, operating in an unattended mode.

These networks are intended for a broad range of

environmental sensing applications from weather
ed.
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data-collection to vehicle tracking and habitat

monitoring [1–4,8]. The key challenge in these

unattended networks is dealing with the limited

energy resources on the nodes.

With a small set of independent sensors it is

possible to collect all measurements from each
device to a central warehouse and perform data-

processing centrally. However, with large-scale

networks of energy-constrained sensors this is not a

scalable approach. It has been argued that it is best

to view such sensor networks as distributed data-

bases [9–11,16]. There may be a central querier/

data sink (or a collection of queriers/sinks) which

issues queries that the network can respond to. Due
to energy constraints it is desirable for much of the

data processing to be done in-network. This has led

to the concept of data-centric information routing,

in which the queries and responses are for named

data as opposed to the end-to-end address-centric

routing performed in traditional networks.

Depending on the applications, there are likely

to be different kinds of queries in these sensor
networks. The types of queries can be categorized

in many ways, for example:

• Continuous queries, which result in extended

data flows (e.g. ‘‘Report the measured tempera-

ture for the next 7 days with a frequency of 1

measurement per hour’’) versus One-shot que-

ries, which have a simple response (e.g. ‘‘Is the
current temperature higher than 70�?’’).

• Aggregate queries, which require the aggrega-

tion of information from several sources (e.g.

‘‘Report the calculated average temperature of

all nodes in region X ’’) versus Non-aggregate

queries which can be responded to by a single

node (e.g. ‘‘What is the temperature measured

by node x?’’).
• Complex queries, which consist of several sub-

queries that are combined by conjunctions or dis-

junctions in an arbitrary manner (e.g. ‘‘What are

the values of the following variables: X , Y , Z?’’ or
‘‘What is the value of (X AND Y ) OR (Z)’’ versus
simple queries, which have no sub-queries (e.g.

‘‘What is the value of the variable X ?’’). 1
1 We assume that each sub-query is a query for some

variable tracked by the sensor network.
• Queries for replicated data, in which the re-

sponse to a given query can be provided by

many nodes (e.g. ‘‘Has a target been observed

anywhere in the area?’’) and queries for unique

data, in which the response to a given query
can be provided only by one node.

Flooding-based query (FBQ) mechanisms such

as the Directed Diffusion data-centric routing

scheme [5] are well-suited for continuous, aggre-

gate queries. This is because the cost of the initial

flooding of the interest can be amortized over the

duration of the continuous flow from the source(s)
to sink(s). However, keeping in mind the severe

energy constraints in sensor networks, a one-size-

fits-all approach is unlikely to provide efficient

solutions for other types of queries.

In this paper we propose a new data-centric

querying mechanism, ACtive QUery forwarding

In sensoR nEtworks (ACQUIRE). Fig. 1 shows

the different categories of queries and the kinds of
queries in sensor networks that ACQUIRE is

well-suited for: one-shot, complex queries for

replicated data. As a motivation for ACQUIRE,

we describe two scenarios which involve such

queries:

• Bird habitat monitoring scenario: Imagine a net-

work of acoustic sensors deployed in a wildlife
reserve. The processor associated with each

node is capable of analyzing and identifying

bird-calls. Assume each node stores any bird-

calls heard previously. The task ‘‘obtain sample

calls for the following birds in the reserve: Blue
Fig. 1. A categorization of queries in sensor networks: the

shaded boxes represent the query categories for which the

ACQUIRE mechanism is well-suited.
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Jay, Nightingale, Cardinal, Warbler’’ is a good

example of a complex (because information is

being requested about four birds), one-shot (be-

cause each sub-query can be answered based on

stored and current data) query, and is for repli-
cated data (since many nodes in the network are

expected to have information on such birds).

Another example of a complex, one-shot query

in this network might be ‘‘return five locations

where a Warbler�s call has been recorded’’ (the

request for each location is a sub-query).

• Micro-climate data collection scenario: Imagine a

heterogeneous network consisting of tempera-
ture sensors, humidity sensors, wind sensors,

rain sensors, vibration sensors etc. monitoring

the micro-climate in some deployed area. It is

possible to put together a number of separate

basic queries such as ‘‘Give one location where

the temperature is greater than 80�?’’, ‘‘Give

one location where there is rain at the moment

in the area?’’, and ‘‘Give one location where
the wind conditions are currently greater than

20 mph?’’ can be combined together into a single

batched query. This complex query is one-shot

(as it asks only for current data) and is also

for replicated data (since several nodes in the

network may be able to answer the queries). 2

The principle behind ACQUIRE is to inject an
active query packet into the network that follows a

random (possibly even pre-determined or guided)

trajectory through the network. At each step, the

node which receives the active query performs a

triggered, on-demand, update to obtain informa-

tion from all neighbors within a look-ahead of d
hops. As this active query progresses through the

network it gets progressively resolved into smaller
and smaller components until it is completely

solved and is returned back to the querying node

as a completed response.

While most prior work in this area has relied on

simulations in order to test and validate data-
2 There is an implicit assumption that the sub-queries can all

be resolved. In this example, it is assumed that there are such

locations. Without this assumption, it is not be possible to do

anything more intelligent than querying all nodes in the

network. We take up this issue again briefly in Section 10.
querying techniques, we have taken here a math-

ematical modelling approach that allows us to

derive analytical expressions for the energy costs

associated with ACQUIRE and compare it with

other mechanisms, and to study rigorously the

impact of various parameters such as the value of
the look-ahead parameter and the ratio of update

rate to query rate. Our mathematical analysis is

validated through simulations.

The rest of the paper is organized as follows: in

Section 2 we describe some of the related work in

the literature. We provide a basic description of the

ACQUIRE mechanism in Section 3. In Section 4

we develop our mathematical model for AC-
QUIRE and derive expressions for the energy cost

involved as a function of the number of queried

variables, the look-ahead parameter, and the ratio

of the refresh rate to the query rate. We develop

similar models and energy cost expressions for two

alternative mechanisms: flooding based queries and

expanding ring search (ERS) in Section 5. We first

examine the impact of critical parameters on the
energy cost of ACQUIRE and then compare it to

the alternative approaches in Section 6. Our ana-

lytical models are validated by simulations in Sec-

tion 7. The average response latency incurred by

ACQUIRE, ERS and FBQ is analytically modelled

in Section 8, while the caching storage require-

ments are discussed in Section 9. We discuss

these results and describe the future work sug-
gested we are planning to undertake in Section 10.

Finally, we present our concluding comments in

Section 11.
2. Related work

Bonnet et al. [10,11] as well as Yao and Gehrke
[16] present the COUGAR approach which treats

sensor networks as distributed databases, with

users tasking the network with declarative queries

which are then converted by a front-end query

processor into an efficient query plan for in-net-

work processing. Similarly Govindan et al. also

argue in [9] that sensor networks ought to be

viewed primarily as virtual databases, with query
optimization performed via data-centric routing

mechanisms within the network. The efficient
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in-network computation of aggregate responses

to queries is the subject of the paper by Madden

et al. [19]. The ACQUIRE mechanism we describe

in this paper is compatible with this database

perspective, and can viewed as a data-centric

routing mechanism that provides superior query
optimization for responding to particular kinds of

queries: complex, one-shot queries for duplicated

data.

Intanagonwiwat et al. propose and study Di-

rected Diffusion [5,6], a data-centric protocol that

is particularly useful for responding to long-

standing/continuous queries. In Directed Diffu-

sion, an interest for named data is first distributed
through the network via flooding (although opti-

mizations are possible for geographically localized

queries), and the sources with relevant data re-

spond with the appropriate information stream.

The impact of aggregation in improving the energy

costs of such data-centric protocols is examined by

Krishnamachari et al. in [7].

Also related to our work are the information
driven sensor querying (IDSQ) and constrained

anisotropic diffusion routing (CADR) mechanisms

proposed by Chu et al. [14]. In IDSQ, the sensors

are selectively queried about correlated informa-

tion based on a criterion that combines informa-

tion gain and communication cost, while CADR

routes a query to its optimal destination by fol-

lowing an information gain gradient through the
sensor network.

One technique that is close in spirit to AC-

QUIRE is the rumor-routing mechanism proposed

recently by Braginsky and Estrin in [21]. Their

approach is quite interesting––sources with events

launch mobile agents which execute random walks

in the network resulting in event-paths. The que-

ries issued by the querier/sink, in a manner some-
what similar to ACQUIRE, are also mobile agents

that follow random walks. Whenever a query

agent intersects with an event-path, it uses that

information to efficiently route itself to the loca-

tion of the event. Rumor routing is a mechanism

to lower the interest-flooding cost for Directed

Diffusion in situations where geographical infor-

mation may not be available. Rumor routing is
not, however, geared primarily towards complex

one-shot queries for replicated data (as AC-
QUIRE is) and does not incorporate any look-

ahead/update parameters. Moreover, if data is

replicated, there might be multiple sources, each of

which might initiate a random walk in the rumor-

routing case. In such cases, rumor-routing may not

be energy-efficient.
Other data-centric routing protocols proposed

for sensor networks include SPIN for data dis-

semination by Heinzelman et al. [17], and LEACH

for data collection by Heinzelman, Chandrakasan

and Balakrishnan [18].

