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Abstract—We use a constrained optimization framework to such networks, there is a trade-off between the energy costs
derive scaling laws for data-centric storage and queryingn of replicated storage and querying that is determined by the
wireless sensor networks. We consider both unstructured s [, mber of replicas created for each event. A large number of

sor networks, which use blind sequential search for queryig, . .
and structured sensor networks, which use efficient hash-lsed 'ePlicas results in lowered query cost at the expense oterea

querying. We find that the scalability of a sensor network’s Storage cost, and vice versa.
performance depends upon whether or not the increase in engy We first formulate an optimization problem whose aim is to

and storage resources with more nodes is outweighed by thegselect the optimal number of replicas that minimizes thaltot
concomitant application-specific increase in event and qu energy cost of querying and storage. We use this optimizatio

loads. We derive conditions that determine (i) whether or no bl tool to identifv th diti in t f th
the energy requirement per node grows without bound with the problem as a tool to identify the conditions, in terms of the

network size for a fixed-duration deployment, (i) whether @ not humbers of events. and queries, under which Query resqlution
there exists a maximum network size that can be operated for can be performed in a scalable manner despite constraints on

a specified duration on a fixed energy budget, and (i) whethe energy. Practically, the storage available on the sensdeso
the network lifetime increases or decreases with the size dhe g |imited, so the optimization problem should also conside
network for a fixed energy budget. An interesting finding of . .
this work is that 3D uniform deployments are inherently more this as_a constraint. It _tur_ns out, though, that the storage
scalable than 2D uniform deployments, which in turn are more CONstraints are less restrictive than the energy consdraive
scalable than 1D uniform deployments. therefore first derive the scalable operating conditiomsguan
Index Terms—Energy efficiency, Modeling, Performance anal- unconstrained v_ersion of _the op_timizqtion p_roblem, and1_the
ysis, Querying, Scalability, Wireless sensor networks use the constrained version to investigate in more detail th
behaviors of the network as its size grows.
We find that operating a network in a scalable fashion
. INTRODUCTION essentially requires that the traffic load due to additievahts
IRELESS sensor networks are envisioned to cons@d queries be outweighed by the improvement in energy and
of large number of embedded devices that are eagiprage resources obtained as the network size increastes. N
capable of sensing, communicating, and computing. Whi@at the scaling of event and query activity with networlesiz
the network as a whole is required to provide fine resolutigPplication specific — e.g., in many applications there may b
monitoring for an extended period of time, the individual-enPNnly a constant number of queriers regardless of the network
bedded devices face some fundamental constraints. They $#&. but the number of events detected grows linearly whigh t
typically deployed with limited battery supplies and, besa covered area; in other applications, the number of querying
of their form factor and low cost, may also have limited dat@odes may increase in some fashion with the network size,
storage capability. The goal of this research is to undedstawhile the events detected remain constant. Thus, our sesult
the conditions under which a query-based data-centricosenguggest that only certain types of applications are intren
network [1] deployed in various dimensions can be operatggalable, while others are not.
in a scalable manner despite these constraints on energy antinother interesting finding is that networks deployed in
storage. higher dimensions are inherently more scalable. Thus, 3D
We consider both unstructured and structured varieties $iform deployments are inherently more scalable than 2D
data-centric querying along with replicated storage irs thHniform deployments, which in turn are more scalable than
research. In unstructured querying schemes, the nodengssutD uniform deployments. Intuitively, this happens becanse
the query does not know in advance where any copy Bigher dimensions the same number of nodes can be packed
the requested event information can be found. The queMithin a smaller diameter, resulting in a lower average gyer
dissemination is therefore a form of blind search (this ket consumption per store/query operation.
the form of an expanding ring search or a sequential trajgcto N this paper we consider a fixed-radius, constant-density
search). In structured querying schemes, a hash or indexpde deployment model in which it is ensured that the network
used so that the querying node knows exactly where the rieaf€81ains connected regardless of size. Hence, it is imptcidan

copy of the requested event information can be found. [tpte that our analysis does not cover the commonly-studied
case of uniform random deployment, as this requires loga-
This work was supported in part by the NSF through the NETSSRO rithmically increasing neighbor density to ensure connégt
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not considering uniform random deployments in our analysigiery processing strategy is proposed and analyzed in [18].
is that this kind of deployment explicitly rules out the kindShakkotai [19] has presented a comparison of the asymptotic
of scalability we are interested in exploring. In the unifor performance of three random walk-based query strategies,
random deployment case, with a fixed spatial density of nodekowing that a rendezvous-based sticky search has the best
the radio range needs to be increasing¢dsg N as the success probability over time. The optimal parameterragtti
network sizeN increases in order to maintain connectivityfor the comb-needles approach is analyzed in [20]. An aRalyt
Thus, a finite per-node energy budget can never sustain aah comparison of the comb-needles approach and datacentri
arbitrarily large deployment of this kind. In the case o$torage is provided in [27]. However, these studies have not

constant radio range that we examine, however, we shadaveloped scaling laws for data-centric storage and qu@ryi

that there are conditions under which such scalability iis st
possible.

Further, all these prior studies do not address the question
of application-specific conditions that determine limita o

The rest of the paper is organized as follows. We presesualability of sensor networks. To our knowledge this is the
related work in section Il, and state our basic assumptiofisst work on the topic.

in section Ill. In section IV we formulate the unconstrained
optimization problem that is at the core of our analysis. We

IIl. ASSUMPTIONS

then examine the asymptotic energy costs associated withrhe following are the key assumptions in our work:

the optimal solution in section V to identify the applicatio
growth conditions under which the energy requirement re-
mains bounded. In section VI, we show how the network
size can vary with the available energy resources per node
for different regimes of application load. We then examine
how the network lifetime is affected by network size for
different application conditions in section VII. We incorp
rate storage constraints into the optimization framewar# a
address scaling under storage constraints in section Vi
hot-spot problem is discussed in section IX. We discuss abou
relaxed replication schemes and their effects on the gralin
laws in section X. Finally, we present concluding comments *
in section XI.

Il. RELATED WORKS

There have been many interesting studies on the scalability
of the wireless networks in terms of throughput [3]-[8]. Man
of them have focused on the upper bounds on the throughput
from the information-theoretic point of view (that is, witht
any particular assumption on the way communications take
place) using order notation, while Li et al. [8] has focused o
the feasible throughput of the network using the 802.11 MAC *
protocol. However, our study investigates the scalability
another domain, namely, energy consumption, becauseyenerg
is among the most precious resources in wireless sensor
networks.

