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Abstract—We use a constrained optimization framework to
derive scaling laws for data-centric storage and querying in
wireless sensor networks. We consider both unstructured sen-
sor networks, which use blind sequential search for querying,
and structured sensor networks, which use efficient hash-based
querying. We find that the scalability of a sensor network’s
performance depends upon whether or not the increase in energy
and storage resources with more nodes is outweighed by the
concomitant application-specific increase in event and query
loads. We derive conditions that determine (i) whether or not
the energy requirement per node grows without bound with the
network size for a fixed-duration deployment, (ii) whether or not
there exists a maximum network size that can be operated for
a specified duration on a fixed energy budget, and (iii) whether
the network lifetime increases or decreases with the size ofthe
network for a fixed energy budget. An interesting finding of
this work is that 3D uniform deployments are inherently more
scalable than 2D uniform deployments, which in turn are more
scalable than 1D uniform deployments.

Index Terms—Energy efficiency, Modeling, Performance anal-
ysis, Querying, Scalability, Wireless sensor networks

I. I NTRODUCTION

W IRELESS sensor networks are envisioned to consist
of large number of embedded devices that are each

capable of sensing, communicating, and computing. While
the network as a whole is required to provide fine resolution
monitoring for an extended period of time, the individual em-
bedded devices face some fundamental constraints. They are
typically deployed with limited battery supplies and, because
of their form factor and low cost, may also have limited data
storage capability. The goal of this research is to understand
the conditions under which a query-based data-centric sensor
network [1] deployed in various dimensions can be operated
in a scalable manner despite these constraints on energy and
storage.

We consider both unstructured and structured varieties of
data-centric querying along with replicated storage in this
research. In unstructured querying schemes, the node issuing
the query does not know in advance where any copy of
the requested event information can be found. The query
dissemination is therefore a form of blind search (this can take
the form of an expanding ring search or a sequential trajectory
search). In structured querying schemes, a hash or index is
used so that the querying node knows exactly where the nearest
copy of the requested event information can be found. In
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such networks, there is a trade-off between the energy costs
of replicated storage and querying that is determined by the
number of replicas created for each event. A large number of
replicas results in lowered query cost at the expense of greater
storage cost, and vice versa.

We first formulate an optimization problem whose aim is to
select the optimal number of replicas that minimizes the total
energy cost of querying and storage. We use this optimization
problem as a tool to identify the conditions, in terms of the
numbers of events and queries, under which query resolution
can be performed in a scalable manner despite constraints on
energy. Practically, the storage available on the sensor nodes
is limited, so the optimization problem should also consider
this as a constraint. It turns out, though, that the storage
constraints are less restrictive than the energy constraints. We
therefore first derive the scalable operating conditions using an
unconstrained version of the optimization problem, and then
use the constrained version to investigate in more detail the
behaviors of the network as its size grows.

We find that operating a network in a scalable fashion
essentially requires that the traffic load due to additionalevents
and queries be outweighed by the improvement in energy and
storage resources obtained as the network size increases. Note
that the scaling of event and query activity with network size is
application specific — e.g., in many applications there may be
only a constant number of queriers regardless of the network
size, but the number of events detected grows linearly with the
covered area; in other applications, the number of querying
nodes may increase in some fashion with the network size,
while the events detected remain constant. Thus, our results
suggest that only certain types of applications are inherently
scalable, while others are not.

Another interesting finding is that networks deployed in
higher dimensions are inherently more scalable. Thus, 3D
uniform deployments are inherently more scalable than 2D
uniform deployments, which in turn are more scalable than
1D uniform deployments. Intuitively, this happens becausein
higher dimensions the same number of nodes can be packed
within a smaller diameter, resulting in a lower average energy
consumption per store/query operation.

In this paper we consider a fixed-radius, constant-density
node deployment model in which it is ensured that the network
remains connected regardless of size. Hence, it is important to
note that our analysis does not cover the commonly-studied
case of uniform random deployment, as this requires loga-
rithmically increasing neighbor density to ensure connectivity
with high probability [21]–[23]. However, grid-like and other
regularized random deployments ensuring a bounded distance
between nodes would satisfy our model. One justification for
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not considering uniform random deployments in our analysis
is that this kind of deployment explicitly rules out the kind
of scalability we are interested in exploring. In the uniform
random deployment case, with a fixed spatial density of nodes,
the radio range needs to be increasing asd

√
logN as the

network sizeN increases in order to maintain connectivity.
Thus, a finite per-node energy budget can never sustain an
arbitrarily large deployment of this kind. In the case of
constant radio range that we examine, however, we show
that there are conditions under which such scalability is still
possible.