The recent work by Ratnasamy et al. [13] pre-

sents the geographic hash table technique for data-

centric storage (DCS) in sensor networks. This
approach is particularly useful for storing infor-

mation to deal with historic queries (i.e. queries for

non-current data). In estimating the cost of local

storage the authors of [13] assume the use of

flooding-based queries, to which we provide an

alternative in this paper. It is also be possible to

conceive of using our ACQUIRE scheme in con-

junction with any DCS techniques that result in
replication (e.g. for robustness reasons).

Our work also has some similarities to tech-

niques proposed for searching in unstructured

peer-to-peer (P2P) overlay networks on the Inter-

net. In particular, [22] discusses the possibility of

launching k-random walks through the unstruc-

tured P2P network for discovering required files/

data. This differs from our work in three respects:
one is that the cost-model is different in the two

scenarios––in P2P networks one is primarily con-

cerned with minimizing bandwidth usage and

delay while we are primarily concerned with min-

imizing energy consumption; the second is that we

incorporate the look-ahead parameter and allow

for complex queries, which, as we show in this

paper, significantly improves the performance of
such a search; and finally, the trajectories followed

by active queries in ACQUIRE need not neces-

sarily be random walks, they could be directed and

deterministically selected.

Our ACQUIRE mechanism combines a trajec-

tory for active queries with a localized update

mechanism whereby each node on the path utilizes

information about all the nodes within a look-
ahead of d hops. The size of this look-ahead

parameter effects a tradeoff between the informa-
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tion obtained (which helps reduce the length of the

overall trajectory) and the cost for obtaining the

information. This look-ahead region is somewhat

similar in spirit to the notion of zones in the zone

routing protocol (ZRP) [15] and to the notion of

neighborhoods in the Contact-based Architecture
for Resource Discovery (CARD) [12] developed

for mobile ad hoc networks. One key difference is

that in ACQUIRE, only nodes on the active query

trajectory need to have this look-ahead informa-

tion and the neighborhood updates are triggered

on-demand, if current information happens to be

obsolete.

While the trajectory for the active queries is
assumed to be random in our modelling in this

paper, it is possible to envision pre-determined

trajectories as well. One interesting new mecha-

nism that we could combine ACQUIRE with is the

idea of routing along curves, described by Nath

and Niculescu in [20].
3. Basic description of ACQUIRE

In order to explain ACQUIRE, it is best to

begin first with an overview of traditional flood-

ing-based query techniques. In these techniques,

there is a clear distinction between the query dis-

semination and response gathering stages. The

querier/sink first floods several copies of the query
(which is an interest for named data). Nodes with

the relevant data then respond. If it is not a con-

tinuous/persistent query (i.e. one that calls for data

from sensors for an extended period of time as

opposed to a single value), then the flooding

can dominate the costs associated with querying.

In the same way, even when data aggregation

is employed, duplicate responses can result in
sub-optimal data collection in terms of energy

costs.

By contrast, in ACQUIRE there are no distinct

query/response stages. The querier issues an active

query which can be a complex query, i.e. can

consist of several sub-queries, each corresponding

to a different variable/interest. The active query is

forwarded step by step through a sequence of
nodes. At each intermediate step, the node which

is currently carrying the active query (the active
node) utilizes updates received from all nodes

within a look-ahead of d hops in order to resolve

the query partially. New updates are triggered

reactively by the active node upon reception of the

active query only if the current information it has

is obsolete (i.e. if the last update occurred too long
ago). After the active node has resolved the active

query partially, i.e. after it has utilized its local

knowledge to answer as much of the complex

query as possible, it chooses a next node to for-

ward this active query to. This choice may be done

in a random manner (i.e. the active query executes

a random walk) or directed intelligently based on

other information, for example in such a way as to
guarantee the maximum possible further resolu-

tion of the query. Thus as the active query pro-

ceeds through the network, it keeps getting

‘‘smaller’’ as pieces of it become resolved, until

eventually it reaches an active node which is able

to completely resolve the query, i.e. answer the last

remaining piece of the original query. At this

point, the active query becomes a completed re-

sponse and is routed back directly (along either the

reverse path or the shortest path) to the originat-

ing querier.

The difference between traditional querying

techniques and ACQUIRE, and the look-ahead

scheme of ACQUIRE are illustrated in Figs. 2 and

3 respectively.
4. Analysis of ACQUIRE

We now build a mathematical model to analyze

the performance of ACQUIRE in terms of its ex-

pected completion time and associated energy

costs. This will also enable us to determine the

optimal look-ahead parameter d. There are several
metrics for energy costs. In our case, we focus on

the number of transmissions as the metric for en-

ergy cost.

4.1. Basic model and notation

Consider the following scenario: A sensor net-

work consists of X sensors. This network tracks the
values of certain variables like temperature, air

pressure, humidity, etc. Let V ¼ fV1; V2; . . . ; VNg be



Fig. 2. Illustration of traditional flooding-based queries (a), (b), (c), and ACQUIRE (d) in a sample sensor network. (a) Flooding of

interest query from querier node (sink x�), (b) response to query in system without aggregation, (c) response to query in system with

aggregation, (d) sample trajectory of active query (solid) and response (dashed) in a basic ACQUIRE (zero look-ahead).

3 The size of the neighborhood is actually a measure of the

number of different variables tracked by a node�s neighbor-

hood. For the sake of simplicity, we assume that each sensor

tracks a single variable. However, this assumption does not

affect the conclusions of our analysis.
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the N variables tracked by the network. Each sen-

sor is equally likely to track any of these N vari-

ables. Assume that we are interested in finding the
answer to a query Q ¼ fQ1;Q2; . . . ;QMg consisting

of M sub-queries, 1 < M 6N and 8i : i6
M ;Qi 2 V . Let SM be the average number of steps

taken to resolve a query consisting of M sub-que-

ries. We define the number of steps as the number

of nodes to which the query is forwarded before

being completely resolved. Define d as the look-

ahead parameter. Let the neighborhood of a sensor
consist of all sensors within d hops away from it. In

general the number of sensors in the neighborhood

is dependent on the node density, the transmission

range of the sensors, etc. However, we make the

following assumptions about the sensor placement

and their characteristics:
1. The sensors are laid out uniformly in a

region.

2. All the sensors have the same transmission
range.

3. The nodes are stationary and do not fail.

We model the size of a sensor�s neighborhood

(the number of nodes within d hops) as a function

of d, f ðdÞ, which is assumed to be independent of

the particular node in question. 3 We also assume

that all possible queries Q are resolvable by this



Fig. 3. Illustration of ACQUIRE with a one-hop look-ahead

(d ¼ 1). At each step of the active query propagation, the node

carrying the active query employs knowledge gained due to the

triggered updates from all nodes within d hops in order to

partially resolve the query. As d becomes larger, the active

query has to travel fewer steps on average, but this also raises

the update costs. When d becomes extremely large, ACQUIRE

starts to resemble traditional flooding-based querying.

5 It might be convenient to think of every datum having a

time duration during which it is valid. During this period, all
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network (i.e. can be responded to by at least one

node in the network).

4.1.1. Mechanism of query forwarding

Initially, let sensor x� be the querier that issues a
query Q consisting ofM sub-queries. 4 Let d be the

look-ahead parameter i.e. each sensor can request

information from sensors d hops away from it. In
general when a sensor x gets a query it does the

following:

1. Local update: If its current information is not

up-to-date, x sends a request to all sensors with-

in d hops away. This request is forwarded hop

by hop. The sensors who get the request will

then forward their information to x. Let the en-
4 One way to think of the size of the complex query M is to

treat it as a ‘‘batch’’ parameter which effects a tradeoff between

latency for batching and the latency and energy for query

completion. Imagine independent sub-queries arrive at the

central node at a fixed rate, then the time to put together a

single batched query increases linearly with M , while the

expected query completion time and energy increases only sub-

linearly with M (as shown in Section 4). In general the larger M
is, the worse the batching latency, but better the average query

completion time and energy expenditure (assuming subsequent

queries are only sent out after the previous one has terminated).
ergy consumed in this phase be Eupdate. Detailed

analysis of Eupdate will be done in Section 4.3.

2. Forward: After answering the query based on

the information obtained, x then forwards the

remaining query to a node that is chosen ran-
domly from those d hops away.

Since the update is only triggered when the

information is not fresh, it makes sense to try to

quantify how often such updates will be triggered.