Some prior studies have looked at maximizing the energy®
efficiency in order to increase the lifetime of wireless sgns
networks [9]-[12]. But, they have focused on controlling th
network topology given parameters such as network size.
Some other studies have looked at the asymptotic energy-
constrained network lifetime [13] or maximizing the netkor
lifetime [14]-[16]. However, these studies pertain to dont
uous data-gathering applications; our focus here is on-data
centric in-network storage and querying, which is an imgairt
paradigm for sensor networks.

N nodes are deployed with a fixed radio rangeand

a constant density in a-dimensional ballB¢ space.
The constant density implies that if the network size is
increased, the deployment area grows proportionally. We
further assume that the deployment methodology ensures
connectivity.

« The sensor network is deployed for a fixed application-

specific time duratiorf”. This assumption is relaxed in
section VII when we investigate the scalability of network
lifetime.

During this time duration, there are atomic events that
are sensed in the environment. The distribution of events
is assumed to be uniform in the deployment area.

A total of r; copies of each everntare maintained with

a uniform distribution in the network by creating — 1
additional replicas when the event is first sensed.

« For each event, there are a total of; queries that are

generated uniformly by the nodes in the network. Each
query is an one-shot query (i.e. requires a single response,
not a continuous stream), and is satisfied by locating a
single copy of the corresponding event.

We assume that the links over which transmissions take
place are lossless (e.g., using blacklisting) and present n
interference due to concurrent transmissions (e.g., due to
low traffic conditions or due to the use of a scheduled
MAC protocol).

The total energy cost for storage and querying is assumed
to be proportional to the total number of transmissions.
This is reasonable particularly for sleep-cycled sensor
networks where radio idle times are kept to a minimum.
We assume that the storage at each node is a constant
amounts, so that the total storage = s- N, where each
event copy requires a unit of storage.

IV. BASIC OPTIMIZATION

A. Modeling Querying and Replication Costs

As for the analytical modeling of query strategies which We now turn to developing mathematical models to quantify
we deal with to deduce our scaling laws, there have be#ire cost of replication and search. We consider two types of
several interesting prior studies [17]-[20]. The energgtso data-centric querying techniques: structured and urisired.
of data centric storage are compared with the two extremeslofstructured environments, the information is stored ia th
external storage and local storage in [17]. A hybrid push-pwetwork and retrieved from it using a hash. This approach



is exemplified by the geographic hash-table technique [2].We note that in calculating the search costs we have not
Thus, in structured querying, the querying node is awaexplicitly taken into account the cost to return the respons
of the location of the nearest copy of the replicated eveback to the querying node. For the structured scheme, this
information and sends the query directly to this point ts easy to incorporate as the response is returned along the
get a response. In unstructured environments, by contrastjerse path as the directed query, and hence incorpothitg
there is no predetermined location where the querying nodest is equivalent to simply doubling the cost (which can be
can send a query. Hence the query must be disseminaéddorbed into the constant term). For the unstructurechsehe
through a form of blind search. If latency is not a concerithe cost of a directed response will be of the ordl{rdf—f)
efficient unstructured querying strategies involve ex@agd and hence, for the large networks that are the focus of this
ring searches or sequential trajectories [24], [25]. study, negligible compared to th@ (Ll) cost of the blind

The detailed derivations of the querying and replicatiof, 5 ch. o
posts in e|ther st_ructured or uqstructured petwork areemgsl _ Looking at (1), (2), and (3), we find that, as expected, the
in Appendix. Since we are interested in the scalability ifypjication costs increase with the number of replicas Jevhi
terms of the order of the size of network, we present beloye search costs decrease with the number of replicas. We
instead some approximate first-order modeling with inteiti .o resolve this tradeoff by considering the aggregate tota

explanations for how these costs vary as a function of tgnected cost of search and replication and optimizingtfor i
network sizeN and the number of copies for a given event. 114 following is the common form of the total cost:

First consider the replication costs. In both the struature . .
and unstructured case these are same. The average number of
: X Cy = Cs(r; C(r; 4
hops from random event locations in the network to random K ;qz s(ri) + ; r(ri) “)
locations is proportional t¢/ N (since theN nodes are placed . _
uniformly in B). Thus the cost of creating and placing-1 Where Cs(r;) is the expected search cost gf event and
replicas at random locations in the network from random evefar (i) IS its expected replication cost.

locations is: From the above, we get the following expressions for
the expected total energy cost for all events which consists
Chreplication = ¢1 -V N - (r — 1) (1) of search costs weighed by the number of queries and the

Plication costs:

1) Under the unstructured replication scheme, the total
energy cost is

The replication cost can be reduced using an enhanced rerp(?

cation scheme, which may exploit the fact that the event

information is exposed to the set of intermediate nodes in

the path anyway when a query is replied. The details of this Ng;

situation are discussed in section X. Cru = Zc2r. _311 +2_ aVNri—=1) ()
Let us then consider the search cost for a structured envi- =1 =1

ronment. If the number of copies of the target event is kept2) Under the structured replication scheme

m

fixed, since the copies are placed uniformly in the netwdré, t " YN O
distance (in hops) between the querying node to the nearest Cis = Z% - .l + ch{l/ﬁ(n -1) (6)
copy increases with the network size as proportiona}/1e. R

If, on the other hand, the network size is kept fixed, then asTo simplify our expressions, with a slight abuse of notation
the number of copies increases and continues to be placegyvifishall make the following substitutions: in (5), afteriding
the d-dimensional area with a uniform distribution among thgoth sides by, we let Ciufer — Cry and 2g; — g;; in
N nodes, the expected one-dimensional distance to the heaf§ after dividing both sides by, we |etCt,s/CI — (., and
copy decreases inversely proportionajo. Thus we have the ¢, — ;. And the following expressions are the simplified

following: vF versions;
d
N m m
Csearch structured — C2 * ) (2) qu d
' Ci = N(r;—1 7
i Z;Ti+1+;\/_(7’ ) W)
Finally, let us consider the search cost for an unstructured = =
environment. The search is analogous to looking sequintial = VNgi =
for the first of r specific objects of a desired type from a Crs = — YT + Z\/N(” -1 ®)

randomly ordered set d¥ total objects. It can be shown that
the expected number of steps till the first object of the a@esir

: o ) B. Optimization Formulation
type is observed is given as:

Now we can formulate the problem of optimizing the total
R (3) cost as follows;
r+1

We have also derived special version of the above expression Minimize  C; =3 imy 0:Co(ri) + 2imy Cr(rs) ©)

for two-dimensional network in previous work [26], [27]. We We use the total energy cost in the network as the object
have shown in the paper that the expressions are valid efanction instead of per-node energy for the optimization.
for the 2-dimensional grid network. Although naive replication-query schemes might make the

N

Csearch,unstructured =C3



system behave differently depending on which point of view iThe last equality holds sinc%*d—1 > % forall d > 1. ]
taken (total energy or per-node energy), the system betsavio
for both point of views could be essentially same (in terms Theorem 2 (Total Cost of Structured Network3he total
of O-notation) with a smarter replication-query scheme a&hergy cost for structured networks grows with network size
discussed in section IX. Moreover, the use of total energgggi N as follows:
at least the upper bound for the network scalability cooditi
for any replication-query scheme.

