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ABSTRACT

We use a constrained optimization framework to derive fometa

tal scaling laws for both unstructured sensor networks ¢tvhise
blind sequential search for querying) and structured senst
works (which use efficient hash-based querying). We find that
the scalability of a sensor network’s performance depenuis u
whether or not the increase in energy and storage resouiites w
more nodes is outweighed by the concomitant applicati@cifip
increase in event and query loads. ketbe the number of events
sensed by a network over a finite period of deploymeiite num-
ber of queries for each event, andthe size of the network. Our
key finding is tha'/? - m must beO(N'/*) for unstructured net-
works, andg*/® - m must beO(N'/?) for structured networks, to
ensure scalable network performance. These conditioesrdite

(i) whether or not the energy requirement per node growsowith
bound with the network size for a fixed-duration deployméii,
whether or not there exists a maximum network size that can be
operated for a specified duration on a fixed energy budget(iignd
whether the network lifetime increases or decreases wétsire

of the network for a fixed energy budget. We discuss the macti
implications of these results for the design of hierardhiwa-tier
wireless sensor networks.

Categories and Subject DescriptorsC.2.2 Computer Communi-
cation Networks: Network Protocols

General Terms: Design, Performance, Theory

Keywords: Modeling, Wireless Sensor Networks, Energy Effi-
ciency, Theory, Performance Analysis, Querying, Scaitgbil

1. INTRODUCTION

Wireless sensor networks are envisioned to consist of lauge
bers of embedded devices that are each capable of sensing, co
municating, and computing. While the network as a whole is re
quired to provide fine resolution monitoring for an extengedod
of time, the individual embedded devices face some fundéahen
constraints. They are typically deployed with limited leagtsup-
plies and, because of their form factor and low cost, may lads@
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limited data storage capability. The goal of this paper iarider-
stand the conditions under which a query-based data-cesstnisor
network [1] can be operated in a scalable manner despite tues
straints on energy and storage.

We consider both unstructured and structured varietiesatz-d
centric querying along with replicated storage in this papeun-
structured querying schemes, the node issuing the query riate
know in advance where any copy of the requested event informa
tion can be found. The query dissemination is therefore & fofr
blind search (this can take the form of an expanding ringckear
a sequential trajectory search). In structured queryimgses, a
hash or index is used so that the querying node knows exahtyav
the nearest copy of the requested event information canuefo
In such networks, there is a trade-off between the energi abs
replicated storage and querying that is determined by thebeu
of replicas created for each event. A large number of repliea
sults in lowered query cost at the expense of greater staasje
and vice versa. We can formulate an optimization problemsgho
aim is to select the optimum number of replicas that minimike
total energy cost of querying and storage, subject to caimésron
storage. We use this optimization problem as a tool to ifietiie
conditions, in terms of the numbers of events and queriegerun
which query resolution can be performed in a scalable maa&er
spite constraints on storage and energy.

We find that operating a network in a scalable fashion esabnti
requires that the traffic load due to additional events areigs be
outweighed by the improvement in energy and storage ressurc
obtained as the network size increases. Note that the goalin
event and query activity with network size is applicatiomrafic
— e.g., in many applications there may be only a constant eamb
of queriers regardless of the network size, but the numbeverfts
detected grows linearly with the covered area; in otheriagfidns,
the number of querying nodes may increase in some fashidn wit
the network size, while the events detected remain constant

The following are the key contributions of this work:

e We present models for the search and replication costs for
structured and unstructured networks for two-dimensional
grid and random network deployments (see section 3); then
formulate and solve an optimization problem to determine
the optimal number of replicas in each scenario to minimize
the total energy cost subject to storage constraints (see se
tion 4).

We derive the event-query scaling conditions to ensure that
the required storage per node does not grow without bound
as the network size increases (see section 5).\L&e the
size of the sensor network the total number of events that
are generated in the network during its fixed period of opera-



tion, andq the number of queries per event. We find that for storage and local storage in[12]. A hybrid push-pull quencpss-

unstructured querying;'/? - m must beO(N3/%) to avoid ing strategy is proposed and analyzed in [13]. Shakkotdi fiz4

requiring unbounded storage per node for efficient oparatio  presented a comparison of the asymptotic performanceex tlan-

while the equivalent condition for structured queryinghatt dom walk-based query strategies, showing that a rendezvased

¢*/® - m must beO(N). sticky search has the best success probability over time. oph

timal parameter setting for the comb-needles approachaily zed

e \We derive the conditions under which the energy requirement j, [15]. An analytical comparison of the comb-needles appho

per node remains bounded as the network size increases (se@nd data centric storage is provided in [16]. These studies hot

section 6). For bounded energy, we find that> - m must developed fundamental scaling laws for data-centric qognyith

be O(N'/*) for unstructured querying ang/? - m must be replicated storage with respect to the scaling of event aretyq