We model this update frequency by an average

amortization factor c, such that an update is likely

to occur at any given node only once every 1=c
queries. In other words the cost of the update at

each node is amortized over 1=c queries, where

c6 1. For example, if on average an update has to

be done once every 100 queries, c ¼ 0:01. 5

After the query is completely resolved, the last

node which has the query returns the completed

response 6 to the querier x� along the reverse

path. 7 We use a to denote the expected number of
hops from the node where the query is completely

resolved to x�.
Let SM be the average number of steps to an-

swer a query of size M . Thus, the average energy

consumed to answer a query of size M with look-

ahead d can be expressed as follows:

Eavg ¼ ðcEupdate þ dÞSM þ a: ð1Þ
Now, if d ¼ D, where D is the diameter of the
network, x� can resolve the entire query in one step

without forwarding it to any other node. However,

in this case, Eavg will be considerably large. On the

other hand, if d is too small, a larger number of
queries for the corresponding variable could be answered from

the value cached from previous triggered updates. For example

a sample bird call might have a longer validity period than a

temperature reading.
6 We note that it also makes sense to return partial responses

back to the querier, as each sub-query is resolved along the way.

This would reduce the energy and time costs of carrying partial

responses along with the partial query. Our analysis thus

overestimates the energy cost, and could be tightened further in

this regard.
7 If additional unicast or geographic routing information is

available, the completed response can also be sent back along

the shortest path back from the final node to the querier.



8 Here, we make an assumption that f ðdÞ new nodes will be

encountered at every node where the query is forwarded.

However, due to overlap, the number of new nodes actually

encountered might be a fraction of f ðdÞ i.e. ð1� dÞf ðdÞ, where
0 < d < 1, is a measure of the average overlap of the

neighborhoods of nodes handling the query. It depends on

algorithm used to route the query. For ACQUIRE to perform

efficiently, this overlap should be small. We will briefly discuss

this issue again in Section 10.
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steps SM will be required. In general, SM reduces

with increasing d, while Eupdate increases with

increasing d. It is therefore possible, depending on

other parameters, that the optimal energy expen-

diture is incurred at some intermediate value of d.
One of the main objectives of our analysis is to

analyze the impact of parameters such as M , N , c,
and d upon the energy consumption Eavg of AC-

QUIRE.

4.2. Steps to query completion

In this section, we present a simple analysis of
the average number of steps to query completion

as a function of M , N and f ðdÞ. A more detailed

analysis is in Appendix A.

4.2.1. First-order analysis

Consider the following experiment. Each sensor

tracks a value chosen between 1 and N with equal

probability. Fetching information from each sensor
can be thought of as a trial. Define a ‘‘success’’ as

the event of resolving any one of the remaining

queries. Thus, if there are currentlyM queries to be

resolved, then the probability of success in each trial

is p ¼ M=N and the probability of failure is q ¼
ðN �MÞ=N . The number of trials till the first suc-

cess i.e. the number of sensors from which infor-

mation has to be fetched till one of the queries can
be answered is a geometric random variable. Thus,

the expected number of trials till the first success is

1=p ¼ N=M . Now the whole experiment can be re-

peated again with one less query. Thus, now, p ¼
ðM � 1Þ=N and q ¼ ðN �M þ 1Þ=N . The expected

number of trials till the first success (i.e. another

query being answered) is N=ðM � 1Þ and so on.

Define the following:

1. rM ¼ The number of trials till M successes i.e.

the resolution of the entire query.

2. Xi ¼ The number of trials (counted from the

ði� 1Þth success) till the ith success.

rM and Xi�s are random variables.

Now,

rM ¼
XM
i¼1

Xi: ð2Þ
By linearity of expectation,

EðrMÞ ¼
XM
i¼1

EðXiÞ; ð3Þ

EðrMÞ ¼ N
XM
i¼1

1

M � iþ 1
: ð4Þ

Now,
PM

i¼1 1=ðM � iþ 1Þ ¼ HðMÞ where HðMÞ is

the sum of the first M terms of the harmonic series.

It is known that HðMÞ � lnðMÞ þ c, where

c ¼ 0:57721 is the Euler�s constant. Thus,

EðrMÞ � NðlnM þ cÞ: ð5Þ
Now, since we consider fetching information from

f ðdÞ sensors as 1 trial (step) rather than f ðdÞ trials
(steps): 8

SM ¼ EðrMÞ
f ðdÞ � NðlnM þ cÞ

f ðdÞ : ð6Þ

Eq. (6) expresses the average number of steps to

query completion (SM ) as a function of the total

number of variables (N ), the query size (M) and

the neighborhood size (f ðdÞ).
To answer more complex questions like ‘‘What

is the probability that a complex query can be

reduced in size in a single step?’’, we formulate the

query forwarding process as a Markov Chain.
Detailed analysis of this Markov Chain is in

Appendix A.

4.3. Local update cost

The energy spent in updating the information at

each active node that is processing the active query

Eupdate can be calculated as follows:
Assume that the query Q is at the active node x.

Given a look-ahead value d, x can request infor-

mation from sensors within d hops away. This re-
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quest will be forwarded by all sensors within d hops

except those that are exactly d hops away from x.
Thus the number of transmissions needed to for-

ward this request is the number of nodes within

d � 1 hops which is f ðd � 1Þ. The requested sen-

sors will then forward their information to x. Now,
the information of sensors 1 hop away will be

transmitted once, 2 hops away will be transmitted

twice,. . ., d hops away will be transmitted d times.

Thus,

Eupdate ¼ f ðd
 

� 1Þ þ
Xd
i¼1

iNðiÞ
!
; ð7Þ

where NðiÞ is the number of nodes at hop i. NðiÞ
will be determined later in Section 4.4.

4.4. Total energy cost

We make the assumption that each active node

forwards the resolved query to another node that

is exactly d hops away, requiring d transmissions.

Hence the average energy spent in answering a

query of size M is given as follows:

Eavg ¼ ðcEupdate þ dÞSM þ a; ð8Þ
where a is the expected number of hops from the
node where the query is completely resolved to

the querier x�. 9 This is the cost of returning the

completed response back to the querier node. This

response can be returned along the reverse path in

which case a can be atmost dSM . Thus,

Eavg ¼ ðcEupdate þ 2dÞSM : ð9Þ
4.4.1. Special case: d ¼ 0––random walk

If the look-ahead d ¼ 0, the node x will not

request for updates from other nodes. x will try to

resolve the query with the information it has, and

will forward the query to a randomly chosen

neighbor. Thus, in this case, ACQUIRE reduces to

a random walk on the network. On an average it

would take EðrMÞ steps to resolve the query and
9 Here, we are actually over-estimating Eavg by an additive

amount of SM as the query will not be forwarded at the last

step, but will be returned back to the querier.
EðrMÞ steps to return the resolved query back to

the querier x�. Thus,

Eavg ¼ 2EðrMÞ: ð10Þ
4.5. Optimal look-ahead

As mentioned in Section 4.4,

Eavg ¼ ðf ðd
(

� 1Þ þ
Xd
i¼1

iNðiÞÞcþ 2d

)
SM

ðfrom Eqs: ð7Þ and ð9ÞÞ

� ðf ðd
(

� 1Þ þ
Xd
i¼1

iNðiÞÞcþ 2d

)
NðlnM þ cÞ

f ðdÞ

ðfrom Eq: ð6ÞÞ: ð11Þ

If we ignore boundary effects, it can be shown that

f ðdÞ ¼ ð2dðd þ 1ÞÞ þ 1 for a grid. 10

Also,

NðiÞ ¼ f ðiÞ � f ði� 1Þ
¼ 2iðiþ 1Þ � 2ði� 1Þi ¼ 4i; ð12Þ

i.e. the number of nodes exactly i hops away from

a node x on a grid is 4i. Thus,

Eavg � 2ðd
 (

� 1ÞðdÞ þ 1þ
Xd
i¼1

4i2
!
cþ 2d

)

� NðlnM þ cÞ
ð2ðdÞðd þ 1ÞÞ þ 1

� ð2ðd
�

� 1ÞðdÞ þ 1þ 4
6
ðdÞðd þ 1Þð2d þ 1ÞÞcþ 2d

�
� NðlnM þ cÞ
ð2ðdÞðd þ 1ÞÞ þ 1

� cNðlnM þ cÞ
3

4d3 þ 12d2 � 4d þ 3

2d2 þ 2d þ 1

�

þ NðlnM þ cÞ 2d
2d2 þ 2d þ 1

�
: ð13Þ
10 Here we assume that at every node handling the query,

there are f ðdÞ new nodes available in the neighborhood i.e. the

query is routed such that there is minimal overlap between the

neighborhoods of nodes handling the query. Ignoring this

overlap does not affect our study as we will point out in Section

10.



Fig. 4. Effect of c and d on the average energy consumption of

the ACQUIRE scheme. Here, N ¼ 100 and M ¼ 20.
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To find the value of d (as a function of c, N andM)

that minimizes the Eavg, we differentiate the above

expression w.r.t. d and set the derivative to 0. We

get the following:

2

3

ðN lnM þ cÞð4cd4 þ 8cd3 þ 22cd2 þ 6cd � 5c� 6d2 þ 3Þ
ð2d2 þ 2d þ 1Þ2

¼ 0;

4cd4 þ 8cd3 þ 22cd2 þ 6cd � 5c� 6d2 þ 3 ¼ 0:
ð14Þ

Thus, the optimal look-ahead d� depends on the

amortization factor c and is independent of M and

N .