The rest of the paper is organized as follows. We present
related work in section II, and state our basic assumptions
in section III. In section IV we formulate the unconstrained
optimization problem that is at the core of our analysis. We
then examine the asymptotic energy costs associated with
the optimal solution in section V to identify the application
growth conditions under which the energy requirement re-
mains bounded. In section VI, we show how the network
size can vary with the available energy resources per node
for different regimes of application load. We then examine
how the network lifetime is affected by network size for
different application conditions in section VII. We incorpo-
rate storage constraints into the optimization framework and
address scaling under storage constraints in section VIII.The
hot-spot problem is discussed in section IX. We discuss about
relaxed replication schemes and their effects on the scaling
laws in section X. Finally, we present concluding comments
in section XI.

II. RELATED WORKS

There have been many interesting studies on the scalability
of the wireless networks in terms of throughput [3]–[8]. Many
of them have focused on the upper bounds on the throughput
from the information-theoretic point of view (that is, without
any particular assumption on the way communications take
place) using order notation, while Li et al. [8] has focused on
the feasible throughput of the network using the 802.11 MAC
protocol. However, our study investigates the scalabilityin
another domain, namely, energy consumption, because energy
is among the most precious resources in wireless sensor
networks.

Some prior studies have looked at maximizing the energy
efficiency in order to increase the lifetime of wireless sensor
networks [9]–[12]. But, they have focused on controlling the
network topology given parameters such as network size.
Some other studies have looked at the asymptotic energy-
constrained network lifetime [13] or maximizing the network
lifetime [14]–[16]. However, these studies pertain to contin-
uous data-gathering applications; our focus here is on data-
centric in-network storage and querying, which is an important
paradigm for sensor networks.

As for the analytical modeling of query strategies which
we deal with to deduce our scaling laws, there have been
several interesting prior studies [17]–[20]. The energy costs
of data centric storage are compared with the two extremes of
external storage and local storage in [17]. A hybrid push-pull

query processing strategy is proposed and analyzed in [18].
Shakkotai [19] has presented a comparison of the asymptotic
performance of three random walk-based query strategies,
showing that a rendezvous-based sticky search has the best
success probability over time. The optimal parameter setting
for the comb-needles approach is analyzed in [20]. An analyti-
cal comparison of the comb-needles approach and data centric
storage is provided in [27]. However, these studies have not
developed scaling laws for data-centric storage and querying.

Further, all these prior studies do not address the question
of application-specific conditions that determine limits on
scalability of sensor networks. To our knowledge this is the
first work on the topic.

III. A SSUMPTIONS

The following are the key assumptions in our work:
• N nodes are deployed with a fixed radio rangeR and

a constant density in ad-dimensional ballBd space.
The constant density implies that if the network size is
increased, the deployment area grows proportionally. We
further assume that the deployment methodology ensures
connectivity.

• The sensor network is deployed for a fixed application-
specific time durationT . This assumption is relaxed in
section VII when we investigate the scalability of network
lifetime.

• During this time duration, there arem atomic events that
are sensed in the environment. The distribution of events
is assumed to be uniform in the deployment area.

• A total of ri copies of each eventi are maintained with
a uniform distribution in the network by creatingri − 1
additional replicas when the event is first sensed.

• For each eventi, there are a total ofqi queries that are
generated uniformly by the nodes in the network. Each
query is an one-shot query (i.e. requires a single response,
not a continuous stream), and is satisfied by locating a
single copy of the corresponding event.

• We assume that the links over which transmissions take
place are lossless (e.g., using blacklisting) and present no
interference due to concurrent transmissions (e.g., due to
low traffic conditions or due to the use of a scheduled
MAC protocol).

• The total energy cost for storage and querying is assumed
to be proportional to the total number of transmissions.
This is reasonable particularly for sleep-cycled sensor
networks where radio idle times are kept to a minimum.

• We assume that the storage at each node is a constant
amounts, so that the total storageS = s ·N , where each
event copy requires a unit of storage.

IV. BASIC OPTIMIZATION

A. Modeling Querying and Replication Costs

We now turn to developing mathematical models to quantify
the cost of replication and search. We consider two types of
data-centric querying techniques: structured and unstructured.
In structured environments, the information is stored in the
network and retrieved from it using a hash. This approach
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is exemplified by the geographic hash-table technique [2].
Thus, in structured querying, the querying node is aware
of the location of the nearest copy of the replicated event
information and sends the query directly to this point to
get a response. In unstructured environments, by contrast,
there is no predetermined location where the querying node
can send a query. Hence the query must be disseminated
through a form of blind search. If latency is not a concern,
efficient unstructured querying strategies involve expanding
ring searches or sequential trajectories [24], [25].

The detailed derivations of the querying and replication
costs in either structured or unstructured network are presented
in Appendix. Since we are interested in the scalability in
terms of the order of the size of network, we present below
instead some approximate first-order modeling with intuitive
explanations for how these costs vary as a function of the
network sizeN and the number of copiesr, for a given event.