O(N'/?) for structured querying. Note that the conditions |oads — to our knowledge this is the first work on the topic.

for achieving the bounded energy are stricter than the eondi

tions for achieving bounded storage. With regard to schlabi

ity, this suggests that energy constraints are fundanigntal 2. ASSL_JMPTIONS ) )

more limiting than storage constraints. Further, the condi  The following are the key assumptions in our work:

tions are so strict that even reasonable models for the scal-

ing of event generation (e.g., having the number of events

increase proportionally with the area covered) cannot be su

tained by arbitrarily large networks.

e N nodes are deployed with constant density in a two- dimen-
sional square area. The constant density implies that if the
network size is increased, the deployment area grows pro-
portionally.

e \We investigate the scaling of network size when we have a
fixed per-node energy budget (see section 7). We find that
when the event-query rates scale faster than the aboesistat
conditions for bounded energy, there exists a maximum net-
work size beyond which not all queries for events can be re-
solved within the period of deployment before the available
energy is depleted. A finer-grained analysis reveals when th
maximum network size increases as a concave function of e The sensor network is deployed for a fixed application-djzeci
the average per-node energy, and when it increases as a con- time durationT".
vex function. This is useful from a design perspective as it
indicates whether investing in an increased per-node gnerg e During this time duration, there are atomic events that are

e Our results are applicable to both square grid and random
deployments of nodes, because we show that they both have
the same scaling of querying and storage costs except for
different constants.

e The radio radius of a node is R for all nodes.

allocation results in super-linear or diminishing retuwith sensed in the environment. The distribution of events is as-
respect to network size. sumed to be uniform in the deployment area.

e We consider variable-time deployments on a fixed energy e Atotal of r; copies of each event are maintained with a uni-
budget and examine how the network lifetime varies with form distribution in the network by creating — 1 additional
network size (see section 8). We find that depending on the replicas when the event is first sensed.

query-event scaling behavior, the lifetime can increase, r

main constant or decrease with the addition of nodes to the ~ ® FOr each event, there are a total of; queries that are gener-

network. ated uniformly by the nodes in the network. Each query is a
one-shot query (i.e. requires a single response, not anzonti
e We argue that limiting the network size to a maximum value uous stream), and is satisfied by locating a single copy of the
can be interpreted as decomposing a larger network hierar- corresponding event.

chically into many multi-hop clusters of size smaller than
this maximum value, such that queries are limited to events
sensed and stored within the cluster. If the applicatiomikho
require that queries from farther off be resolved, then it is
essential to create a wired second-tier which can transport
queries across clusters with minimal energy overhead.

e We assume that the links over which transmissions take place
are lossless (e.g., using blacklisting) and present nofarte
ence due to concurrent transmissions (e.g., due to lowdraffi
conditions or due to the use of a scheduled MAC protocol).

e The total energy cost for storage and querying is assumed to

be proportional to the total number of transmissions. This
1.1 Related Wor.k. ) ) ) - is reasonable particularly for sleep-cycled sensor né¢svor
Our focus on scalability issues studied using order nataio where radio idle times are kept to a minimum.

certainly inspired by the well-known work on transport czipaof

wireless networks by Gupta and Kumar [7], though we do naisoc
on wireless bandwidth limitations. There has also been seonk
on the asymptotic energy-constrained capacity of wiresessor
networks [8]. And some prior studies have looked at maxingzi
the lifetime of continuous data-gathering [9, 10, 11]. Huere
these studies are different in scope from our work whichési$ed
on the scalability of wireless sensor networks that emplata-d
centric storage and querying.

There have been several interesting prior studies on acellyt
modeling of query strategies [12, 13, 14, 15]. The energyscok
data centric storage are compared with the two extremeserfret

e We assume that the storage at each node is a constant amount
s, SO that the total storage = s - N, where each event copy
requires a unit of storage.

3. MODELING QUERYING AND
REPLICATION COSTS

We now turn to developing mathematical models to quantiéy th
cost of replication and search. We consider two types of-data
centric querying techniques: structured and unstructuredtruc-
tured environments, the data is stored in the network amigzvet!



from it using a hash. This approach is exemplified by the geo- | | ‘1 | 2 | = |

graphic hash-table technique [2]. Thus in structured dogrthe
querying node is aware of the location of the nearest copyef t
replicated event information and sends the query direcilthis
point to get a response. In unstructured environments, btrast,
there is no predetermined location where the querying neae ¢
send a query. Hence the query must be disseminated throogma f
of blind search. If latency is not a concern, efficient unstuced
querying strategies involve expanding ring searches anesgal
trajectories [3, 4].