We also ignore the storage constraints for now because
it turns out that the constraints must not be active in ord%e
to ensure the scalability of the network. In section VIlI

we incorporate the constraints to investigate more detaile To understand the implications of these theorems, it is

behavior of the network as it grows. . .
L . . helpful to consider some extreme cases of the scaling be-
The optimization formulation does require global knowl; ~ ™
. havior of the number of eventsr and the query rate. We
edge of query rates for each event and hence the optimum . .
: : I . __consider allowing each of these parameters to scal®(as
may not be necessarily achieved by distributed heuristics |

practice, but this is still a useful tool for our investigatiof or ©(N), giving us four possible combinations. In practice

. ) : . the scaling behavior of the events and queries with network
performance scalability as it provides the best-case siena

For global optimization first-order conditions are suffidie size is determined by the application scenario. For ingtanc

because it can be shown that the objective functions for bdth application which requires the network (regardless of it

size) to have only a single sink injecting queries for events
the unstructured and structured scheme are convex. Solvin . . . ST .

o . would have that is ©(1), while a richer application involving
these conditions, we find that

increasing numbers of users with the network size could have

c;,s:e(m-qd% -N%) (15)

Proof: It can be proven in the same way as the proof of
orem 1 using (13) ]

i} { %UQN% -1, (unstructured)  (10a) that®(N). For many event monitoring applications, it is likely
Ty = 4 to be reasonable to assume that the number of observed events
Bsai ™ (structured) (10b) scales proportionally with the deployment area which for a
where constant density deployment would mean thatis ©(N);
Bs = d- T (11) however in other applications the scalingrefmay be weaker,

_ _ all the way down to the extreme &f(1) (which would imply
Now we can derive the optimal expected total energy cogfat there only a finite number of events that can be detected
substituting (10a) and (10b) into (7) and (8) respectiveldy gegardless of the network size). The following table exibi

follows; the scaling of total energy costs for the four cases under the
m i e unstructured networks.
Cr, = 2 N2z /g —VN 12 . :
b ; ( Vi ) (12) Table I: lllustration of the scaling of total energy costs
m ) 4 for unstructured networks.
Cry = > B WNg™ —
=1 q 9(1) G(N)
+> VN (ﬁs - 1) (13) o(1) O(N7) O(N ")
i=1 2d+1 4d+1
o) eV o)

V. CONDITIONS FORSCALABILITY

In order to obtain useful insights regarding scalabilitg w Ve generate a similar table below using Theorem 2 to
simplify our expressions from this point on by assuming thiustrate the scenarios for structured networks.
the query rates for all events are uniform, ig.= ¢,Vi. We  Taple |I: lllustration of the scaling of total energy costs
now examine the scaling behavior of the total energy costs fo for structured networks.
both unstructured and structured networks.

" (1) O(N)
Theorem 1 (Total Cost of Unstructured Network¥he q
total energy cost for unstructured networks grows with (1) O(N) @(Nd%l)
network sizeN as follows: AT 2% T2 a1
O(N) O(N i) O(N &+ )

(14)

C;uz@(m-\/z]-zv%)

Proof: The total energy cost is given from (12) by,

2> (N5 g —VN) —omV/N
=1

We observe something striking about Tables | and IlI. In
both tables, among the four cases, only when hptnd m
are ©(1) do we observe that the total costs for the whole
network scale ag)(N) for all dimension. In other words,
only in this example case do we ha@1) scaling of the per-
node cost, i.e. bounded energy consumption per node. This

2m./gN 7T

= 0O (m\/ﬁN%)



motivates us to inquire about the general conditions underVI. NETWORK SCALING ON FIXED ENERGY BUDGET

which a network can scale while ensuring that the eNergY\ v now consider having a fixed energy budget, and look
requirement per node is kept bounded — a very importa ’

requirement from a practical perspective |r|]1tto what conditions the net_vvc_>rk size _m_ust satisfy to ensure
' that events and queries within the finite deployment time

duration can be resolved before energy depletion. Spebjfica

e will assume that there is an average energy buddet

Sch node, so that the total energyris= ¢ - N.

Theorem 3 (Scalability Condition of Unst'd Networks):
For unstructured networks, the energy requirement per no
is bounded if and only if

m-q'/?isO (N%) Definition 1: We say a networloperates successfullyf it
can satisfy all queries for all events in a given deployment
Proof: The total optimal energy cost per node is theeriod before energy depletion. This requires that< e - V.
total cost divided by the number of nod@& If the energy
requirement per node is bounded, there exi%ts> 0 such The last case of each of the following two theorems has
that, from the per-node total cost given from (12) divided byubcategories the proofs of which need to borrow knowledge
N (assumingy; = q, Vi), in section VIII. We provide the subcategorization here foe t

1/2 1=d 14 sake of self-completeness of the theorems.
Ciu/N = 2mq'?’N= —2mNT < C

1—a Co a1 Theorem 5 (Network Scaling on Fixed Energy Budget):
2 _N= )< 2ANTT 16) Gij i -
= m: (q - ) =7 (16) Given a fixed average per-node enetgfi.e., the total energy
_ d e L allocated optimally among the nodes in the network grows
Since 577 <0 so thatN=¢ <1, for g > 4, linearly with the network size a& = e - N), the following
14 statements describe the conditions on the network 3ize
V2 _ Nz >1 (17) - -
q = network dimensionl, the number of events and the number
Hence, of queries per eveny that ensure that the network can be
12 operated successfully.
mq2 < m(qg/? — N7 (18) 1) If mg'/? is o(N“s) for unstructured networks
d —
12 d-1 (mq®™T = o(N%) for structured networks), then there
= mq'" =0 (N 2 ) (19) exists a minimum network siz&,,;,(e) beyond which
s it can always be operated successfully.
H H —_— . d—1
Conversely, ifmg'/? is O (N = ) 2) If mq'/? is ©(N7Z7) for unstructured networks
d —
12 a1 (mg@T = @(NdTl) for the structured), then there
mq < CoN =7 exists an average per-node energysuch that for all
= m- (q1/2 _ N%) < G N e < e*, it is not possible to operate a network of any
Ly 1= e size successfully, while for at > e* it is possible to
= 2mg'/’N7 —2mN 7T <20 (20) operate a network of any size successfully.