First consider the replication costs. In both the structured
and unstructured case these are same. The average number of
hops from random event locations in the network to random
locations is proportional tod

√
N (since theN nodes are placed

uniformly in Bd). Thus the cost of creating and placingr− 1
replicas at random locations in the network from random event
locations is:

Creplication = c1 · d
√
N · (r − 1) (1)

The replication cost can be reduced using an enhanced repli-
cation scheme, which may exploit the fact that the event
information is exposed to the set of intermediate nodes in
the path anyway when a query is replied. The details of this
situation are discussed in section X.

Let us then consider the search cost for a structured envi-
ronment. If the number of copies of the target event is kept
fixed, since the copies are placed uniformly in the network, the
distance (in hops) between the querying node to the nearest
copy increases with the network size as proportional tod

√
N .

If, on the other hand, the network size is kept fixed, then as
the number of copies increases and continues to be placed in
thed-dimensional area with a uniform distribution among the
N nodes, the expected one-dimensional distance to the nearest
copy decreases inversely proportional tod

√
r. Thus we have the

following:

Csearch,structured = c2 ·
d
√
N

d
√
r

(2)

Finally, let us consider the search cost for an unstructured
environment. The search is analogous to looking sequentially
for the first of r specific objects of a desired type from a
randomly ordered set ofN total objects. It can be shown that
the expected number of steps till the first object of the desired
type is observed is given as:

Csearch,unstructured = c3 ·
N

r + 1
(3)

We have also derived special version of the above expressions
for two-dimensional network in previous work [26], [27]. We
have shown in the paper that the expressions are valid even
for the 2-dimensional grid network.

We note that in calculating the search costs we have not
explicitly taken into account the cost to return the response
back to the querying node. For the structured scheme, this
is easy to incorporate as the response is returned along the
reverse path as the directed query, and hence incorporatingthis
cost is equivalent to simply doubling the cost (which can be
absorbed into the constant term). For the unstructured scheme,
the cost of a directed response will be of the orderO(

d√N
d
√

r
)

and hence, for the large networks that are the focus of this
study, negligible compared to theO

(
N

r+1

)

cost of the blind
search.

Looking at (1), (2), and (3), we find that, as expected, the
replication costs increase with the number of replicas, while
the search costs decrease with the number of replicas. We
can resolve this tradeoff by considering the aggregate total
expected cost of search and replication and optimizing for it.

The following is the common form of the total cost:

Ct =

m∑

i=1

qiCs(ri) +

m∑

i=1

Cr(ri) (4)

whereCs(ri) is the expected search cost ofith event and
Cr(ri) is its expected replication cost.

From the above, we get the following expressions for
the expected total energy cost for all events which consists
of search costs weighed by the number of queries and the
replication costs:

1) Under the unstructured replication scheme, the total
energy cost is

Ct,u =
m∑

i=1

c2
Nqi
ri + 1

+
m∑

i=1

c1
d
√
N(ri − 1) (5)

2) Under the structured replication scheme

Ct,s =
m∑

i=1

c3

d
√
Nqi

d
√
ri

+
m∑

i=1

c1
d
√
N(ri − 1) (6)

To simplify our expressions, with a slight abuse of notation,
we shall make the following substitutions: in (5), after dividing
both sides byc1, we letCt,u/c1 → Ct,u and c2

c1
qi → qi; in

(6), after dividing both sides byc1, we letCt,s/c1 → Ct,s and
c3

c1
qi → qi. And the following expressions are the simplified

versions;

Ct,u =

m∑

i=1

Nqi
ri + 1

+

m∑

i=1

d
√
N(ri − 1) (7)

Ct,s =

m∑

i=1

d
√
Nqi

d
√
ri

+

m∑

i=1

d
√
N(ri − 1) (8)

B. Optimization Formulation

Now we can formulate the problem of optimizing the total
cost as follows;

Minimize Ct =
∑m

i=1 qiCs(ri) +
∑m

i=1 Cr(ri) (9)

We use the total energy cost in the network as the object
function instead of per-node energy for the optimization.
Although naive replication-query schemes might make the
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system behave differently depending on which point of view is
taken (total energy or per-node energy), the system behaviors
for both point of views could be essentially same (in terms
of O-notation) with a smarter replication-query scheme as
discussed in section IX. Moreover, the use of total energy gives
at least the upper bound for the network scalability condition
for any replication-query scheme.

We also ignore the storage constraints for now because
it turns out that the constraints must not be active in order
to ensure the scalability of the network. In section VIII
we incorporate the constraints to investigate more detailed
behavior of the network as it grows.