If d ¼ 0:

Eavg � 2NðlnM þ cÞ ðfrom Eqs: ð5Þ and ð10ÞÞ:
ð15Þ

In this case, since no look-ahead is involved, Eavg is

independent of c and d.
Fig. 5. Effect of c on d� for N ¼ 100 and M ¼ 20. The x-axis is
plotted on a log scale.
4.6. Effect of c on ACQUIRE

We first analytically study the behavior of

ACQUIRE for different values of c and d and find

the optimal look-ahead d� for a given c, M and N .

We used Eq. (13) derived in Section 4.5. N was set

to 100 andM was set to 20. We varied c from 0.001

to 1 in steps of 0.001 and d from 1 to 10. For

d ¼ 0, Eavg is independent of c and d as shown by

Eq. (15) in Section 4.5.
Fig. 4 shows the energy consumption of the

ACQUIRE scheme for different amortization fac-

tors and look-ahead values. Let d� be the look-

ahead value which produces the minimum average

energy consumption. It appears that d� signifi-

cantly depends on the amortization factor.

Fig. 5 shows that as the amortization factor c
decreases, d� increases. i.e. as the query rate in-
creases and the network dynamics decreases it is

more energy-efficient to have a higher look-ahead.

This is intuitive because in this case, with a larger

look-ahead, the sensor can get more information

that will remain stable for a longer period of time

which will help it to answer subsequent queries.

Thus, in our study, for very small c (0:0016 c6
0:01), d� is as high as possible (d� ¼ 10). On the
other hand, for 0:086 c < 0:9 (approx.), the most
energy-efficient strategy is to just request infor-
mation from the immediate neighbors (d ¼ 1). It is

also seen that there are values of c in the range

from ½0:001; 0:1� such that each of 1; 2; . . . ; 10 is the
optimal look-ahead value. If cP 0:9 (approx.), the

most efficient strategy for each node x is to resolve

the query based on the information it has (without

even requesting for information from its neighbors

i.e. d ¼ 0).
5. Analysis of alternative approaches

In this section, we present the energy cost of

expanding ring search and flooding based query

mechanisms.
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5.1. Expanding ring search

In an Expanding ring search, at stage 1, the

querier x� will request information from all sensors

exactly one hop away. If the query is not com-
pletely resolved in the first stage, x� will send a

request to all sensors two hops away in the second

stage. Thus, in general at stage i, x� will request

information from sensors exactly i hops away. The
average number of stages tmin taken to completely

resolve a query of size M can be approximately

determined by the First order analysis in Section

4.2.1:
Xtmin

i¼1

NðiÞ ¼ NðlnM þ cÞ ðfrom Eq: ð5ÞÞ;

4
Xtmin

i¼1

i ¼ NðlnM þ cÞ ðfrom Eq: ð12ÞÞ;

2tminðtmin þ 1Þ ¼ NðlnM þ cÞ;

2ðtminÞ2 þ 2tmin � NðlnM þ cÞ ¼ 0:

ð16Þ
tmin can be determined by solving the above qua-

dratic equation (taking the ceiling if necessary to

get tmin as an integer).

In ERS, at stage i, all nodes within i� 1 hops of
the querier x� will forward the x��s request. Let

NavgðiÞ be the expected number of nodes at hop i
that will resolve some sub-query. The response

from these nodes will be forwarded over i hops.
There are a total of tmin stages. Thus, the total

update cost is given as follows:
Eupdate ¼
Xtmin

i¼1

ðf ði� 1Þ þ iNavgðiÞÞ

¼
Xtmin

i¼1

f ði� 1Þ þ
Xtmin

i¼1

iNavgðiÞ: ð17Þ
NavgðiÞ can be computed as follows:
At the ith step, f ði� 1Þ nodes would already

have been requested for their information. The

expected number of queries resolved Mrði� 1Þ
before the ith step can be given as follows:
f ði� 1Þ ¼ NðlnðMrði� 1ÞÞ þ cÞ ðfrom Eq: ð5ÞÞ;
Mrði� 1Þ ¼ ef ði�1Þ=N�c:

ð18Þ
Thus, in the ith step, the probability of ‘‘success’’ is

given by

pi ¼
M �Mrði� 1Þ

N
: ð19Þ

Thus, in step i, the expected number of nodes that
will resolve some sub-query is given by

NavgðiÞ ¼ NðiÞpi ðsubstituting pi for p in Eq: ð23ÞÞ

¼ NðiÞ M � ef ði�1Þ=N�c

N

� �
:

ð20Þ
Since the query is not forwarded to any other

node,

Eavg ¼ Eupdatec ðsubstituting d ¼ 0; a ¼ 0;

SM ¼ 1 in Eq: ð8ÞÞ

¼
Xtmin

i¼1

ð2iði
 

� 1Þ þ 1Þ

þ
Xtmin

i¼1

iNðiÞ M � ef ði�1Þ=N�c

N

� �!
c

¼ 1
3
ðtminÞðtmin

 
þ 1Þð2tmin þ 1Þ � ðtminÞðtmin þ 1Þ

þ tmin þ
Xtmin

i¼1

iNðiÞ M � ef ði�1Þ=N�c

N

� �!
c

¼ 2
3
ðtminÞðtmin

 
þ 1Þðtmin � 1Þ þ tmin

þ
Xtmin

i¼1

iNðiÞ M � ef ði�1Þ=N�c

N

� �!
c: ð21Þ
5.2. Flooding-based query

In FBQ, the querier x� sends out a request to all

its immediate neighbors. These nodes in turn, re-

solve the query as much as possible based on their
information and then forward the request to all

their neighbors and so on. Thus, the request

reaches all the nodes in the network.
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In general, as mentioned in Eq. (8) from Sec-

tion 4.4,

Eavg ¼ ðcEupdate þ dÞSM þ a: ð22Þ

In FBQ:

1. The request for triggered updates will have to

be sent as far as R hops away from the querier

x� (near the center of the grid) where R is the

‘‘radius’’ of the network i.e. the maximum num-

ber of hops from the center of the grid.

2. d ¼ 0, as the query is not forwarded.

3. a ¼ 0, as the query is completely resolved at the

origin of the query itself.
4. SM ¼ 1.

Let NavgðiÞ be the expected number of nodes at

hop i, that can resolve some part of the query. This

can be determined along similar lines as in Section

4.2.1.

As before, consider the fetching of information

from a sensor as a ‘‘trial’’. In each ‘‘trial’’, the
probability of success is p ¼ M=N and the proba-

bility of failure is q ¼ ðN �MÞ=N . The number of

successes is a binomial random variable. The total

number of ‘‘trials’’ at hop i is NðiÞ. Thus, the ex-

pected number of successes at hop i is given by

NavgðiÞ ¼ NðiÞp: ð23Þ

The response of each of the NavgðiÞ nodes will be

forwarded over i hops.
Thus, for FBQ, Eavg is given as follows:

Eavg ¼ f ðRÞ
 

þ
XR
i¼1

iNavgðiÞ
!
c

¼ f ðRÞ
 

þ
XR
i¼1

iNðiÞM
N

!
c

¼ f ðRÞ
 

þM
N

XR
i¼1

iNðiÞ
!
c

¼ 2RðR
�

þ 1Þ þ 1þ 2

3

M
N

RðRþ 1Þð2Rþ 1Þ
�
c:

ð24Þ
For a grid with X nodes, R ¼ p

X . Thus, for a

given M , N and c, Eavg / X 3=2.
6. Comparison of ACQUIRE, ERS and FBQ

6.1. Effect of c

These schemes were analytically compared
across different values of c chosen in the range of

½0:001; 1� as in Section 4.6. The total number of

nodes X was 104. For ACQUIRE, the look-ahead

parameter was set to d� for a given value of c. We

refer to this version of ACQUIRE as ACQUIRE�.

Eq. (21) from Section 5.1, Eq. (24) from Section

5.2 and Eq. (13) from Section 4.5 (with d ¼ d�)

were used in the comparative analysis. For the
initial comparisons, N ¼ 100 and M ¼ 20. Using

these values for M and N in Eq. (16) from Section

5.1, we obtain tmin ¼ 13. This value of tmin is then

used in Eq. (21).

As Fig. 6 shows that ACQUIRE with look-

ahead 0 (i.e. random walk) performs at least as

worse as ACQUIRE with the optimal look-ahead

(ACQUIRE�). ACQUIRE� seems to outperform
ERS for higher values of the amortization factor.

Moreover at c ¼ 1, ACQUIRE gives a 60% energy

savings over ERS. In the case of N ¼ 100 and

M ¼ 20, ACQUIRE� outperforms ERS if cP 0:08
(approx.). In this case, d� ¼ 1 as shown by Fig. 5.

However, it is not always the case that

ACQUIRE� outperforms ERS only with d� ¼ 1. If

N ¼ 160 and M ¼ 50, tmin ¼ 19 (from Eq. (16)).
With these values ofM and N as shown by the Fig.