It turns out that whether the network is deployed in an aréa un
formly with a random distribution of nodes or as a reguladgtie
expressions resulting energy costs for storage and queayathe
same, except for differences in coefficients. We preserstetice-
efficients for the two deployments in Table 1. Detailed dsions
are presented in our technical report [6]. We present behstead
some approximate first-order modeling with intuitive explions
for how these costs vary as a function of the network $Vzand
the number of copies, for a given event.

First consider the replication costs. In both the structuaed

unstructured case these are same. The average number of hops

from random event locations in the network to random locegtio
is proportional toy/N (since theN nodes are placed in a square
area). Thus the cost of creating and plactngl replicas at random
locations in the network from random event locations is:

C’r‘eplicatiun =C1- \/N : (7” - 1) (l)

Let us then consider the search cost for a structured emagoh
If the number of copies is kept fixed, since the replicas aaeqd
uniformly in the network, the distance (in hops) betweenghery-
ing node to the nearest replica increases with the netwaek as
proportional toy/N. If, on the other hand, the network size is kept
fixed, then as the number of replicas increases and contiioues
be placed in the two-dimensional area with a uniform distidn

among theN nodes, the expected one-dimensional distance to the

nearest replica decreases inversely proportiona/to Thus we
have the following:

VN
VT

Finally, let us consider the search cost for an unstructersdt
ronment. The search is analogous to looking sequentiatlyhi®

@)

Csear'ch,st'r‘uctur'ed =C2 -

first of r specific objects of a desired type from a randomly ordered
set of N total objects. It can be shown that the expected number of

steps till the first object of the desired type is observeadvisrgas :

N
.r—&—l @)

We have derived the above expression in previous work, ftr bo
random and grid settings [5, 16].

We note that in calculating the search costs we have notagbkpli
taken into account the cost to return the response back tpigny-
ing node. For the structured scheme, this is easy to incarpas
the response is returned along the reverse path as theedigpaotry,
and hence incorporating this cost is equivalent to simplybting
the cost (which can be absorbed into the constant term). Heor t
unstructured scheme, the cost of a directed response will thee

Csearch,unstructu'red = C3

orderO(%) and hence, for the large networks that are the focus

of this study, negligible compared to thb(%) cost of the blind
search.

Looking at equations (1), (2), and (3), we find that, as exgmbct
the replication costs increase with the number of replichde the

. 2
Grid 3 1 1
0.52 c
Rand. —_— 2.15
R\/p R\/p

Table 1: The constants for the cost expressions (1), (2), arfd)
for both regular grid and uniform random deployments, where
R is the radio radius defined in section 2,c is a constant in
(0.66, 1.71), and p is the density of nodes.

search costs decrease with the number of replicas. We calvees
this tradeoff by considering the aggregate total expectesi of
search and querying and optimizing for it.

The following is the common form of the total cost:

m m
Co=aiCs(rs) + > Cr(rs) @)
i=1 =1
whereC (r;) is the expected search costif event and”..(r;) is
its expected replication cost.
From the above, we get the following expressions for the ex-
pected total energy cost for all events which consists atbezosts
weighed by the number of queries as well as the replicatistsco

1. Under the unstructured replication scheme, the totaiggne
cost is

Cuotw = o=tz + 3 erVN(ri=1)  (5)
i=1 B i=1

2. Under the structured replication scheme

Cune =3 DL+ VN r-1) @)
i=1 ¢ i=1

To simplify our expressions, with a slight abuse of notatioe
shall make the following substitutions: in equation (7}eaflivid-
ing both sides by, we letCiot,w/c1 — Ctot, @and E—fqi — qi;
in equation (8), after dividing both sides by, we letCiot,s/c1
— Clot,s and %qi — ¢;. And the following expressions are the
simplified versions;

Crotu =3 - f Y VNG - 1) @)
=1 i=1
m \/N Z m

Crots =Y \/7__‘1 +S VN@i - 1) ®)
i=1 i=1

4. OPTIMIZATION FORMULATION

Now we can formulate the problem of optimizing the total cost
as follows;

Minimize Cy =", ¢iCs(r:) + 37,

CT-(TZ‘)
©)
s.t 27’;1 r, <8

(3

The optimization formulation does require global knowledx
query rates for each event and hence the optimum may not be nec
essarily achieved by distributed heuristics in practiad, this is



still a useful tool for our investigations of performancealswility

as it provides the best-case scenario. We solve this probsing

the method of Lagrange multipliers. The Lagrangian funcfiar

this inequality-constrained optimization problem can kgressed
using a Lagrange multipliex and a slack variable as follows;

m

Ct +)\(ZT’Z —S+IE2)

i=1

L(T,\,x) = (10)

It can be shown that the objective functions for both the nuiest
tured and structured scheme are all convex. Thus, first-cate
ditions are sufficient for global optimization. Solving feecondi-
tions, we find that

i) When the constraint is inactive (i.8.= 0), we have that

g//?N'* —1, (unstructured)
T;inact = (11)
B q2'?, (structured)
where
8 = 9—2/3 (12)
i) When the constraint is active (i.e.= 0, A > 0), we get
% V@ — 1, (unstructured)
j=1 j
Tz?:act = (13)
ﬁ "3, (structured)
i=19;