The optimization formulation does require global knowl-
edge of query rates for each event and hence the optimum
may not be necessarily achieved by distributed heuristics in
practice, but this is still a useful tool for our investigation of
performance scalability as it provides the best-case scenario.
For global optimization first-order conditions are sufficient
because it can be shown that the objective functions for both
the unstructured and structured scheme are convex. Solving
these conditions, we find that

r∗i =

{

q
1/2
i N

d−1
2d − 1, (unstructured) (10a)

βsq
d

d+1

i , (structured) (10b)

where
βs = d−

d
d+1 (11)

Now we can derive the optimal expected total energy costs
substituting (10a) and (10b) into (7) and (8) respectively as
follows;

C∗
t,u = 2

m∑

i=1

(

N
d+1
2d

√
qi − d

√
N
)

(12)

C∗
t,s =

m∑

i=1

β
− 1

d
s

d
√
Nq

d
d+1

i

+
m∑

i=1

d
√
N

(

βs q
d

d+1

i − 1

)

(13)

V. CONDITIONS FORSCALABILITY

In order to obtain useful insights regarding scalability, we
simplify our expressions from this point on by assuming that
the query rates for all events are uniform, i.e.,qi = q, ∀i. We
now examine the scaling behavior of the total energy costs for
both unstructured and structured networks.

Theorem 1 (Total Cost of Unstructured Networks):The
total energy cost for unstructured networks grows with
network sizeN as follows:

C∗
t,u = Θ

(

m · √q ·N d+1
2d

)

(14)

Proof: The total energy cost is given from (12) by,

2

m∑

i=1

(

N
d+1
2d

√
qi − d

√
N
)

= 2m
√
qN

d+1
2d − 2m

d
√
N

= Θ
(

m
√
qN

d+1
2d

)

The last equality holds sinced+1
2d ≥ 1

d for all d ≥ 1.

Theorem 2 (Total Cost of Structured Networks):The total
energy cost for structured networks grows with network size
N as follows:

C∗
t,s = Θ

(

m · q d
d+1 ·N 1

d

)

(15)

Proof: It can be proven in the same way as the proof of
Theorem 1 using (13)

To understand the implications of these theorems, it is
helpful to consider some extreme cases of the scaling be-
havior of the number of eventsm and the query rateq. We
consider allowing each of these parameters to scale asΘ(1)
or Θ(N), giving us four possible combinations. In practice
the scaling behavior of the events and queries with network
size is determined by the application scenario. For instance,
an application which requires the network (regardless of its
size) to have only a single sink injecting queries for events
would have thatq is Θ(1), while a richer application involving
increasing numbers of users with the network size could have
thatΘ(N). For many event monitoring applications, it is likely
to be reasonable to assume that the number of observed events
scales proportionally with the deployment area which for a
constant density deployment would mean thatm is Θ(N);
however in other applications the scaling ofm may be weaker,
all the way down to the extreme ofΘ(1) (which would imply
that there only a finite number of events that can be detected
regardless of the network size). The following table exhibits
the scaling of total energy costs for the four cases under the
unstructured networks.

Table I: Illustration of the scaling of total energy costs
for unstructured networks.

H
H

H
H

H
q

m
Θ(1) Θ(N)

Θ(1) Θ(N
d+1
2d ) Θ(N

3d+1
2d )

Θ(N) Θ(N
2d+1
2d ) Θ(N

4d+1
2d )

We generate a similar table below using Theorem 2 to
illustrate the scenarios for structured networks.

Table II: Illustration of the scaling of total energy costs
for structured networks.

H
H

H
H

H
q

m
Θ(1) Θ(N)

Θ(1) Θ(N
1
d ) Θ(N

d+1
d )

Θ(N) Θ(N
d2+d+1

d2+d ) Θ(N
2d2+2d+1

d2+d )

We observe something striking about Tables I and II. In
both tables, among the four cases, only when bothq andm
are Θ(1) do we observe that the total costs for the whole
network scale asO(N) for all dimension. In other words,
only in this example case do we haveO(1) scaling of the per-
node cost, i.e. bounded energy consumption per node. This
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motivates us to inquire about the general conditions under
which a network can scale while ensuring that the energy
requirement per node is kept bounded — a very important
requirement from a practical perspective.

Theorem 3 (Scalability Condition of Unst’d Networks):
For unstructured networks, the energy requirement per node
is bounded if and only if

m · q1/2 isO
(

N
d−1
2d

)

Proof: The total optimal energy cost per node is the
total cost divided by the number of nodesN . If the energy
requirement per node is bounded, there existsC0 > 0 such
that, from the per-node total cost given from (12) divided by
N (assumingqi = q, ∀i),

C∗
t,u/N = 2mq1/2N

1−d
2d − 2mN

1−d
d ≤ C0

⇒ m ·
(

q1/2 −N
1−d
2d

)

≤ C0

2
N

d−1
2d (16)