If mq'/? is w(N‘=) for unstructured networks
d — .

(mqTT = w(N%) for the structured), then there exists

a maximum network sizéV,,..(¢) beyond which the

Note that the left side of inequality (20) is equal to the 3)
optimized per-node total energy cost. Therefore, the pelen

total energy cost is bounded. " network cannot be operated successfully. Further,
Theorem 4 (Scalability Conditions of Structured Netwarks) a) If mgl/Q is Ong) for unstructured networks
For structured networks, the energy requirement per node is (mg™T = o(NN7iT) for the structured), theiV,,,q,
bounded if and only if is a convex function ot
. s b) If mq'/? is ©(N) for unstructured networks
me- g iSO(NT) (mg7 = O(N@i1) for the structured), then

Nomae increases linearly witle.

c) If mq'/? is w(N) for unstructured networks
(qu;i1 = w(Ndz_fl) for the structured), then
Np.. iINCreases as a concave functioneof

Proof: It can be proven in the same way as the proof of
Theorem 3 using (13). ]

We note that bothV“= and N “7 from the above scala-

bility conditions are increasing functions with respectthe Proof: The proof is given in Appendix. .
dimensiond. Therefore, we can see that networks deployed in . )

curves for the 2-dimensional deployment; the five cases are
LIt can be proven for ali > 0, but the proof would be unnecessarily longfor the different cases in Theorem 5. The other dimensional

and clumsy because’ in (10) becomes less than 1 which means we need Wetworks, particularly those of one and three dimension,
correctr; to be one because; is at least one and the total cost is convex;

therefrom, we need to make several trivial changes. We dmicorresponding exhibit Sim”ar behavior. The figure is Obtaineq numerigall
proof due to the limited space and assume that 4 is reasonable enough. by equating the expressions for total cost with the energy
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Fig. 1: Network size conditions for successful operatiothwespect to the per-node energy budget for different exatptand
guery-rate scaling behaviors, for a 2D unstructured ndtw®idenotes the successful region whiledenotes the unsuccessful
region. (a) case 1 of Theorem 5, (b) case 2, (c) case 3.a, $¢8)Xh, and (e) case 3.c

budgetE = e - N, and solving forN as a function ofe,
under particularm andgq scaling settings that satisfy each of
the corresponding cases. (A very similar figure can be obthin
for structured networks and is omitted due to lack of space).
The regions marked S and U are where the network operates
successfully and unsuccessfully, respectively.

We see that under case 1, there is a minimum network
size that is needed to ensure successful operation, and this
minimum network size decreases rapidly with increasing en- N
ergy availability. In this case, the event and query aq;tivitF
remains low enough that adding nodes to the network j
beneficial (as it increases the available total energy).ddn
the event-query activity case 2, there exists an per-noeggn
threshold such that below this threshold, no network can
operate successfully, but beyond this threshold, netwofks

any size can be operated. Under cases 3.a, 3.b,_ and 3.c, we Sefeorem 6 (Lifetime Scaling on Fixed Energy Budget):

that for a given energy budget there exist maximum netwo\%i,[h a fixed average per-node energy budget-ofo long
sizes beyond which successful operation is impossible. Ag the number of events and queries scale temporally so
these cases, adding nodes to the network is harmful as ege mql/? for unstructured networksw(qd%l for structured
additional 'ﬁ‘°9‘e i_ntroduces more consumptipn than resSurcl(’zf‘etworks) is a monotonically increasing function of timee t
The key distinction between these cases is that under CARS: me of deployment.’ over which the network can operate

3.2, there is a convex growth that implies that adding ener Mccessfully scales with the network size as per the foligwi

resources to each node provides a super-linear improvemen S
. i . conditions:
the maximum network size that can be sustained; under case

3.b, the maximum network size grows linearly with the per- %) if
(m

ig. 2: The network lifetime 1) vs. the number of nodes
R’) of the unstructured network when both and ¢ are
roportional toT'

mq/? is o(N“zr) for unstructured networks
d — .
g = o(NdT]) for the structured), thefd increases
with N. .
2) if mq'/? is ©(N73T) for unstructured networks
d d—1 .
(mg¥™1 = ©(N~a ) for the structured), thef" is
VIl. SCALING IMPLICATION IN TERMS OFLIFETIME OF constant with respedtz'tltﬁf.
NETWORK 3) if mq¢'/? is w(N737) for unstructured networks
d —
(mgT1 = w(NdTl) for the structured), therl" de-
creases withV.

node energy budget; and under case 3.c, the concave growt
of the curve implies that adding energy resources provide
diminishing returns in maximum network size.

We now consider a relaxation of one of our key assumptions
— that the network is being operated for a fixed duration. This
allows us to examine how the lifetime of the network (the
period over which all queries for all events can be resolved
successfully) scales with the network size. In this conipact
we will assume that the total number of events since networkThese theorems are illustrated in Fig. 2 through a numerical
initiation and the total number of queries per event{), ¢(t)) plot based on exact expressions. We can see that event-
are such that they are both non-decreasing functions of, tinggiery scaling conditions determine whether the lifetiméhef
and at least one is a strictly increasing function of time.  deployed network increases, decreases, or remains cbnstan

with respect to network size.

Proof: The proof is given in Appendix [ ]



VIIl. STORAGE CONSTRAINTS

We now consider more practical situation adopting limited ) ) )
storage in each node in the network. We assume the totalVith the same reason in section V, we assume- g, Vi.

storage size of the network i§ = s -

N, wheres is the

The following theorems are the scaling results that quantif

average storage size of a node. The optimization formuriatifpe above condition for unstructured and structured nedsvor

is switched as follows:
Minimize Cy=Y1", ¢:Cs(ri) + Y v, Cr(ri)

21
st Y, r<S 1)

Theorem 7: (Conditions for Efficient Operation of Unstruc-
tured Networks with Bounded Storageffor unstructured
networks, if condition (25) holds, them - ¢'/?> must be

We solve this problem using the method of Lagrange mulﬁ_) (N 2d ) Further, if m - ¢'/? is o (N 2d ) then condi-
pliers. The Lagrangian function for this inequality-caagted tion (25) holds.
optimization problem can be expressed using a Lagrange Proof: If condition (25) holds, then the following holds

multiplier A and a slack variable as follows;

L(r, A z) =Ci+ MO _ri— S+a?)
i=1

(22)

The solution when the constraint is inactive (ie= 0) is as

for all N > Ny using (10a):

m
Z * _ 1/2 a7t

Ti,inact = mgq N7=T —m S sN
=1

= m(ql/Q—N%) < s N3 (26)

same as that of unconstraint version. When the constraint is .