Now we can derive the optimal expected total energy costs sub
stituting equation (11) and (13) into equation (7) and (&pee-
tively as follows;

i) For the unstructured network

VN (N1/4\/E—

+3 NG (Inactive)
Crou = (14)
VI (2 - 2)
+3, Efmis@ JT N, (Active)
i) For the structured network
( 271 \/L Nq2/3
+X0 VN (ﬁa " - ) . (Inactive)
Cis= »
Ez 1 VN <Em 373 4; 1)
j=1 J
3
[+, 7””1 ¢*VN, (Active)
(15)

In order to have better understanding in the behavior of e o
timal total cost, we look into optimal total costs assumingttthe
query rate for each item is same one another, thaf is ¢,V i.
Figure 1 shows the optimal per-node total cost (which eqtreds
optimal total cost divided by the number of nod¥3} vs. the num-
ber of eventgm) as X axis and the query rafg) as Y axis when
N = 10". The curved thick line represents the boundary of enough
storage for unconstraint optimal point. Beyond that boupdhe
surface increases sharply and it is more sensitive to thieadse in
the number of events than that of query rate. Note that the-str
tured replication scheme has a gentler incline and largeonm
strained region than the unstructured replication scheme.

5. SCALING CONDITIONS FOR
BOUNDED STORAGE

As we have seen above, when the available storage in the net-
work exceeds the sum of the unconstrained optimum number of
copies for all events, we have an efficient region where tiheaor&
can achieve the smallest total energy cost of querying (epléita-
tion). From a scalability perspective, it is desirable tsue that
the per-node storage requirements remain bounded irbspet
the network size. This is equivalent to requiring that thieeea
constant storage per node such that the total storage= s - N.

DEFINITION 1. We say that a networkcales efficiently with
bounded storagéf

ANy st. VN > No, Y riinace <S=s-N

i=1

(16)

To obtain useful insights regarding scalability, we sirfypbur
expressions from this point on by assuming that the quegyfoat
all events is uniform, i.eq; = ¢, Vi. We now give scaling results
that quantify the above condition for structured and umstmed
networks.

THEOREM 1. Conditions for Efficient Operation of Unstruc-
tured Networks with Bounded Storagéor unstructured networks,

if condition (16) holds, them - ¢*/2 must beD (N3/4). Further,
ifm-q"2iso (N3/4) , then condition (16) holds.

Proof: If condition (16) holds, then the following holds for all
N > Nop:

Zr'?,inact = mq1/2N1/4_m S sN

=1
= m(¢'/? =N < sN¥* 17)
= mq'’? < sN¥* (18)

Sinces is constantyn ¢'/2 is O (N3/4) . Note that inequality (18)
holds for the sufficiently large&V > Ny sinceN /4
as N goes to infinity.

On the other hand, if2 ¢*/? is o (N3/4) , then forN > N, and

any arbitrary small positive constant

goes to zero,

mq1/2 < N34 < gN3/4

1/2_mN71/4 <mq1/2 <SN3/4

m
m) = Zﬁ,mact <sN=S
i=1

= mgq
- m(q1/2N1/4 .
O

THEOREM 2. Conditions for Efficient Operation of Structured
Networks with Bounded StorageFor structured networks, if con-
dition (16) holds, then?/® - m must beD(N). Further, |qu/3
is o(N), then condition (16) holds.

Proof: It can be proved in the same way as proof of Theorem 1
using the structured case of equation (11).
m]
Theorem 1 and Theorem 2 are not symmetric. It is important to
note that it is possible that the network is operating ineffitty in

the constrained region when th&'2 - m is © (N3/4) (in case of



optimal total cost (x10%)

# of events

total cost (x10%)

opti nal

(b)

Figure 1: (a) The per-node total cost of the unstructured nework of N = 10000 (b) that of the structured

unstructured networks), ad’® -m is ©(N) (in case of structured
networks).

To understand the implications of these theorems, it isfhilelp
consider some extreme cases of the scaling behavior of thbewu
of events {n) and the query rategf. We consider allowing each
of these parameters to scale@l) or ©(XV), giving us four pos-
sible combinations. In practice the scaling behavior ofdhents
and queries with network size is determined by the appboatce-
nario. For instance, an application which requires the agtfre-
gardless of its size) to have only a single sink injectingrigpssfor
events would have thatis ©(1), while a richer application involv-
ing increasing numbers of users with the network size coailgth
that®(NN). For many event monitoring applications, it is likely to
be reasonable to assume that the number of observed evales sc
proportionally with the deployment area which for a constian-
sity deployment would mean that is ©(V); however in other
applications the scaling of: may be weaker, all the way down to
the extreme o (1) (which would imply that there only a finite
number of events that can be detected regardless of the metwo
size).