Since 1−d
2d ≤ 0 so thatN

1−d
2d ≤ 1, for q ≥ 4, 1

q1/2 −N
1−d
2d ≥ 1 (17)

Hence,

mq1/2

2
≤ m(q1/2 −N

1−d
2d ) (18)

⇒ mq1/2 = O
(

N
d−1
2d

)

(19)

Conversely, ifmq1/2 is O
(

N
d−1
2d

)

,

mq1/2 ≤ C0N
d−1
2d

⇒ m ·
(

q1/2 −N
1−d
2d

)

≤ C0 N
d−1
2d

⇒ 2mq1/2N
1−d
2d − 2mN

1−d
d ≤ 2C0 (20)

Note that the left side of inequality (20) is equal to the
optimized per-node total energy cost. Therefore, the per-node
total energy cost is bounded.

Theorem 4 (Scalability Conditions of Structured Networks):
For structured networks, the energy requirement per node is
bounded if and only if

m · q d
d+1 is O

(

N
d−1

d

)

Proof: It can be proven in the same way as the proof of
Theorem 3 using (13).

We note that bothN
d−1
2d andN

d−1
d from the above scala-

bility conditions are increasing functions with respect tothe
dimensiond. Therefore, we can see that networks deployed in
higher dimensions are inherently more scalable.

1It can be proven for allq > 0, but the proof would be unnecessarily long
and clumsy becauser∗i in (10) becomes less than 1 which means we need to
correctr∗i to be one becauseri is at least one and the total cost is convex;
therefrom, we need to make several trivial changes. We omit the corresponding
proof due to the limited space and assume thatq ≥ 4 is reasonable enough.

VI. N ETWORK SCALING ON FIXED ENERGY BUDGET

We now consider having a fixed energy budget, and look
into what conditions the network size must satisfy to ensure
that events and queries within the finite deployment time
duration can be resolved before energy depletion. Specifically,
we will assume that there is an average energy budgete for
each node, so that the total energy isE = e ·N .

Definition 1: We say a networkoperates successfullyif it
can satisfy all queries for all events in a given deployment
period before energy depletion. This requires thatCt ≤ e ·N .

The last case of each of the following two theorems has
subcategories the proofs of which need to borrow knowledge
in section VIII. We provide the subcategorization here for the
sake of self-completeness of the theorems.

Theorem 5 (Network Scaling on Fixed Energy Budget):
Given a fixed average per-node energye (i.e., the total energy
allocated optimally among the nodes in the network grows
linearly with the network size asE = e · N ), the following
statements describe the conditions on the network sizeN ,
network dimensiond, the number of eventsm and the number
of queries per eventq that ensure that the network can be
operated successfully.

1) If mq1/2 is o(N
d−1
2d ) for unstructured networks

(mq
d

d+1 = o(N
d−1

d ) for structured networks), then there
exists a minimum network sizeNmin(e) beyond which
it can always be operated successfully.

2) If mq1/2 is Θ(N
d−1
2d ) for unstructured networks

(mq
d

d+1 = Θ(N
d−1

d ) for the structured), then there
exists an average per-node energye∗ such that for all
e < e∗, it is not possible to operate a network of any
size successfully, while for alle ≥ e∗ it is possible to
operate a network of any size successfully.

3) If mq1/2 is ω(N
d−1
2d ) for unstructured networks

(mq
d

d+1 = ω(N
d−1

d ) for the structured), then there exists
a maximum network sizeNmax(e) beyond which the
network cannot be operated successfully. Further,

a) If mq1/2 is o(N) for unstructured networks
(mq

d
d+1 = o(N

2d
d+1 ) for the structured), thenNmax

is a convex function ofe
b) If mq1/2 is Θ(N) for unstructured networks

(mq
d

d+1 = Θ(N
2d

d+1 ) for the structured), then
Nmax increases linearly withe.

c) If mq1/2 is ω(N) for unstructured networks
(mq

d
d+1 = ω(N

2d
d+1 ) for the structured), then

Nmax increases as a concave function ofe.

Proof: The proof is given in Appendix.

Fig. 1 illustrates the network size versus energy budget
curves for the 2-dimensional deployment; the five cases are
for the different cases in Theorem 5. The other dimensional
networks, particularly those of one and three dimension,
exhibit similar behavior. The figure is obtained numerically
by equating the expressions for total cost with the energy
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(a) (b) (c) (d) (e)

Fig. 1: Network size conditions for successful operation with respect to the per-node energy budget for different event-rate and
query-rate scaling behaviors, for a 2D unstructured network; S denotes the successful region whileU denotes the unsuccessful
region. (a) case 1 of Theorem 5, (b) case 2, (c) case 3.a, (d) case 3.b, and (e) case 3.c

budgetE = e · N , and solving forN as a function ofe,
under particularm andq scaling settings that satisfy each of
the corresponding cases. (A very similar figure can be obtained
for structured networks and is omitted due to lack of space).
The regions marked S and U are where the network operates
successfully and unsuccessfully, respectively.