active (i.e.x =0, A > 0), we get

S+m
== V& — 1,
. Zj:l V4
S

ri,act =

_d_
d+1

d ql )
m d+1
:E:: 7j=1 (Z]

Now we can derive the optimal expected total energy costs
with the active constraint, substituting (23a) and (23kpin

(7) and (8), respectively, as follows;

(Unstructured)(23a)

AS in the proof of Theorem 3'/2 — Nz > 1. Hence, (26)
implies
d+1

sN z2a
T g2 - N5

d+1

< sN=d (27)

(Structured) (23b) Also, (26) can be expressed as follows, Ya¥ > N,

d+1 1—d
sN2a +mN 24
d+1
SN 3T 4 sN/4

mg'/? <
<

(27)

(.'.
Sinced > 1= 45 > 1 mgl/2 =0 (N%)

ay - n the other hand, ifn ¢/~ is o %,thenﬂNoe]N
Z\/N (WH-S)\/q—l 9 On the other hand, ifn ¢'/2 N
= 2=V StN > Ny implies
mo\tmo - 1/2 a1
3 2= \@\@ N, (Unst.) (24a) mq < sNE s
~ m+S = mq/?—mN7 <mqg'/?<sN37
t,act = i\d/ﬁ S qd;il—l = ZT;inact:mql/QN%_m<SN:S
—d_ 1 —
= \D g .
d[~m Tt iy . :
m Zj:l 4q; #{i/_ ’ Theorem 8: (Conditions for Efficient Operation of Struc-
+Z Vs 7 N, (Strd) (24b) yyred Networks with Bounded Storagéjor structured net-
=1

works, if condition (25) holds, them - g7 must beO(N).
When the available storage in the network exceeds the seqyther, ifm, - q#“l is o(IV), then condition (25) holds.

of the unconstrained optimal number of copies for all events  proof: It can be proven in the same way as proof of

we have an efficient region where the network can achieyfeorem 7 using (10b). m

the smallest total energy cost of querying (and replication

Otherwise, even the optimal energy cost shoots up resultingye note that the bounded-energy conditions of Theorem 3
in quite an inefficient performance of querying. Hence, fromng 4 are stricter than the above bounded-storage conslition
a scalability perspective, it is desirable to ensure thatfiér- yespectively. Even if the bounded-storage condition isfed,
node storage requirements remain bounded irrespectiveeof fhe per-node energy might not be bounded so that the scala-
network size. This is equivalent to requiring that the agera bility of network cannot be guaranteed. If the bounded-gyer
storage size be constant with respect to the network si¥e  condition is satisfied, however, the bounded-storage tiondi
will be automatically satisfied resulting in the scalabléarmk

in terms of the querying energy expenditure. In other words,
introducing the limited storage does not produce any impact
the previous scalability conditions (Theorem 3, 4). Howeve
as we mentioned earlier, it provides an effect on the case 3 of
Theorem 5 making it possible to be subcategorized into three

Definition 2: We say that a networkcales efficiently with
bounded storageif

INg €N st Y 15 jpaer < S =5-N, for YN > Ny (25)
i=1



more cases as the theorem already claims. It is becauselitd the information that additionat; — 1 replicas should
optimal expected total energy cost for each of the unstradtu be disseminated. The receiving node creates another aeplic
and structured network now has one more possibility — tfad sends it to a random node with the informationof- 2
active storage constraints. replicas, and so forth until all; replicas disseminated. When
Let us first consider unstructured networks. In the activesource node, that has one of the replicas receives a query
constraint region, the optimal total energy cost is givemfr for the event, it doesn’t only send back the event infornretio
(24a) substitutingS = sN andg; = g, Vi by, the queriem,, but also transfer the ownership of the replica to
2 the querier so that, is no longer the source of the event, but
C; — sN9& —mNYd 4 m7gN ng is now. Note that this ownership transferring process does
t,u,act S q e ) .
ait m+ not incur any additional energy cost. With this scheme there
= © (NT + mQQ) (28) is no special node in the network so that the expected energy
consumption for each node is same ignoring the boundary
gﬁ‘?ect. It does not even need the ownership transfer to occur
m2q at every query; it would be sufficient to transfer the owngrsh
m+S only when the remaining energy becomes less than a certain
(28) holds. . : :
ﬁercentage of the amou_nt when it has r(_eqewed the ownership.
F_or structured network§, we can alsq concllude that hfkewise, many alternatives can be envisioned.
optlmal_ total energy cost is as the following using the SaMe |\ order to examine the boundary effect, we also have
reasoning. conducted simulations on 2D square grids for both strudture
Cruuy=6 (N% +m ,q) (29) and unst_ructur.ed networks with the abqve replication—muer
B scheme in which the ownership of replica is transferred at
These new optimal total costs lead to the following statevery query.
ments, the proofs of which are given in Appendix. In the simulations, the number of events is 30 and the num-
1) If mq'/? is w(N%) and o(N) for unstructured net- ber of queries for each eventis/N (whereN is the number“
works (ng7 = w(N“T") ando(N 1) for structured ©f nodes) for unstructured networks so that the scalability
networks), then the maximum network si2é,., is a condition of Theorem 7 is satisfied. For structured networks
convex function ofe the number of events are 60 and the number of queries is
2) If mg'/? is ©(N) for unstructured networksi(giT = N3/4 satisfying the condition of Theorem 8. The storage of
@(Nf—f]) for the structured), thetV,,.,.. increases lin- each ner is as_sumed to be large gnough to accommodate
early with e. all the given re_phcas. Other assumptions are as same as for
3) If mg"/? is w(N) for unstructured networkm(q# _ _the analysis. Fig. 3 shpws the average energy consumptions
—2d_ . in terms of the normalized hop distance from the center of
w(N@+1) for the structured), theV,,,,.. increases as a . L
concave function of. square grid netwprks. The key observatl_on is that although
energy consumption patterns are not uniform everywhere in
the network (peaking close to the center), the ratio of trekpe
energy consumption to the average energy remains bounded
In the previous sections we have considered the total ene(gynost a constant) as the size of the network is increases. T
in the network for the analysis instead of the per-node gnergs because the energy consumption as a function of thevelati
Certainly, it might be true for some cases that the netwolécation remains essentially the same regardless of nktwor
scales in a very different way in terms of the per-node energyze. Fig. 4 also shows this - the ratio between the average
For example, consider a naive replication-query schemeayheequirement of the top 3% most-energy-consuming nodes and
at the moment a node senses an everthe node creates the average energy consumption in the whole network remains
and sends; replicas in the network, and the nodes whichearly constant. This shows that boundary effects are not
have the replicas serve as source nodes forever. It is easydminant, and validates our argument that the asymptotic
see that each source node serves the unbounded numbescafability results based on total energy consumption tadso
queries (for structured networks), or the sensing node ssenthen considering per-node energy constraints, so longas su
the unbounded number of replicas (for unstructured netsjorka load-balanced replication-query scheme is used.
as the number of nodes in the network increases if the number
of queries for the event is unboundedly increases with the
increasing number of nodes. In this situation, also refetoe
as thehot-spot problemthe network is not scalable because Thus far we have studied the scaling laws for data-centric
some individual nodes have unbounded energy requiremeWtSNs where replicas are placed individually before queries
although the total energy requirement across the netwake issued, and no additional copies are made within the
remains constant. network while event information is being forwarded. It is an
However, there is a smarter yet simple replication-quemteresting open question to find out their effects on théirsga
scheme to avoid the hot-spot problem. For example, consid®rvs when copies of events are allowed to be made at the
the following scheme: if a node senses an ewvgiitt creates intermediate nodes as the event is forwarded. We call this
a replica and sends it to a random node in the netwopkocess on-demand replication.