7, ACQUIRE� outperforms ERS if cP 0:06 (ap-

prox.). In this case, d� ¼ 2 as shown by Fig. 5.

Moreover in this case as Fig. 7 shows, for c > 0:2,
even ACQUIRE with d ¼ 0 would outperform

ERS again for c ¼ 1, ACQUIRE� achieves a 75%

energy savings over ERS.

As Fig. 6 shows, FBQ, on an average, incurs the
worst energy consumption which is several orders

of magnitude higher than the other schemes. This

is mainly because of a very large number of nodes

(X ¼ 104) used in our study.

From, the above analysis, it seems that the

relative query size ðM=NÞ, seems to have a signif-

icant impact on the performance of ACQUIRE

and ERS. Hence we analyze this effect in Section
6.2. FBQ always incurs an order of magnitude

worse energy consumption, and hence we do not

study the impact of the relative query size on FBQ.



Fig. 7. Comparison of ACQUIRE�, ERS, ACQUIRE with d ¼ 0 and FBQ with energy on a log scale (left) and linear scale (right)

(N ¼ 160 and M ¼ 50).

Fig. 6. Comparison of ACQUIRE�, ERS, ACQUIRE with d ¼ 0 and FBQ with energy on a log-scale (left) and linear scale (right)

(N ¼ 100 and M ¼ 20).
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6.2. Effect of M=N

Intuitively, for a given N , as M is increased,

ERS has to ‘‘expand’’ the ring more, while AC-

QUIRE will take more steps to resolve the query.

In this section, we fix N at 100 and let M to take

the values of 10, 20, 40, 60, 80 and 100. For each
value of M=N , we observe the performance of

ACQUIRE� and ERS for c ¼ 0:05, 0.2 and 1. For

ERS, the values of tmin for these values of M=N are

12, 13, 15, 15, 16 and 16 respectively.

As the Fig. 8 shows, the average energy con-

sumed to resolve a complex query increases with
increasing M for a given N . For c ¼ 0:05, ERS

gives an almost 50% energy savings over

ACQUIRE� when M=N 6 0:5, while in the other

cases ACQUIRE� outperforms ERS across all the

amortization factors and relative query sizes in our

study. In these cases, the energy savings of AC-

QUIRE� over ERS range as high as 85% (c ¼ 1,
M=N ¼ 1).

Thus, both c and M=N seem to have a signifi-

cant impact on the performance of ACQUIRE

and ERS. As c increases and M=N increases,

ACQUIRE achieves significant energy savings

over ERS (and FBQ).



Fig. 8. Comparison of ACQUIRE�, and ERS (N ¼ 100) with

respect to M=N for different amortization factors. (a) c ¼ 0:05,

(b) c ¼ 0:2, (c) c ¼ 1.
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7. Validation of the analytical models

In this section, we validate our analytical

models by conducting some high level simulations.

Specifically, our objectives were the following:

1. Validate the effect of c on ACQUIRE.

2. Validate the comparisons between ACQUIRE,

ERS and FBQ for different values of c.
3. Perform a relative comparison between AC-

QUIRE and ERS across different relative query

sizes ðM=NÞ.

As we shall show, our simulation results are

more or less in line with our analysis. The minor

differences can be ascribed to factors like overlap

in the query trajectory, and boundary effects that

are not modelled in our analysis.

7.1. Simulation setup

Our setup consists of a 100 m · 100 m grid with

104 sensors placed at a distance of 1 m from each

other. The communication range of each sensor is

1 m. The total number of variables in our simu-

lations is set to 100. For all the querying mecha-

nisms, a query is always injected at the center of

the grid i.e. at sensor ð50; 50Þ. We ran our simu-

lations on 1000 queries. In order to take advantage
of the caching, the query was made to follow a

fixed trajectory in ACQUIRE. The first query out

of the set of 1000 queries fixes the trajectory, while

all the subsequent queries follow the same trajec-

tory.

Our analysis assumed that there are no loops in

the query trajectory. It turned out that this can

very effectively achieved by ACQUIRE�s local
update phase at no additional cost. Each node

maintains a flag called queried. Whenever a node is

requested for an update, it sets this flag to true.

Subsequently, whenever a node is requested for an

update, it sends the value of the queried flag along

with the variable. Once an active node has pro-

cessed the query based on the information in its

neighborhood, it forwards the remaining query to
a node at d hops whose queried flag is false. Using

this mechanism, most of our simulations have no

loops in the query trajectory for dP 1. However,



Fig. 9. Effect of c on d� by simulations (N ¼ 100, M ¼ 20).

Compare with theoretical curves in Fig. 4.
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for the random walk (d ¼ 0), there is no local

update phase. Hence, in this case, there are loops

in the query trajectory. These loops lead to a 45–

50% degradation in the performance 11 as we will

show in Section 7.3. For ERS and FBQ, there is no

trajectory as the query is never forwarded to other
nodes.

7.2. Effect of c on ACQUIRE

In our simulations, we used five different values

of c i.e. 0.001, 0.01, 0.05, 0.2 and 1. We simulated

the c as follows: Each variable has a validity time

of 1=c, where time is taken to be the number of
queries. For example if c ¼ 0:001, each variable is

valid for 1000 queries. During this validity period,

all queries for that particular variable can be an-

swered using the cached copies. Beyond the

validity period, the active node has to ‘‘refresh’’

variables from its ‘‘neighborhood’’. For each value

of c, simulations were run using 100 different

random seeds. In each run, we used 1000 queries,
each consisting of 20 sub-queries (or variables).

For each run, the generated queries were stored in

a query-file. At the same time the values chosen by

each sensor were also stored in a grid-file for each

run. The number of transmissions were averaged

across all these runs for a given c.
As Fig. 9 shows, with increasing c, the optimal

look-ahead d� decreases. This concurs with our
analysis in Section 4.5. The simulations show that

for c ¼ 0:001, 0.01, the d� ¼ 10 (largest possible

value used in our simulations), which is the same

as shown by our analytical curves in Fig. 4. For

c ¼ 0:05, d� ¼ 5 from simulations, while the ana-

lytical d� ¼ 3. For c ¼ 1, from simulations d� ¼ 1,

while from the analytical d� ¼ 0. This is because in

simulations, as mentioned in Section 7.1, AC-
QUIRE with d ¼ 0 has loops in its trajectory,

which degrades its performance by around 45–

50%.
11 The analysis of ACQUIRE with d ¼ 0 case assumed that

there is no looping. The significant degradation observed in

simulations suggests that the use of straightening algorithms

such as those described in [21] or geographically directed

trajectories such as routing on curves [20] is necessary when

ACQUIRE is used with d ¼ 0 in practice.
7.3. Comparison of ACQUIRE, ERS and FBQ

7.3.1. Effect of c
For both ERS and FBQ, we use the same

simulation setup as ACQUIRE. For both these

mechanisms, we simulate 100 different runs. Each

run consists of 1000 queries each containing 20

sub-queries. In each run, we use the query-files,
grid-files and same values of c described in Section

7.2.

As Fig. 10 shows, FBQ has the worst energy

consumption in comparison with the other ap-

proaches. This concurs with the analytical curves in

Fig. 6. ACQUIRE with d ¼ 0 (random walk) in-

curs a greater energy consumption as compared to

ACQUIRE with d ¼ 1 as well as ERS, while the
analytical curves show that at high values of c,
ACQUIRE with d� ¼ 0 is better than ERS. This

discrepancy is because of the loops in the query

trajectory in the case of random walk as was

mentioned in Section 7.1. However, the energy

savings of ACQUIRE� over ERS seem to be similar

to that shown by the analytical curves in Fig. 6.

7.3.2. Effect of M=N
We use a similar set of simulation runs as

mentioned in Section 7.3.1 for values of c and

M=N as mentioned in Section 6.2.

As Fig. 11 shows, for all values of c considered

in this study, the average energy consumption of

ACQUIRE� increases with increasing M=N . This

behavior is also seen for ERS when c ¼ 1. These



Fig. 10. Comparison of ACQUIRE�, ERS, ACQUIRE with d ¼ 0 and FBQ by simulations (N ¼ 100, M ¼ 20) with energy costs on a

log scale (left) and linear scale (right). Compare with theoretical curves in Fig. 6.
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observations are consistent with the analytical

behavior in Section 6.2. However, for c ¼ 0:05 and

0.2, ERS seems to have a lower energy consump-
tion at M=N ¼ 1. This has to do with the way, we

modelled ERS (and FBQ) in Section 5.1 (and 5.2).

In these mechanisms, we model the update fre-

quency as 1=c. Moreover these mechanisms are

modelled to cache only those variables which are

part of the query to give a better energy perfor-

mance. In such situations, an update might occur

even if a single variable of the complex query
cannot be resolved. This inflates the energy con-

sumption in cases where M < N . However, when

M ¼ N , all variables can be cached at the center.