We see that under case 1, there is a minimum network
size that is needed to ensure successful operation, and this
minimum network size decreases rapidly with increasing en-
ergy availability. In this case, the event and query activity
remains low enough that adding nodes to the network is
beneficial (as it increases the available total energy). Under
the event-query activity case 2, there exists an per-node energy
threshold such that below this threshold, no network can
operate successfully, but beyond this threshold, networksof
any size can be operated. Under cases 3.a, 3.b, and 3.c, we see
that for a given energy budget there exist maximum network
sizes beyond which successful operation is impossible. In
these cases, adding nodes to the network is harmful as each
additional node introduces more consumption than resources.
The key distinction between these cases is that under case
3.a, there is a convex growth that implies that adding energy
resources to each node provides a super-linear improvementin
the maximum network size that can be sustained; under case
3.b, the maximum network size grows linearly with the per-
node energy budget; and under case 3.c, the concave growth
of the curve implies that adding energy resources provide
diminishing returns in maximum network size.

VII. SCALING IMPLICATION IN TERMS OFL IFETIME OF

NETWORK

We now consider a relaxation of one of our key assumptions
— that the network is being operated for a fixed duration. This
allows us to examine how the lifetime of the network (the
period over which all queries for all events can be resolved
successfully) scales with the network size. In this connection
we will assume that the total number of events since network
initiation and the total number of queries per event (m(t), q(t))
are such that they are both non-decreasing functions of time,
and at least one is a strictly increasing function of time.

N

T

case 1

case 2

case 3

Fig. 2: The network lifetime (T ) vs. the number of nodes
(N ) of the unstructured network when bothm and q are
proportional toT

Theorem 6 (Lifetime Scaling on Fixed Energy Budget):
With a fixed average per-node energy budget ofe, so long
as the number of events and queries scale temporally so
that mq1/2 for unstructured networks (mq

d
d+1 for structured

networks) is a monotonically increasing function of time, the
lifetime of deploymentT over which the network can operate
successfully scales with the network size as per the following
conditions:

1) if mq1/2 is o(N
d−1
2d ) for unstructured networks

(mq
d

d+1 = o(N
d−1

d ) for the structured), thenT increases
with N .

2) if mq1/2 is Θ(N
d−1
2d ) for unstructured networks

(mq
d

d+1 = Θ(N
d−1

d ) for the structured), thenT is
constant with respect toN .

3) if mq1/2 is ω(N
d−1
2d ) for unstructured networks

(mq
d

d+1 = ω(N
d−1

d ) for the structured), thenT de-
creases withN .

Proof: The proof is given in Appendix

These theorems are illustrated in Fig. 2 through a numerical
plot based on exact expressions. We can see that event-
query scaling conditions determine whether the lifetime ofthe
deployed network increases, decreases, or remains constant
with respect to network size.
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VIII. S TORAGE CONSTRAINTS

We now consider more practical situation adopting limited
storage in each node in the network. We assume the total
storage size of the network isS = s · N , where s is the
average storage size of a node. The optimization formulation
is switched as follows:

Minimize Ct =
∑m

i=1 qiCs(ri) +
∑m

i=1 Cr(ri)

s.t
∑m

i=1 ri ≤ S
(21)

We solve this problem using the method of Lagrange multi-
pliers. The Lagrangian function for this inequality-constrained
optimization problem can be expressed using a Lagrange
multiplier λ and a slack variablex as follows;

L(r̄, λ, x) = Ct + λ(

m∑

i=1

ri − S + x2) (22)

The solution when the constraint is inactive (i.e.λ = 0) is as
same as that of unconstraint version. When the constraint is
active (i.e.x = 0, λ ≥ 0), we get

r∗i,act =







S +m
∑m

j=1

√
qj

√
qi − 1, (Unstructured)(23a)

S
∑m

j=1 q
d

d+1

j

q
d

d+1

i , (Structured) (23b)

Now we can derive the optimal expected total energy costs
with the active constraint, substituting (23a) and (23b) into
(7) and (8), respectively, as follows;

C∗
t,act =







m∑

i=1

d
√
N

(

(m+ S)
∑m

j=1

√
qj

√
qi − 2

)

+

m∑

i=1

∑m
j=1

√
qj

m+ S

√
qi N, (Unst.) (24a)

m∑

i=1

d
√
N




S

∑m
j=1 q

d
d+1

j

q
d

d+1

i − 1





+

m∑

i=1

d

√

∑m
j=1 q

d
d+1

j

d
√
S

q
d

d+1

i
d
√
N, (Str’d) (24b)

When the available storage in the network exceeds the sum
of the unconstrained optimal number of copies for all events,
we have an efficient region where the network can achieve
the smallest total energy cost of querying (and replication).
Otherwise, even the optimal energy cost shoots up resulting
in quite an inefficient performance of querying. Hence, from
a scalability perspective, it is desirable to ensure that the per-
node storage requirements remain bounded irrespective of the
network size. This is equivalent to requiring that the average
storage sizes be constant with respect to the network sizeN .