Since it is reasonable to consider that the number of eve
m is smaller than the total network storage S = sN is
dominant compared ten. Thus, 24 = © (m?g), and so

IX. HOT-SPOT PROBLEM

X. DISCUSSION
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Fig. 3: Average energy consumption vs. normalized hogFig. 4: Average energy consumption vs. the number of
distance from the center of the square grid network: eachodes in the network: the red line with cross marks is
line corresponds to a different number of nodes in (a)or the average consumption over the highest 3% nodes
unstructured networks, and (b) structured networks in energy consumption, and the blue line with x marks for
average over all nodes in (a) unstructured networks, and
(b) structured networks

The details of storage and querying with on-demand replitherer; is the number of target nodes for the initial replication
cation is as follows: at first, a number of initial replicae arfor eventi, C’(z,y, z) is the expected search cost for event
placed within the network before any query is generated ahen the replicas of everitis in the subset of nodes of the
before. Meanwhile, additional copies of events are mad&in &ee structure, which starts as a Steiner treeazfaandomly
on-demand fashion at intermediate nodes whenever the evamisen leaves. Then, the tree grows as a dynamic Steiner tree
information is forwarded either during the initial replitm, for y additional leaves keeping the fair sharenumber of
or during the reply to a query. The replicas generated at theplicas.C..(-) is the expected joint cost for initial replication
intermediate nodes can serve as sources of the event foe fufior all events. Note that multicast can be used for thisahiti
qgueries. Note that there is effectively no separate cost fi@plication to further decrease the cost.
this on-demand replication. The initial replication fgrtarget While the exact analysis for the above optimization is
nodes, in fact, produces a Steiner tree whose leaves are Hbed because of the complex dynamics and non-uniformity
target nodes and its internal nodes have the on-demandaspliof the on-demand replication, we can still provide a bound
if each node in the tree has enough storage to store theaeplan the energy cost which gives a necessary condition for
When the number of nodes in the tree exceeds the fair shaealability that applies to any replication scheme. Therlgou
of the event in the network, only the fair share amount @fan be derived by assuming the best possible replication
nodes in the tree are selected to have replicas for the &iterscheme which produce the maximum number of replicas being
nodes in the tree. The fair share for evéns assumed to disseminated uniformly over the network without incurring
be proportional tay; />, gr on average. This occurs becausany replication energy cost. We assume that the storage of
some of the nodes in the tree eventually exhaust their ®oragach node is bounded as in the practical system, and the
being filled up with other events’ replicas. After the firsesle, network has a large number of events so that the number of
additional replicas are to be produced in the nodes of the pa¢plicas of each event cannot grow on average more than a
that a reply follows whenever a query for the event is issuegumber which is much less than the total number of nodes in
It can be shown that the structure of replicas grows as ttfee network. This assumption prevents the trivial case &her
dynamic Steiner tree ( [30]) in this phase. Further, the nermbevery node eventually acquire a replica. The optimum number
of total replicas of a certain event also does not exceeddihe fof replicas for each event can be obtained using the follgwin
share on average because of the bounded per-node storagsptimization formulation:

The analysis we have given in the previous sections does not o
cover this scheme because (1) on-demand replicas do nat incu 1Yhnlmlze S 4iCs(rs) (31)
energy cost for replication, but help the search cost deedta T (T;’ 't"’”“) S < sN
and (2) the replicas are not necessarily deployed unifarmly ' ==
However, we provide the problem formulation for optimizing The optimizer turns out to be exactly same as given in (23).
the communication energy cost of the system as follows:  Based on this optimization, the following Theorems 9

and 10 describe thaeecessaryconditions for the scalability
Minimize SIS iy - 1, LsN) (30) for unstructqred and structured ne_tworks, respectivelyh w _
r= (1, mm) =1 eej=1 s Tk the assumption that the query rate is same for each event, i.e
+Cr ({1 <i <m}) q; = q Vi, as in previous sections.
s.t Yo < sN
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Theorem 9: (Necessary Condition for Scalability of Unbe potentially interpreted as an argument that queries teeed
structured Networks)For unstructured networks, the energype kept localized to within a fixed distance of corresponding
requirement per node is bounded only if events. In a practical large-scale system where queries are

uniformly generated and the rate of events and queries large
m/g = O(\/N) enough that the scalability thresholds are exceeded, these
Proof: Because it is assumed that= ¢ Vi, the optimum results motivate the decomposition of large-scalable @ens
number of replicas for the best possible replication schismenetworks into a two-tier architecture. In this case, thedow
sN/m. Substituting the optimum number for each event intller would consist of the wireless nodes within each limited

the search cost expression, it can be proven in a similar wgige cluster, while the upper-tier would provide a wired -con
as in Theorem 3. m hection between cluster-heads that can be used to injedegue

from any point in the network into any cluster with minimal
Theorem 10: (Necessary Condition for Scalability of Stru&nergy expense.
tured Networks)for structured networks, the energy require- In the future, we would like to explicitly consider scala-

ment per node is bounded only if bility under localized queries. It would also be of interé&st
4 4 undertake realistic simulations and large-scale experisne
mqTT = O(NTT) validate the analytical results presented in this work.
Proof: It can be proven in the same way as the proof of
Theorem 9. [ |
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APPENDIX

that the boundary effect is negligible.

relaxing this assumption does not provide big differencgs b
simulation. LetV,;(z) denote the volume of d-ball of radius

x, Ngq(h) the number of nodes at mokthop away from the
sink. The volume of the ball is known to be expressed as
follows:

Va(z) = f(d) - 2 (A-1)
where f(d) = d?gr(—z/z).
In this paperr(-§ is the Gamma function. Thedy,(h) =

p f(d) - (hR)%. Note that the total number of nodéé can be
expressed as follows:

N = Na(L) = p f(d) - (LR)! (A-2)

Now we recall that there are number of copies of an event
distributed uniformly randomly in the network. Let the remal
variable X,,,;,, denote the hop distance to the nearest copy of
them from the querier. Its tail distribution is as follows:

H P{i-th copy is not inz hop neighbors

i=1
T FANEA
x

. Nd(l’)
N

(1 (A-3)

In the structured network, the search cost is related tola pat
of the lowest cost from a querier to the nearest node which has
one of the copies. We assume the shortest path routing scheme
so that the path would be their shortest path. Hence, thelsear
cost is equal to the hop count from the querier to the nearest
copy through the shortest path, which is denotedXpy;,,.
Hence, the expected search cost of the network deployédd in

dimension is as follow:
Cg,ds)t = E[Xmm]

Using the tail distribution given in (A-3) and approximajin
summation to integration, we have

L L CCd r
ElXmin] = ZP{Xmin >z} A / (1 - E> dx
z=0 0
_ L-T(3) T(r+1) a4)

d L(r+35+1)

Using Lemma A-1 stated below and the equatibn=

ﬁm /N (from (A-2)), we can calculate the lower and

A. Search Cost for Structured Network upper bounds of the search cost:

As we mentioned earlier in section Ill, We consider that IN
the nodes in the network are deployed with constant node Cii?t(N, r) > U(d)- = (A-5)
density p in the d-dimensional ball. We further assume that \d/;
the network is sufficiently dense so that all nodes within a C (N < u(d)- \gﬁ (A-6)
distancek R of the sink can be reached it hops, where: is vr
a constant. Becausehas an effect only on the constant factorwhere
and we are more interested in the order of the cost, we assume (%) exp (3 PN
¢ = 1 for the rest of this appendix. The nodes in the network I(d) = - (d+ 1)
are all located within’. hops of the sink. When modelling the dRy/p f(d)

1 1 124d
2Some additional details on these derivations as well asrglzations that u(d) = L) exp (d + 12(12“3‘1))

cover uniform random deployments can be found in [29]. dR{/ep f(d)
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2rd+d+2

TABLE A-1: The coefficients of lower and upper bounds of d

_ _ (it
the search cost for the structured network. The number oft P(") = (rd+1 and q(r) = o i+ i)

neighbors of a node is set to 10. Then, let’s calculate the supremum of each of them.
1 1
1 rd+1 d 7,,d -4
d=1 d=2 d=3 - (1 _ ) ( )
L | supp (1) TLH;O< a1 a1
1(d) 0.0480529 0.205357 0.341365 -

(. p(r) is increasing w.r.t- for r > 1)

u (d) 0.104429 0.288987 0.424769 1 .
. IR rd \ "4
- am (1-3)) ()
(. substitutingt = rd + 1)
Table A-1 shows the numerically calculated valued (af) — 7 (A-11)
andu(d) when the average number of one-hop neighbor is 10
for 1, 2, and 3 dimensional deployments. As the table illus-
trates, the lower and upper bound are close, and propoftiona supgq(r) = exp <l + dt12 >
’ : r>1 d ' 12r(12rd+d+12) )| _

to v/N/{/r. Hence, we can approximate with good accuracy

the search cost as follows: (" the exponent is decreasing wur.for r > 1)

. o[} N d+12
o@D _ VN (A7) - P T 2sdr 12)
s,st — Q1 \d/? ) )

Hence, the RHS of inequality (A-10) can be further upper-
wherel(d) < a; < u(d) (we can achieve the more accurat@ounded using the above supremums resulting in the follow-
value of o using the curve fitting.) Ing:

Lemma A-1:Forr > 1 and1 < d < 12, the following 1 124d
double inequality holds: P(r+1) (3 + m) 1
1 d L
( d ) S exp (%) < I'(r+1) Pr+a+1) Ve T
d+1 r L(r+34+1) u
- erp (5 + 12&31_?3@) 1 B. Search Cost for Unstructured Network
Ve Vr We derive the search cost expression using the optimal
Proof: From Robbins 1955 [28], Stirling’s approximatione)qo"]lnding ring-based flooding query [26]. We _considgr the
can be extended to the following double inequality: samed-Ball as a network deployment space as in section A..
) , We first consider the lower bound of the optimal expected
L(r4+1) > V2 tze "t (A-8) search cost. Suppose a querying node happens to know the
Tr41) < Vomritie+r (A-9) hop distanceX;, to the nearest copy of the desired event
_ before disseminating queries. Then, the flooding cost up to
Using (A-9), X.min hoOps away is certainly the lower bound. The distribution
1 losiid 1, 4 of X,.in IS given in section A.. Under our assumption the
Pr+o+1) < Vor(r + Z) e AT expression for the flooding cost up tohops away is given
: by,

From the above equation and (A-8), C;d)(h) — 14+ Ny(h—1) (B-1)
LTD di (r§+1 e e(%ﬂz(lszf)ﬂwn) whereN,(h) is the number of nodes up tohops away given
Pr+z+1) vr s in section A. o

L ( d ) o 6(%]2(127‘13;)?7%1)) The lower bound of the expected search cost is given by,
— d
\/F d + 1 3d42 C‘i,dl)owe'r = E[Oj(”d) (szn)]
> L ( d ) S ~ pf(d) R B[X ] (B-2)
= Yr\d+1

In order to obtain thed-th moment of X,,;,, we make
2rd+d+2

Note that the second inequality holds sinfee: an approximation thafX,,;, is continuous. The probability

o ) i rd+1 ) . density function ofX,,;, is given by,
is increasing with respect te for » > 1 so that it has its

minimum value at- = 1. And the third inequality holds since

foon (=T (12 EY T e
T = 0 for > 1 andd < 12, Kmin W Ld

In the other hand, using the Robbins’ double inequality

) i*T‘hen, thed-th moment is given by,
the other way around produces the following:

d rd t 2d—1 k* T
2rd+d+2 E Xy = —/ kK (1 — —> dk
(F(leLl) )<\i[ ( ) o (b + iy ) L Jy Le
F r 4+ d —+ 1 & r \" 1 N
= =0 — o (A-2)) (B-4)
(A-10) Rif(d)yp r+1 €



13

Substituting (B-4) into (B-2) we have the following expres- U5(LR) = M /N

(C-4)

sion: “ N Y- f(d)2Ta
silower = 7] (B-5) ' Therefore, we can approximate the replication cost asvsiio
In our previous work [26] we have shown that the optimal c® = (r—1)-Us(LR)
search cost is proportional to its corresponding lower ldoun = as-VN-(r—1) (C-5)
in two dimensional deployment with approximation, using
its upper bound and numerical results. With the same chalhere 24/2 - A(d) 922d+1 . A(d)
of reasoning, we reasonably approximate that the optimal — 5~ <a3< —— "
search cost ofi-dimensional deployment is proportional to f(d) f(d)

its corresponding lower bouAdTherefore, we have

D. Proof of Theorem 5

N
r+1
whereas is constant w.r.t- and NV, but a function ofd.