Moreover, in this case, there is only 1 possible

query of M ¼ N variables. So, for values of c < 1,

subsequent queries can be answered from the

cache. If c ¼ 1, an update will be done for every

query and hence in this case, the energy con-
sumption increases with increasing M=N . In the

case of ACQUIRE, we cache all the variables

within d hops at the cost of increased energy

consumption. Moreover, since ACQUIRE has a

local update phase and a forward phase, we can

exactly control the update frequency. If a active

node cannot resolve a query completely, it will not

seek an update, but will forward the query to an-
other node.

From simulations, at M=N ¼ 1, c ¼ 0:05, ERS

gives 50% energy savings over ACQUIRE�. On the

other hand, for all other values of c used in our

study, ACQUIRE� outperforms ERS across all
relative query sizes. The energy savings of

ACQUIRE� over ERS is around 65% for c ¼ 0:02
(for all values M=N 6¼ 1) and c ¼ 1 (for all values
of M=N ).

Our analysis of the energy cost of ACQUIRE,

ERS and FBQ by analytical models and simula-

tions illustrate that ACQUIRE achieves significant

energy savings for moderate to high values of c
depending on the relative query size. Do this energy

savings come at a cost? We attempt to answer this

question in the next section by modelling the aver-
age response delay incurred by these mechanisms.
8. Latency analysis

In this section, we attempt to analytically

compare the average latency in answering a query

(i.e. the response latency) by these three mecha-
nisms. The metric for latency that we examine is

the expected number of sequential transmissions

required before a response is obtained to a given

query. We should note that this is a network layer

analysis that does not take into account MAC

delay due to contentions.

8.1. ACQUIRE

In this section, we analyze the delay incurred by

ACQUIRE� in answering a query. Our metric for

delay is the number of sequential hop by hop

transmissions.



Fig. 11. Comparison of ACQUIRE� and ERS by simulations

(N ¼ 100) with respect to M=N for different amortization fac-

tors. Compare with theoretical curves in Fig. 8. (a) c ¼ 0:05,

(b) c ¼ 0:2, (c) c ¼ 1.
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ACQUIRE� takes SM steps to answer a query of

size M , where SM is given by Eq. (6) in Section

4.2.1. Each of these steps involve an update phase,

where in a request is propagated within a neigh-

borhood of d hops, while the responses are prop-

agated over a maximum of d� hops. Moreover,
once the query is completely resolved, the response

is sent back to the querier (modelled as a6 d�SM ).
Also, the update phase will be done only once

every 1=c queries. Thus, the average latency of

ACQUIRE� can be given as follows:

Tavg ¼ c SMð2d�Þf þ 2SMðd�Þg þ ð1� cÞ 2SMðd�Þf g
¼ 2SMd�ðcþ 1Þ;

Tavg ¼ 2d� NðlnðMÞ þ cÞ
f ðd�Þ

� �
fcþ 1g:

ð25Þ
For the random walk,

Tavg ¼ Eavg ¼ 2NðlnðMÞ þ cÞ: ð26Þ

8.2. ERS

In ERS, on an average the ring has to expand
till tmin hops to get updates, where tmin is given by

Eq. (16). The delay in executing a ring of size x is

2x, x for the request and x for the reply. Moreover,

these updates are sought once every 1=c queries.

The remaining fraction of the queries are answered

from the cached responses (which has a delay of 0).

Thus, the average latency in ERS is given as fol-

lows:

Tavg ¼ c
Xtmin

i¼1

2i

( )
þ ð1� cÞf0g

¼ cðtminÞðtmin þ 1Þ: ð27Þ

8.3. FBQ

Similar to the delay analysis for ERS, in FBQ,

the request for updates has to be forwarded for tmin

hops on an average before all the sub-queries can

be answered. Thus, the delay for issuing the re-

quest and getting the updates is 2tmin. The updates

are issued once every 1=c queries. For the

remaining fraction, the queries are answered from

the cache (incurring a delay of 0). Thus, the
average latency incurred by FBQ is



Fig. 12. Comparison of the delay incurred by ACQUIRE�,

ERS and FBQ. Here, N ¼ 100,M ¼ 20, X ¼ 104, tmin ¼ 13. The

x-axis is plotted on log-scale.
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Tavg ¼ 2ctmin: ð28Þ
Fig. 12 shows the analytical comparison of

ACQUIRE�, ERS and FBQ when N ¼ 100, M ¼
20 and X ¼ 104. The average latency seems to in-

crease from FBQ to ERS to ACQUIRE� across all

values of the amortization factor c. The delay for
both FBQ and ERS increases linearly with c as is

evident from Eqs. (28) and (27) respectively. Inter-

estingly, the delay in ACQUIRE� seems to have a

piece-wise linear behavior with respect to c. This is
apparent in Fig. 12, where the x-axis is plotted on a

log-scale. This is because the changing c alters d�

which in turn alters d�=f ðd�Þ i.e. the slope of the

line Tavg as shown by Eq. (25). At the point where
the delay is constant w.r.t. c ACQUIRE� resembles

a random walk (d ¼ 0). The difference in the delay

is significant (around 500 transmissions), when d�

for ACQUIRE goes from 1 to 0.
9. Storage requirements

Our analysis in this paper assumes that all the

mechanisms i.e. ACQUIRE, ERS and FBQ utilize

caching to answer queries. We now attempt to

quantify the storage space requirements for the

cache across these approaches.

In ACQUIRE, an active node requests an up-

date from its ‘‘neighborhood’’ consisting of f ðdÞ
(with d ¼ d�). In the worst case, the each of these
f ðdÞ variables might be distinct, thus needing

Oðf ðdÞÞ storage space. For a grid and for most

reasonable topologies, note that f ðdÞ would be

polynomial in d. ACQUIRE distributes the cache

at nodes which handle the query. In the case of

ACQUIRE, the storage requirements depend on
the optimal look-ahead d�, which in turn is

dependent on the data dynamics. Higher c, higher
the data dynamics, lower the optimal look-ahead

d�, smaller the cache requirements at each node.

For ERS and FBQ, each querier (there may be

only one, always located at the same node) re-

quires a cache that is between OðMÞ and OðNÞ in
size. This is because this querier node must cache
all responses to all valid queries.
10. Discussion and future work

Partly for ease of analysis, we have described

and modelled a very basic version of the AC-

QUIRE mechanism in this paper. One of our
major next steps is to convert ACQUIRE into a

functional protocol that can be validated on an

experimental sensor network test-bed. There are a

number of ways in which our analysis can be im-

proved, and a number of additional design issues

need to be considered in our future work, some of

which we outline here.

Our analytical model of ACQUIRE assumes
that the query packet is always of a fixed size

consisting of all the individual sub-queries and

their responses. The entire packet circulates in the

network till the answer to the last query is ob-

tained. The packet is then sent back to the querier.

This simplifies the analysis as we need to only

count the number of transmissions in order to

quantify Eavg. However, it may be more efficient to
send the answers to sub-queries to the querier node

as and when they are obtained. Our analysis could

be tightened to take this into consideration.

The efficiency of ACQUIRE can also be im-

proved if the neighborhoods of the successive ac-

tive nodes in the query trajectory have minimal

overlap. This may potentially be best accom-

plished by using some deterministic trajectory as
opposed to random walks, possibly making use of

additional topological or geographical informa-
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tion. Guided trajectories may also be helpful in

dealing with non-uniform data distributions,

ensuring that active queries spend most time in

regions of the network where the relevant data are

likely to be. In the analysis, we ignored the issue of

overlap (although this was taken into account in
the simulations we presented).

One interesting result of our analysis is that the

performance of ACQUIRE and the optimal choice

of the look-ahead parameter d� are functions of

the amortization factor c and (somewhat surpris-

ingly) independent of M , N , and the total number

of nodes X . This lends itself to the possibility of

using distributed algorithms in which localized
estimates of c are used to determine the value of d
at each step without global knowledge of system

parameters. This would significantly improve the

scalability of ACQUIRE.

As presented here, ACQUIRE is meant to be

used in situations where there is replicated data. At

the very least there should be one node in the

network that can resolve each component sub-
query. One way to deal with other situations might

be to equip the active queries with a time-to-live

field which is decremented at each hop. This would

permit ACQUIRE to gracefully terminate with a

negative response if a solution is not found within

a reasonable period of time, to be followed up (for

example) by a flooding-based query.

Our analysis has assumed a regular grid topol-
ogy. This helped us in gaining considerable insight

into the performance of ACQUIRE, ERS and

FBQ. In reality the topology of a sensor network

might not only be irregular but also dynamic, due

to failures and mobility. Exploring the behavior of

ACQUIRE on such topologies is a focus of our

ongoing effort. We should mention, however, that

our results do already have some generality in this
regard: so long as a reasonable model for f ðdÞ can
be developed for the network topology, the anal-

ysis presented here can be extended in a straight-

forward manner.