Definition 2: We say that a networkscales efficiently with
bounded storageif

∃N0 ∈ N s.t.

m∑

i=1

r∗i,inact < S = s·N, for ∀N > N0 (25)

With the same reason in section V, we assumeqi = q, ∀i.
The following theorems are the scaling results that quantify
the above condition for unstructured and structured networks.

Theorem 7: (Conditions for Efficient Operation of Unstruc-
tured Networks with Bounded Storage):For unstructured
networks, if condition (25) holds, thenm · q1/2 must be
O
(

N
d+1
2d

)

. Further, if m · q1/2 is o
(

N
d+1
2d

)

, then condi-
tion (25) holds.

Proof: If condition (25) holds, then the following holds
for all N > N0 using (10a):

m∑

i=1

r∗i,inact = m q1/2N
d−1
2d −m ≤ sN

⇒ m (q1/2 −N
1−d
2d ) ≤ s N

d+1
2d (26)

As in the proof of Theorem 3,q1/2 −N
1−d
2d ≥ 1. Hence, (26)

implies

m ≤ sN
d+1
2d

q1/2 −N
1−d
2d

≤ sN
d+1
2d (27)

Also, (26) can be expressed as follows, for∀N > N0,

mq1/2 ≤ sN
d+1
2d +mN

1−d
2d

≤ sN
d+1
2d + sN1/d (∵ (27))

Sinced ≥ 1 ⇒ d+1
2d ≥ 1

d , mq1/2 = O
(

N
d+1
2d

)

.

On the other hand, ifm q1/2 is o
(

N
d+1
2d

)

, then∃N0 ∈ N
s.tN > N0 implies

m q1/2 < sN
d+1
2d

⇒ m q1/2 −mN
1−d
2d ≤ m q1/2 < sN

d+1
2d

⇒
m∑

i=1

r∗i,inact = mq1/2N
d−1
2d −m < sN = S

Theorem 8: (Conditions for Efficient Operation of Struc-
tured Networks with Bounded Storage):For structured net-
works, if condition (25) holds, thenm · q d

d+1 must beO(N).
Further, ifm · q d

d+1 is o(N), then condition (25) holds.
Proof: It can be proven in the same way as proof of

Theorem 7 using (10b).

We note that the bounded-energy conditions of Theorem 3
and 4 are stricter than the above bounded-storage conditions,
respectively. Even if the bounded-storage condition is satisfied,
the per-node energy might not be bounded so that the scala-
bility of network cannot be guaranteed. If the bounded-energy
condition is satisfied, however, the bounded-storage condition
will be automatically satisfied resulting in the scalable network
in terms of the querying energy expenditure. In other words,
introducing the limited storage does not produce any impacton
the previous scalability conditions (Theorem 3, 4). However,
as we mentioned earlier, it provides an effect on the case 3 of
Theorem 5 making it possible to be subcategorized into three
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more cases as the theorem already claims. It is because the
optimal expected total energy cost for each of the unstructured
and structured network now has one more possibility — the
active storage constraints.

Let us first consider unstructured networks. In the active
constraint region, the optimal total energy cost is given from
(24a) substitutingS = sN andqi = q, ∀i by,

C∗
t,u,act = sN

d+1
d −mN1/d +

m2qN

m+ S

= Θ
(

N
d+1

d +m2q
)

(28)

Since it is reasonable to consider that the number of events
m is smaller than the total network storageS, S = sN is
dominant compared tom. Thus, m2qN

m+S = Θ
(
m2q

)
, and so

(28) holds.
For structured networks, we can also conclude that the

optimal total energy cost is as the following using the same
reasoning.

C∗
t,u,act = Θ

(

N
d+1

d +m
d+1

d · q
)

(29)

These new optimal total costs lead to the following state-
ments, the proofs of which are given in Appendix.

1) If mq1/2 is ω(N
d−1
2d ) and o(N) for unstructured net-

works (mq
d

d+1 = ω(N
d−1

d ) ando(N
2d

d+1 ) for structured
networks), then the maximum network sizeNmax is a
convex function ofe

2) If mq1/2 is Θ(N) for unstructured networks (mq
d

d+1 =

Θ(N
2d

d+1 ) for the structured), thenNmax increases lin-
early with e.

3) If mq1/2 is ω(N) for unstructured networks (mq
d

d+1 =

ω(N
2d

d+1 ) for the structured), thenNmax increases as a
concave function ofe.