Consider each combination first for the case of unstructnedd
works. Wheng andm are both©(1), then by Theorem 1, in this
case the networks always scale with bounded storage; wied

m are both®(N), theng'/? - m becomesd (N:’/Q) and hence

(since this is notO N3/4)), by Theorem 1, the network never

scales with bounded storage. The following table summsitize
scalability for each case with unstructured networks:

o > o(1) O(N)
o(1) Always Never
O(N) Always Never

Table 2: lllustration of scenarios under which unstructured
networks scale efficiently with bounded storage.

Similarly, we can apply Theorem 2 to analyze the scalabitity
structured networks for these illustrative scenarioss Thsumma-
rized in the following table. Here, one interesting caséa tvhen

g is ©(1) andm is ©(N), the network can potentially operate in
either the active storage constraint or the inactive stocagstraint
region as it scales. This is because in this ggé&-m is ©(N), so
that the second (efficiency-guaranteeing) clause of The@rdoes

not apply.

o > o(1) O(N)
o(1) Always Possibly
O(N) Always Never

Table 3: lllustration of scenarios under which structured
networks scale efficiently with bounded storage.

6. THESCALING BEHAVIOR OF ENERGY
COSTS

We now examine the scaling behavior of the total energy costs
for both unstructured and structured networks.

THEOREM 3. The total energy costs for unstructured networks
grow with network sizéV as follows:

S (m g2 N3/4) , (inactive)

Clu= (19)

<) (N 32 4 m? ~q) ., (active)

Proof: In the inactive constraint region, the total energy cost is
given from equation (14) by,

ix/ﬁ (N4 —2) + iz\ﬁ/“\@
1=1 i=1

_ 2mq1/2N3/4 —9mN/?
- o (mq1/2N3/4>

In the active constraint region, the total energy cost igigifrom



equation (14) by,

m +S)
N g ) Jgi—2
Z Jlf
N
+Z m+S \/_
2
3/2  arl/2 m-qN
sN N m+7m—|—sN

o (N3/2 + m2q)

Since it is reasonable to consider that the number of evenis
at most proportional tdV, sN is dominant compared ta. Thus,

is © (m*q), and so equation (20) holds.

(20)

m qN
m—+sN

O

THEOREM 4. The total energy costs for structured networks
grow with network sizéV as follows:

© (m SR N1/2) ., (inactive)

Cis= (21)

S} (N3/2 +m2/?. q) , (active)

Proof: It can be proved in the same way as the proof of Theo-

rem 3 using the equation (15)
ad

To illustrate the scaling of these costs, we again consiaefaur
scenarios pertaining pandm. As we observed in Table 2, for the
unstructured networks, scaling with unbounded storagkssmved
only whenm is ©(1) (regardless ofj); whenm is ©(N), then
the network operates in the active constraint region asaltesc
Substituting into the relevant cases of Theorem 3, thegzefoe get
the following table for the four cases.

> (1) o(N)
o() O(NT™) O(N?)
S(N) O(N*TT) O(N)

Table 4: lllustration of the scaling of total energy costs fo
unstructured networks.

We generate a similar table below using Theorem 4 to illtestra
the scenarios for structured networks. As mentioned abmskien
m is ©(N) andq is ©(1), both active and inactive constraint re-
gions are possible. However, it turns out that in both cabes t

scaling shows the same ord& <N3/2)).

> o(1) O(N)
6(1) O(N'7%) O(NT%)
S(N) o) o)

Table 5: Illustration of the scaling of total energy costs fo
structured networks.

We observe something striking about Tables 4 and 5. In beth ta
bles, among the four cases, only when bpémdm are©(1) do we
observe that the total costs for the whole network sca(@(@§). In
other words, only in this example case do we hé\(&) scaling of
the per-node cost, i.e. bounded energy consumption per fidike
motivates us to inquire about the general conditions undéciwe
network can scale while ensuring that the energy requiréipen
node is kept bounded — a very important requirement from e-pra

tical perspective.

THEOREM 5. For unstructured networks, the energy require-
ment per node is bounded if and only if

q1/2~m is O(N1/4)

Proof: the total optimal energy cost per node is the total cost di-
vided by the number of node¥. If the energy requirement per
node is bounded, the per-node total energy cost musb{g.
From Theorem 3, the per-node total cost cannot be bounded re-
gardless ofn and/org in the active constraint region since it is at
leastO(N1/2). In the inactive constraint region, however, the per-
node total cost is given from equation (14) divided/gyassuming
¢ = q, Vi) as follows:

Cio/N = 2mg'/PN"V* -
whereC is a sufficiently large constant.