In our modelling we have only counted the

number of transmissions for energy costs, al-

though it is true that receptions can also influence

energy consumption. This is the case especially for
broadcast messages, where there�s no channel res-

ervation and all the direct neighbors receive the
message. We believe that some of the alternatives

to active querying, such as FBQ and ERS will in

fact incur even more energy consumption under an

energy model that incorporates receptions because

all their query messages are broadcast. Moreover,

these broadcasts would also lead to an increased
delay in FBQ and ERS due to higher contention.

We would like to examine such richer energy cost

models in the future.

In our analysis of delay, we looked only at re-

sponse latency at the network layer (by examining

the number of maximum sequential transmissions

required). These results must be taken with a grain

of salt, because they do take into account MAC-
layer delay. For broadcast-based querying tech-

niques such as FBQ and ERS, there could be far

greater MAC layer contention than in ACQUIRE.

This deserves worth further investigation.

We have also ignored the possibility of aggre-

gate queries in this paper. Our assumption has

been that each sub-query is independent. This

would be another direction for future work.
11. Conclusions

In this paper, we have proposed ACQUIRE––a

novel mechanism for data extraction in energy-

constrained sensor networks. The key feature of

ACQUIRE is the injection of active queries into the
network with triggered local updates. We first cat-

egorized sensor network query types and identified

those for which ACQUIRE is likely to perform

in an energy-efficient manner: complex, one-shot,

non-aggregate queries for replicated data.

We have developed a fairly sophisticated

mathematical model that allows us to analytically

evaluate and characterize the performance (in
terms of energy costs and response latency) of

ACQUIRE, as well as alternative techniques such

as flooding-based queries and expanding ring

search. As far as we are aware, there are very few

similar results in the literature that provide similar

mathematical characterizations of the perfor-

mance of query techniques for sensor networks.

We validated our analysis through extensive sim-
ulations and also identified ways in which the

models can be extended and improved.
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In our analysis we defined an amortization factor

c to meaningfully capture the relationship between

the query rate and data dynamics. When c is low,

more queries can be processed in the time that a

given datum remains ‘‘fresh’’. Our analysis revealed

that this parameter has a significant impact on the
energy costs of cached update schemes such as

the one used in ACQUIRE. Indeed, we showed that

the optimal look-ahead in ACQUIRE depends so-

lely upon c, not on other parameters such as the size

of the network or the size of the queries.

We found that ACQUIRE with optimal

parameter settings outperforms the other schemes

for complex, one-shot queries in terms of energy
consumption. Specifically, optimal ACQUIRE

performs many orders of magnitude better than

flooding-based schemes (such as Directed Diffu-

sion) for such queries in large networks. We also

observed that optimal ACQUIRE can reduce the

energy consumption by more than 60–75% as

compared to expanding ring search (in highly dy-

namic environments and high query rates). The
energy savings can be higher particularly when

N lnM is high and when c is high. However, this

energy savings come at the cost of increased

average latency in answering a query.

To conclude, we believe that there is no one-

size-fits-all answer to the question: ‘‘How do we

efficiently query sensor networks?’’ We propose

ACQUIRE as a highly scalable technique, energy-
efficient at solving complex one-shot queries

for replicated data. We argue that ACQUIRE de-

serves to be incorporated into a portfolio of query

mechanisms for use in real-world sensor networks.
Fig. 13. Markov Chain with states representing the number of

unresolved sub-queries of an active query. Transitions are only

to lower-valued states at most minðf ðdÞ;MÞ to the right, and

the chain terminates at the absorbing state 0 when all sub-

queries have been resolved.
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Appendix A. Detailed analysis of steps to query

completion

Assume that a query Q consisting of M sub-

queries is at a sensor x. If d is the look-ahead, then
sensor x will have information about the values

stored by f ðdÞ sensors. Thus, x can resolve at most

minðf ðdÞ;MÞ out of the M sub-queries. In the

worst case, x cannot resolve any of the M sub-

queries. After resolving the possible queries, x will

forward the remaining query Q0 � Q to a sensor

which is chosen uniformly at random from those

exactly d hops away. Assuming that whenever a
sensor gets the query, it can always get informa-

tion from f ðdÞ new nodes (i.e. there are no loops

in the query forwarding process and the topology

of the network is regular), the probability of

answering K 0 of the M sub-queries is dependent

only on the information obtained from the f ðdÞ
nodes. This characteristic of the query forwarding

process naturally lends itself to be modelled as a
Markov Chain, as shown in Fig. 13.

The states of this Markov Chain are the num-

ber of unresolved sub-queries at any instant. Thus,

given a query consisting of M sub-queries, the

states of the Markov Chain are M ;M � 1;
M � 2; . . . ; 0. State 0 is the absorption state. This

Markov Chain has certain characteristics:

1. There is no transition from state M 0 to M 00

where M 0 < M 00.

2. From a state M 0, there can be no transition to a

state M 00 where M 0 �M 00 > f ðdÞ.
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The Markov Chain formulation is useful in that

once the transition probabilities between the vari-

ous states are known, the mean time to absorption

(i.e. SM ) can be easily calculated. Our next step is

to find the transition probabilities of the Markov

Chain.
¼
P ðKÞ : ðA:4Þ
A.1. Transition probabilities

Let K (with a slight abuse of notation) be the
event of getting answers to K distinct sub-queries

from f ðdÞ sensors. We now determine PðKÞ.
The answers obtained from these f ðdÞ sensors

can be considered as strings of length f ðdÞ, where
each character is a variable Vi , 16 i6N . Let AðKÞ
be the number of strings of length f ðdÞ which

contain each of the variables Vl1; Vl2; . . . ; VlK i.e. the

number of strings consisting of the given set of K
distinct variables. Now,

Að0Þ ¼ 0;

Að1Þ ¼ 1;

AðjÞ ¼ jf ðdÞ �
Xj�1

j0¼1

j

j0

� �
Aðj0Þ;

ðA:1Þ

i.e. the number of strings of length f ðdÞ that

contain each of the j variables can be computed as

follows:

First compute the number of all possible strings

of length f ðdÞ which contain some or all of vari-

ables Vl1; Vl2; . . . ; Vlj. Then subtract the number of

strings containing less than j distinct variables.

The number of strings containing j0 < j distinct

variables is j
j0

� �
Aðj0Þ. Each such string of length

f ðdÞ has a probability of 1=Nf ðdÞ. Thus, the

probability that a string of length f ðdÞ consists of
each of the variables Vl1; Vl2; . . . ; VlK can be given

by

P ðVl1; Vl2; . . . ; VlKÞ ¼
AðKÞ
Nf ðdÞ : ðA:2Þ

There are N
K

� �
ways of choosing K distinct vari-

ables. Thus,

P ðKÞ ¼ N
K

� �
AðKÞ
Nf ðdÞ : ðA:3Þ
Using the recurrence for AðjÞ, 16 j6N from Eq.

(A.1), PðKÞ can be computed.

Next, we evaluate the probability that K 0 sub-

queries are resolved given:

1. Answers to K distinct values are gained from

the f ðdÞ sensors (let us call this the event K as

before).

2. I sub-queries are currently unresolved (again,

let us call this the event I).

We denote this probability by P ðK 0jI ;KÞ. Let

K 0jI ¼ A, and K ¼ B. Now, B ¼
S

j¼1

�
N
K

�
Bj where

Bj is the event of getting a certain set of K (out

of N ) distinct values from the f ðdÞ sensors such

that

1. Bjs are mutually exclusive. i.e. P ðBi \ Bi0 Þ ¼ 0,

for i 6¼ i0.

2. PðKÞ ¼ P ðBÞ ¼
P� N

K

�
j¼1 PðBjÞ.

Also, 8j;16j6 N
K

� �
: P ðBjÞ ¼ AðKÞ=Nf ðdÞ (from

Eq. (A.2))

PðAjBÞ ¼ P ðA \ BÞ
P ðBÞ

¼

P A \
S

j¼1

�
N
K

�
Bj

0
BB@

1
CCA

0
BB@

1
CCA

P ðKÞ

¼

P
S

j¼1

�
N
K

�
A \ Bj

0
BB@

1
CCA

P ðKÞ

¼

P
j¼1

�
N
K

�
P ðA \ BjÞ
P ðKÞ

P
j¼1

�
N
K

�
P ðAjBjÞP ðBjÞ
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Now, PðAjBjÞ i.e. P ðK 0jI ;BjÞ is the probability that

K 0 sub-queries (out of the I) are resolved given a

particular set Bj of K distinct values obtained from

the f ðdÞ sensors.
8j; 16 j6
N

K

� �
: P ðAjBjÞ ¼ P ðK 0jI ;BjÞ

¼

K

K 0

� �
N � K

I � K 0

� �
N

I

� � ; ðA:5Þ
i.e. given K distinct answers from the f ðdÞ sensors,
K 0 (out of the I) sub-queries can be resolved if the

current query consists of some K 0 variables chosen

from the K variables and I � K 0 variables chosen

from the remaining N � K variables. The former

can be chosen in K
K 0

� �
ways and the latter in

N � K
I � K 0

� �
ways. However, the total number of ways

of choosing I variables from N is N
I

� �
, thus giving

the required probability. Thus,
PðAjBÞ ¼

K
K 0

� �
N � K
I � K 0

� �

P ðKÞ N
I

� � X
� N

K

�

j¼1

PðBjÞ

¼

K
K 0

� �
N � K
I � K 0

� �

P ðKÞ N
I

� � PðKÞ ¼

K
K 0

� �
N � K
I � K 0

� �
N
I

� � :