cld

s,un (B'6)

:O[Z

C. Replication Cost

We now consider the expected replication cost. Since our

replication strategy is to pick a destination uniformly ah+

dom, for each copy of the event, it has nothing to do with the
network structure, and so the replication cost is same ftr bo

structured and unstructured networks. Furthermore, uoder

assumptions, the number of transmissions required to move

data between any pair of locations a distancapart along
the shortest path between them is approximaigl®. Thus,

the expected cost of creating any replica is given by the rati
of expected distance between any pair of points in the area

and the radio rang®. Let Uz (x) denote the average length
of line picked inB?(x) with radiusz, v5(x) the integral of
all possible lines in the sani&, andV;(x) the volume of the
ball which is dealt with in section A.. And, let-(z) denote
the corresponding integral of lines in thlecube C¢(z) with
the width ofz. BecauseC?(v/2LR) C BY(LR) C C*(2LR),
U5 (LR) has the following bounds:

Yo(V2LR) _ ¥s(LR) _¢c(2LR) .
Vpore < Ve =y < yoome Y
Letting z = (x1,...,2q) and gy = (y1,...,ya), Yo(x) is
given by,
2d
—
0 0
= A(d)-z*! (C-2)
where

2d

1 1
A(d):/ .../ |j_g|dajl...dajddyl...dyd
0 0

Let Up(LR) and¥ 5(LR) denote the upper and lower bound

of Inequality (C-1), respectively. From (A-1), (A-2), and-Q),

= M N (C-3)
p- f(d)*Fa

3We have proven that the optimal search cost is upper-bouinyléie same
order of the lower bound, using two upper bounds; the steptéy expanding
ring search (ERS) and the full flooding. Due to lack of space,omit the
proof here; details of this proof will be presented in [29].

Vp(LR)

Because proofs for both structured and unstructured net-

works are similar, we provide here the proof for unstruaiure
networks only.

1) m-q'/? = O(N 5 ~<) wheree > 0. Then, the optimal
total cost is given from Theorem 1 by,

Ci. = O(m ¢"/>’N7T)=0(N')
— aN17€+O(N17€)

Since the total cost expenditure should be less than the
given energy - N,

aN'"“ +o(N'"¢) < eN
e, o(N'T9)
= N2> - + N1 -

Sincee > 0 and the last term of RHS goes to zero,
there existsNy > 0 such thatN > N, implies this
inequality holds, whereV, is a fixed constant and can
be considered as the minimum network size to make the
network operate successfully.

2) If m-q¢'/2 = ©(N =), then the total cost is given by,

Gy, =0O(m-qY/?N37 ) = O(N)
Hence, there exists > 0 and 3 > « such that

aN <Cf,<pN, foral N (D-6)

Let e* be the infimum of sucl$ so thate* = inf{3} >
a > 0. Suche* always exists since the real number has
the least-upper-bound property. Then, fer> e*,

E=e-N2>Cy,, foralN (D-7)
And for Ve < e*, sincee* is the infimum,
E=e-N<C(Cf,, forsomeN (D-8)

3) Similarly, m - ¢'/2 = ©(N % +<) wheree > 0. Then,
the optimal total cost is given by,

O(m-¢">’N5T) = o(N'F9)
aN1+e + 0(N1+e)

From the total cost expenditure constraints,

*
Ot,u

aN'te 4 o(N't9) <eN
= N°< = 4o(N)
For the sufficiently large initial per-node energy>>

«, ANq: > 0 such that the last inequality above
achieves the equality since the order of the LHS is



bigger than that of RHS. Hencéy > N,,., implies
the negation of the above inequality so that the network
cannot operate successfully.

The following proof for subcategories requires knowl-
edge on storage constraints in section VIII.

As for the subcase a), We have another two subcases
here. If mq!/2 = O(N7), then we can use the
inactive optimal total energy cost given by Theorem 1.
If mg'/2 = Q(N27), we should use the active cost
given by (24a). Note that whemg!/2 = O(N37),

the storage constraints might be either active or inactive
depending on the per-node storagey Theorem 7. That

is the reason why we investigate both active and inactive
optimal total costs for the boundary situation.

First of all, let us consider the first caseiq!/? =
O(N =7 +¢), where0 < e < 4L When0 < e < 1/d,
the optimal total cost is given by,

C:,u,inact = 0O (mq1/2N%) =0 (N1+6)
= aN'" 4o (NHS)

wherea > 0 is constant with respect ty.
From the total cost expenditure constraints,

aN'™ 4o (NI“) <eN
= N°< g +o(N°) (D-9)
For the sufficiently large initial per-node energy>>
a, INna(e) > 0 such that it achieves the equality
of (D-9) since the order of the LHS of the equation is
bigger than that of RHS. For larg¥,,..(¢), Nma. Can
be approximated as follows:

Noaw = (1/0&)1/6 -61/6

Sincel/e > d > 1, this N, is a convex function of

c.

Whenl/d < e < %, we can use the active optimal
total cost. Through the similar reasoning, we can easily
achieve the following equality with approximation for
e>> .

Npaz = (1/@# .e#

SinceQd_;‘;1 > 1, this N,,.. IS a convex function oé.
As for the other two subcases, we can prove them in t
same way using the active optimal total cost equatio
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From the total cost expenditure constraints,

aN'"“f(T) 4+ o(N'"f(T)) < eN
e e OV (D))

= f(T)< EN + TN
For large enoughV, the second term of RHS of (E-
10) is negligible. Then, sincg(T) is monotonically
increasing with respect to T, there exisfs,,, such
that it satisfies the above equality; < T,,.. satisfies
the inequality. Hencef (T)..) can be approximated as
follows:

(E-10)

e

f(Tmaz):a'Ne

Sincef(T) is monotonically increasing.;,,.. increases
with V.

The proofs for case 2) and 3) are analogous to the above
case.
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E. Proof of Theorem 6

Because proofs for both structured and unstructured net-
works are similar, we provide here the proof for unstruaur
networks only.

1) Supposem - ¢*/? = (B(N%—6 - f(T)), wheree >

0, f(T) is a monotonically increasing function. Then
the optimal total cost is given from Theorem 1 by,
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O(m-q"/? N3 ) = O(N'~* - f(T))
aN'=¢ - f(T) + o(N'"- f(T))
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