= m. (q1/2 . N71/4) CON1/4

CO

1/2

2mN "~ < Co

= mqg'/? < N1/4, VN > No (22)

Note that inequality (22) holds sind¥ ~'/* goes zero asV goes
to infinity. Thereforeng'/? is O (N”“).

On the other hand, if.g'/? is O (N1/4),

mg'/? < CoN'/*
- m- (q1/2 _ N71/4) < Cy N4
= 2mqPN"V* —oamNV?2 < Cy/2 (23)

Note that the left side of inequality (23) is equal to the wytied
per-node total energy cost in the inactive constraint meg#s for
the total cost in the active constraint region, howevergesiime as-

sumption that isng'/? is O (N1/4 already satisfies the condition

of theorem 1, it is sufficient to consider the total cost initfactive
constraint region only. Therefore, the per-node total @neost is
bounded agV goes to infinity.

m]

THEOREM 6. For structured networks, the energy requirement
per node is bounded if and only if

q2/3~m is O(Nl/z)

Proof: It can be proved in the same way as the proof of theorem 5
using the equation (15).
|

CoROLLARY 1. For both structured and unstructured networks,
if the energy requirement per node is bounded, the netwdss a
scale with bounded storage. i.e., the bounded energy rexangint
is a stricter condition than scaling with bounded storage.

7. NETWORK SCALING ON FIXED
ENERGY BUDGET

So far, we have seen the conditions for bounded storage and en
ergy and the scaling of energy costs as a function of evenaand
tivity rates. We now consider having a fixed energy budged, an
look into what conditions the network size must satisfy tswee
that events and queries within the finite deployment timetiom
can be resolved before energy depletion. Specifically, Wieas4
sume that there is an average energy buddet each node, so that
the total energy id¥ = e - N.



DEFINITION 2. We say a networloperates successfullif it
can satisfy all queries for all events in a given deploymesrtqal
before energy depletion. This requires tldat< e - N.

THEOREM 7. For unstructured networks, given fixed average
per-node energy (i.e., the total energy allocated optimally among
the nodes in the network grows linearly with the network sige
E = e - N), the following statements describe the conditions on
the network sizeV, the number of events: and the number of
queries per evend that ensure that the network can be operated
successfully.

1. Ifm - ¢*/? iso(N'/*), then there exists a minimum network
size Nin (e) beyond which it can always be operated suc-
cessfully.

2. It m - ¢*/? is ©(N'/*), then there exists an average per-
node energy:* such that for alle < e*, it is not possible to
operate a network of any size successfully, while foe all
e” itis possible to operate a network of any size successfully.

3. If m - ¢'/% isw(N'%), buto(N), then there exists a maxi-
mum network siz&V.,.. (¢) beyond which the network can-
not be operated successfully. Furth€f, .. is a convex func-
tion ofe.

. Ifm - ¢'/? is ©(N), then there exists a maximum network
Size Nmaz (€) beyond which the network cannot be operated
successfully. FurtheN,,., increases linearly witte.

5. If m - ¢'/? is w(N), then there exists a maximum network
size Nmaqz(€) beyond which the network cannot be operated
successfully. FurtheN,,.. increases as a concave function
of e.

Proof:

1. m-q'/? = ©(N**~<) wheree > 0. Then, the optimal total
cost is given from Theorem 3 by,

C"')(m . ql/2N3/4) _ @(lee)
OéN176+O(N176)

*
Ct,u,inacti'ue

Since the total cost expenditure should be less than the give
energye - N,

aN'™ 4 o(N'™¢) <eN

Note that there exist&v > N, such that this inequality
holds, wherelNy is a fixed constant and can be considered
as the minimum network size to make the network operate
successfully. Note that this condition satisfies the thmote
and so the network is in the inactive constraint region.

2. We can prove this case in the same way as the case 1.f
q'/? = ©(N'*). Then, the total cost is given by,

O(m - ¢"*N**) = O(N)
aN + o(N)

*
Ct,udnacti’ue

From the total cost expenditure constraints,
aN +o(N) <eN

Note that there exists > e* > « such that this inequality
holds for all V.

3. In this case, we have two sub-casesnlifg'/? = O(N3/%),
we should use the corresponding inactive cost by Theorem 1.
Otherwise, we should use the active cost. First of all, let's
consider the first sub-casen - ¢'/2 = ©(N'/4*<) where
0 < € < 1/2. Then the optimum total cost is given by,

@(m . q1/2N3/4) _ @(N1+€)
aN1+e _|_ O(N1+e)

*
Ct,udnacti’ue

From the the total cost expenditure constraints,
aN'Te 4+ o(N'T9) < eN

Note that there exist¥,,,.. such that it achieves the equality.
Fore >> «, Nma2 Can be approximated as follows:

Nmaz _ (1/0{)1/6 . e1/e

, Wherel/e > 2. Therefore, thiV,,q. IS a convex function
of e.