ðA:6Þ
Thus,
P ðK 0jI ;KÞ ¼

K

K 0

� �
N � K

I � K 0

� �0

N

I

� �
if K 0

6K; 06 I � K 0
6N � K

0 otherwise

8>>>>>>>><
>>>>>>>>:

:

ðA:7Þ
Thus,

P ðK 0jIÞ ¼
Xf ðdÞ
l¼K 0

PðK 0jI ; lÞ � P ðlÞ

¼
Xf ðdÞ
l¼K 0

l

K 0

� �
N � l

I � K 0

� �
N

I

� � AðlÞ
Nf ðdÞ

ðfrom Eq: ðA:3ÞÞ ðA:8Þ
P ðK 0jIÞ gives the transition probability from state I
to state I � K 0. Using the above expression, the

state transition matrix Q for the Markov Chain

can be calculated. Let Si; 16 i6M be the mean

number of steps to absorption from state i. Then
the Sis can be calculated as follows:

ðI�QÞS ¼ E; ðA:9Þ
where I is an M �M identity matrix, S is a M � 1

column matrix and E is a M � 1 column matrix of

ones. SM will give the mean number of steps to

absorption from state M i.e. the mean number of

steps to answer a query consisting ofM sub-queries.
References

[1] D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumen-

ting the world with wireless sensor networks, in: Interna-

tional Conference on Acoustics, Speech and Signal

Processing (ICASSP 2001), Salt Lake City, UT, May 2001.

[2] J. Warrior, Smart sensor networks of the future, Sensors

Magazine (March 1997).

[3] G.J. Pottie, W.J. Kaiser, Wireless integrated network

sensors, Communications of the ACM 43 (5) (2000) 551–

558.

[4] A. Cerpa, et al., Habitat monitoring: application driver for

wireless communications technology, in: 2001 ACM SIG-

COMM Workshop on Data Communications in Latin

America and the Caribbean, Costa Rica, April 2001.

[5] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed

diffusion: a scalable and robust communication paradigm

for sensor networks, in: ACM/IEEE International Confer-

ence on Mobile Computing and Networks (MobiCom

2000), Boston, MA, August 2000.

[6] C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heide-

mann, Impact of network density on data aggregation in

wireless sensor networks, in: Proceedings of the 22nd

International Conference on Distributed Computing Sys-

tems (ICDCS�02), Vienna, Austria, July 2002.



N. Sadagopan et al. / Ad Hoc Networks 3 (2005) 91–113 113
[7] B. Krishnamachari, D. Estrin, S.B. Wicker, The impact of

data aggregation in wireless sensor networks, in: Interna-

tional Workshop on Distributed Event-Based Systems

(DEBS �02), Vienna, Austria, July 2002.

[8] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, Next

century challenges: scalable coordination in sensor net-

works, in: ACM/IEEE International Conference on

Mobile Computing and Networks (MobiCom �99), Seattle,
WA, August 1999.

[9] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M.

Franklin, S. Shenker, The sensor network as a data-

base, Technical Report 02-771, Computer Science

Department, University of Southern California, September

2002.

[10] P. Bonnet, J.E. Gehrke, P. Seshadri, Querying the

physical world, IEEE Personal Communications 7 (5)

(2000) 10–15.

[11] P. Bonnet, J. Gehrke, P. Seshadri, Towards sensor data-

base systems, in: Mobile Data Management, Hong Kong,

January 2001.

[12] S. Garg, P. Pamu, N. Nahata, A. Helmy, Contact based

architecture for resource discovery (CARD) in large scale

MANets, USC-TR, July 2002, submitted for review.

[13] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R.

Govindan, S. Shenker, GHT––a geographic hash-table for

data-centric storage, in: First ACM International Work-

shop on Wireless Sensor Networks and their Applications,

2002.

[14] M. Chu, H. Haussecker, F. Zhao, Scalable information-

driven sensor querying and routing for ad hoc heteroge-

neous sensor networks, International Journal of

High Performance Computing Applications 16 (3) (2002)

90–110.

[15] Z.J. Haas, M.R. Pearlman, P. Samar, The zone routing

protocol (ZRP) for ad hoc networks, IETF MANET

Internet Draft, July 2002.

[16] Y. Yao, J. Gehrke, The Cougar approach to in-

network query processing in sensor networks, in: SIG-

MOD 2002.

[17] W.R. Heinzelman, J. Kulik, H. Balakrishnan, Adaptive

protocols for information dissemination in wireless sensor

networks, in: Proceedings of the Fifth Annual ACM/IEEE

International Conference on Mobile Computing and Net-

working (MobiCom �99), Seattle, WA, August 1999, pp.

174–185.

[18] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan,

Energy-efficient communication protocol for wireless mic-

rosensor networks, in: 33rd International Conference on

System Sciences (HICSS�00), January 2000.

[19] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong,

TAG: a tiny aggregation service for ad-hoc sensor

networks, in: Proceedings of the Fifth Annual Symposium

on Operating Systems Design and Implementation (OSDI),

December 2002.

[20] B. Nath, D. Niculescu, Routing on a curve, HotNets-I,

Princeton, NJ, October 2002.
[21] D. Braginsky, D. Estrin, Rumor routing algorithm for

sensor networks, in: First Workshop on Sensor Networks

and Applications (WSNA), September 2002.

[22] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and

replication in unstructured peer-to-peer networks, in:

ICS�02, New York, USA, June 2002.

Narayanan Sadagopan is pursuing his
doctoral degree in the Computer Sci-
ence Department at the University of
Southern California (USC). He re-
ceived his M.S. in Computer Science at
USC (Spring 2001) and B.E. in Com-
puter Science and Engineering at Re-
gional Engineering College (REC),
Trichy, India (Spring 1998). He is
interested in algorithms and mathe-
matical modelling. Currently, he is
applying techniques from these areas
in analysis of mobility in ad hoc
networks and routing/querying in

sensor networks.

Bhaskar Krishnamachari received his
Bachelors degree in Electrical Engi-
neering with a four-year full-tuition
scholarship from The Cooper Union
for the Advancement of Science and
Art in 1998. He received his Masters
degree and his Ph.D. in Electrical
Engineering from Cornell University in
1999 and 2002, under a four-year uni-
versity graduate fellowship. Since Fall
2002, he is an Assistant Professor in the
Department of Electrical Engineering
at the University of Southern Califor-
nia (USC), where he also holds a joint
appointment in the Department of Computer Science. His pre-
vious research has included work on critical density thresholds
in wireless networks, data-centric routing in sensor networks,
mobility management in cellular telephone systems, multicast
flow control, heuristic global optimization, and constraint sat-
isfaction. His current research is focused on the discovery of
fundamental principles and the analysis and design of protocols
for next generation wireless sensor networks.

Ahmed Helmy received his Ph.D. in
Computer Science (�99), M.S. in Elec-
trical Engineering (�95) from the Uni-
versity of Southern California, M.S. in
Eng. Math. (�94) and B.S. in Electron-
ics and Communications Engineering
(�92) from Cairo University, Egypt.
Since 1999, he has been an Assistant
Professor of Electrical Engineering at
the University of Southern California.
In 2000 he received the USC Zumberge
Research Award, and in 2002, he re-
ceived the National Science Founda-
tion (NSF) CAREER Award, and the
best paper award from the IEEE/IFIP MMNS International
Conference. He founded––and is currently directing––the wire-
less networking laboratory at USC. His current research inter-
ests lie in the areas of protocol design and analysis for mobile ad
hoc and sensor networks, large-scale resource discovery,
mobility modelling, design and testing of multicast protocols, IP
micro-mobility, and network simulation.


	Active query forwarding in sensor networks
	Introduction
	Related work
	Basic description of ACQUIRE
	Analysis of ACQUIRE
	Basic model and notation
	Mechanism of query forwarding

	Steps to query completion
	First-order analysis

	Local update cost
	Total energy cost
	Special case: d=0--random walk

	Optimal look-ahead
	Effect of c on ACQUIRE

	Analysis of alternative approaches
	Expanding ring search
	Flooding-based query

	Comparison of ACQUIRE, ERS and FBQ
	Effect of c
	Effect of M/N

	Validation of the analytical models
	Simulation setup
	Effect of c on ACQUIRE
	Comparison of ACQUIRE, ERS and FBQ
	Effect of c
	Effect of M/N


	Latency analysis
	ACQUIRE
	ERS
	FBQ

	Storage requirements
	Discussion and future work
	Conclusions
	Acknowledgements
	Detailed analysis of steps to query completion
	Transition probabilities

	References