Now, let's consider the second sub-case, whereql/2 =
O(N3/4%¢),0 < € < 1/4 and we should use the active total
cost. Through the similar reasoning, we can easily achieve
the following equality with approximation far >> a.

1 2 2
Naz = (_)4e+1 . eTerT
0%
wherel < ﬁ < 2. Therefore, thisV,,.. IS a convex

function ofe.

As for cases 4 and 5, they can be proved in the same way as case 3
using the active total cost equation.
m]

THEOREM 8. For structured networks, given fixed average per-
node energye (i.e., the total energy allocated optimally among
the nodes in the network grows linearly with the network size
E = e - N), the following statements describe the conditions on
the network sizeV, the number of events, and the number of
queries per eveng that ensure that the network can be operated
successfully.

1. Ifm - ¢*/? is o(N'/?), then there exists a minimum network
size Nnin (e) beyond which it can always be operated suc-
cessfully.

2. If m - ¢*/3 is ©(N'/?), then there exists an average per-
node energy™* such that for alle < e*, it is not possible to
operate a network of any size successfully, while foe all
e” itis possible to operate a network of any size successfully.

3. If m - ¢*/3 is w(N'/?), but o( N*/3), then there exists a
maximum network siz&.,,...(e) beyond which the network
cannot be operated successfully. Furtiér, ... is a convex
function ofe.

. lfm-¢*/? is ©(N*/?), then there exists a maximum network
size Nmaqz(€) beyond which the network cannot be operated
successfully. FurtheN,,,.. increases linearly wita.

5. Ifm-¢*? isw(N*/3), then there exists a maximum network
size Nmaqz(€) beyond which the network cannot be operated
successfully. FurtheN,,.. increases as a concave function
of e.
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Figure 2: Network size conditions for successful operatiomvith respect to per-node energy budget for different eventate and query-
rate scaling behaviors, for an unstructured network; S dentes the successful region while U denotes the unsuccessfegjion.

Proof: This is similar to the proof for Theorem 7
a

Figure 2 illustrates the network size versus energy budgses
for the five different cases in Theorem 7. It is obtained nuicady
by equating the expressions for total cost with the energigbt
E = e- N, and solving forN as a function of, under particu-
lar m andq scaling settings that satisfy each of the corresponding
cases. (A very similar figure can be obtained for structured n
works and is omitted due to lack of space). The regions masked
and U are where the network operates successfully and uessicc
fully, respectively.

We see that under case 1, there is a minimum network sizesthat i
needed to ensure successful operation, and this minimunoriet
size decreases rapidly with increasing energy availgbilit this
case, the event and query activity remains low enough ttdihgd
nodes to the network is beneficial (as it increases the &laitatal
energy). Under the event-query activity case 2, there ®gistper-
node energy threshold such that below this threshold, noankt
can operate successfully, but beyond this threshold, mksnad any
size can be operated. Under cases 3, 4, and 5, we see thaifena g
energy budget there exist maximum network sizes beyondhwhic
successful operation is impossible. In these cases, addies to
the network is harmful as each additional node introducesemo
consumption than resources. The key distinction betweeseth
cases is that under case 3, there is a convex growth thateisnpli
that adding energy resources to each node provides a sopar-|
improvement in the maximum network size that can be susiaine
under case 4, the maximum network size grows linearly wi¢h th
per-node energy budget; and under case 5, the concave gobwth
the curve implies that adding energy resources providerisining
returns in maximum network size.

8. NETWORK LIFETIME SCALING

We now consider a relaxation of one of our key assumptions —
that the network is being operated for a fixed duration. This a
lows us to examine how the lifetime of the network (the period
over which all queries for all events can be resolved sufaihgs
scales with the network size. In this connection we will assu

that the total number of events since network initiation #relto-
tal number of queries per eventi(t), ¢(t)) are such that they are
both non-decreasing functions of time, and at least onetiscily
increasing function of time.

THEOREM 9. For unstructured networks, with a fixed average
per-node energy budget ef so long as the number of events and
queries scale temporally so that - ¢*/2 is an increasing function
of time, the lifetime of deploymefit over which the network can
operate successfully scales with the network size as pédolilog-
ing conditions:

1. ifm - ¢'/?iso(N'/*) thenT increases withV.
2. ifm - ¢'/?is©(N'/*) thenT is constant with respect .
3. ifm - ¢*/? isw(N'/*) thenT decreases withv.

Proof:

1. m-¢*? = ©(NY/*<.77), wheree > 0, 3 > 0. Then, the
optimal total cost is given from Theorem 1 by,

C"')(m . q1/2 . N3/4) _ ®(N176 . Tﬁ)
aN'" TP 4 o(N'~T")

C*
t,u,inact

From the total cost expenditure constraints,
aN'" TP 4 o(N'"“T") < eN

Note that there exist%,,,, such that it satisfies the above
equality; T < Tnq. satisfies the inequality. Fer >> «,
Tmae Can be approximated as follows:

1/8
T’rnaw = (E> . NE/B
«

where< > 0.
Therefgre, thisl.q. iINcreases withv.

. We can prove this in the similar way as the case:1¢'/2 =
O(N4T#), where > 0. Then, the optimal total cost is
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Figure 3: The network lifetime (7°) vs. the number of nodes {V) of the (a) unstructured network and (b) the structured networks
when bothm and ¢ are proportional to T’

given by, THEOREM 10. For structured networks, with a fixed average
. 12 A3/ 5 per-node energy budget ef so long as the number of events and
Ciujinact = ©O(m-q¢/7-N"7)=0O(N-T") queries scale temporally so that - ¢*/? is an increasing function
= aNT® + o(NT?) of time, the lifetime of deploymefit over which the network can
operate successfully scales with the network size as pdoliog/-
From the total cost expenditure constraints, ing conditions:
aNT? + o(NT") < eN 1. ifm - ¢*/% iso(N'/?) thenT increases withV.
Note j[hat there exist®),... such that it satisfies j[he above 2. ifm - ¢*/% is©®(N'/?) thenT is constant with respect ty .
equality. Further, foe >> «, T),q, Can be approximated as
follows: 3. ifm - ¢*/? isw(N'/?) thenT decreases with.
e\ 1/B
Traz = (E) Proof: This is similar to the proof for Theorem 9.
O

Therefore, thig .. is constant with respect . These theorems are illustrated in Figure 3 through a nuaieric

plot based on exact expressions. We can see that eventspadry
ing conditions determine whether the lifetime of the depbbyet-
work increases, decreases, or remains constant with tespeet-

3. Asthe case 3 of Theorem 7, we also have two sub-cases here
First of all, considerm - ¢*/? = ©(NY/*t<T%) | where
0 < e <1/2,8 > 0. Then, the optimal total cost is given

by work size.
Cluinaee = O(m-q"/? N¥*) 9. CONCLUSIONS AND FUTURE WORK
= O(N't.T% We have investigated the fundamental scaling behaviorasf st

age and querying in wireless sensor networks. The main tafg a
from this study is that the event and query rates must scéfie su
ciently slowly with the network size if scalable performaris de-
sired. In particular, an important scaling condition isweirsy that
aN'" TP L o(N'TTP) < eN q*/? - m beO(N'/*) for unstructured networks, and thg® - m

be O(N'/?) for structured networks. Satisfying this condition en-
sures that adding nodes to the network is beneficial in tleaeth
ergy and storage resources they bring outweigh the additevent
and query activity they induce. This can be seen from many per
g) 1/6 N—</B spectives: satisfying this condition implies that (i) semsetworks

o require bounded energy and storage per node, (ii) arthtiarge
networks can be operated successfully with a limited enbtgl
get, and (iii) that the network lifetime increases with netksize

= aN'" TP 4 o(N'TTP)

From the total cost expenditure constraints,

Note that there exist$,,.. such that it satisfies the above
equality. Further, foe >> «, T),q, Can be approximated as
follows:

Trmar = (

where—e/3 < 0. Therefore, thi€;,.... decreases withV.

Now, let's consider the second sub-case, whereql/2 = for a given energy budget.
O(N*/**<TP) with ¢ > 1/2,3 > 0 and we should use In our study we have not explicitly considered bandwidthazap
the active total cost. Through the similar reasoning, we can ity; we have implicitly assumed that the energy constraivitsbe
easily achieve the following equality fer>> «: more severe than bandwidth constraints in the system. Hawiév
N energy constraints are not significant (consider as anragtizase
Trae = (f) P N-15F if all nodes could be wired for power), bandwidth issues ddug
« the dominant consideration. This is a topic for future work.

where—ﬁ — £ < 0. Therefore, thisl’,... decreases with We have made the strong assumption that queries are unyforml

distributed. However, our results showing the existence wfax-
imum network size for a given energy budget can be potentiall
O interpreted as an argument that queries need to be kepizied &b



within a fixed distance of corresponding events. In a pratlicge-
scale system where queries are uniformly generated andatbe r
of events and queries large enough that the scalabilityshiotds
are exceeded, these results motivate the decompositioargs-|
scalable sensor networks into a two-tier architecture his ¢ase,
the lower-tier would consist of the wireless nodes withiorelimited-
size cluster, while the upper-tier would provide a wiredroaetion
between cluster-heads that can be used to inject queriesany
point in the network into any cluster with minimal energy erpe.

In the future, we would like to explicitly consider scalatyilun-
der localized queries. We would also like to undertake séali
simulations and large-scale experiments to validate tladytocal
results presented in this work.
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