IX. H OT-SPOT PROBLEM

In the previous sections we have considered the total energy
in the network for the analysis instead of the per-node energy.
Certainly, it might be true for some cases that the network
scales in a very different way in terms of the per-node energy.
For example, consider a naive replication-query scheme where,
at the moment a node senses an eventi, the node creates
and sendsr∗i replicas in the network, and the nodes which
have the replicas serve as source nodes forever. It is easy to
see that each source node serves the unbounded number of
queries (for structured networks), or the sensing node sends
the unbounded number of replicas (for unstructured networks)
as the number of nodes in the network increases if the number
of queries for the eventi is unboundedly increases with the
increasing number of nodes. In this situation, also referred to
as thehot-spot problem, the network is not scalable because
some individual nodes have unbounded energy requirements
although the total energy requirement across the network
remains constant.

However, there is a smarter yet simple replication-query
scheme to avoid the hot-spot problem. For example, consider
the following scheme: if a node senses an eventi, it creates
a replica and sends it to a random node in the network

with the information that additionalr∗i − 1 replicas should
be disseminated. The receiving node creates another replica
and sends it to a random node with the information ofr∗i − 2
replicas, and so forth until allr∗i replicas disseminated. When
a source nodens that has one of the replicas receives a query
for the event, it doesn’t only send back the event information to
the queriernq, but also transfer the ownership of the replica to
the querier so thatns is no longer the source of the event, but
nq is now. Note that this ownership transferring process does
not incur any additional energy cost. With this scheme there
is no special node in the network so that the expected energy
consumption for each node is same ignoring the boundary
effect. It does not even need the ownership transfer to occur
at every query; it would be sufficient to transfer the ownership
only when the remaining energy becomes less than a certain
percentage of the amount when it has received the ownership.
Likewise, many alternatives can be envisioned.

In order to examine the boundary effect, we also have
conducted simulations on 2D square grids for both structured
and unstructured networks with the above replication-query
scheme in which the ownership of replica is transferred at
every query.

In the simulations, the number of events is 30 and the num-
ber of queries for each event is2

√
N (whereN is the number

of nodes) for unstructured networks so that the scalability
condition of Theorem 7 is satisfied. For structured networks,
the number of events are 60 and the number of queries is
N3/4 satisfying the condition of Theorem 8. The storage of
each node is assumed to be large enough to accommodate
all the given replicas. Other assumptions are as same as for
the analysis. Fig. 3 shows the average energy consumptions
in terms of the normalized hop distance from the center of
square grid networks. The key observation is that although
energy consumption patterns are not uniform everywhere in
the network (peaking close to the center), the ratio of the peak
energy consumption to the average energy remains bounded
(almost a constant) as the size of the network is increased. This
is because the energy consumption as a function of the relative
location remains essentially the same regardless of network
size. Fig. 4 also shows this - the ratio between the average
requirement of the top 3% most-energy-consuming nodes and
the average energy consumption in the whole network remains
nearly constant. This shows that boundary effects are not
dominant, and validates our argument that the asymptotic
scalability results based on total energy consumption alsohold
when considering per-node energy constraints, so long as such
a load-balanced replication-query scheme is used.

X. D ISCUSSION

Thus far we have studied the scaling laws for data-centric
WSNs where replicas are placed individually before queries
are issued, and no additional copies are made within the
network while event information is being forwarded. It is an
interesting open question to find out their effects on the scaling
laws when copies of events are allowed to be made at the
intermediate nodes as the event is forwarded. We call this
process on-demand replication.
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(a) (b)
Fig. 3: Average energy consumption vs. normalized hop
distance from the center of the square grid network: each
line corresponds to a different number of nodes in (a)
unstructured networks, and (b) structured networks

(a) (b)
Fig. 4: Average energy consumption vs. the number of
nodes in the network: the red line with cross marks is
for the average consumption over the highest 3% nodes
in energy consumption, and the blue line with x marks for
average over all nodes in (a) unstructured networks, and
(b) structured networks

The details of storage and querying with on-demand repli-
cation is as follows: at first, a number of initial replicas are
placed within the network before any query is generated as
before. Meanwhile, additional copies of events are made in an
on-demand fashion at intermediate nodes whenever the event
information is forwarded either during the initial replication,
or during the reply to a query. The replicas generated at the
intermediate nodes can serve as sources of the event for future
queries. Note that there is effectively no separate cost for
this on-demand replication. The initial replication forri target
nodes, in fact, produces a Steiner tree whose leaves are the
target nodes and its internal nodes have the on-demand replicas
if each node in the tree has enough storage to store the replica.
When the number of nodes in the tree exceeds the fair share
of the event in the network, only the fair share amount of
nodes in the tree are selected to have replicas for the internal
nodes in the tree. The fair share for eventi is assumed to
be proportional toqi /

∑

k qk on average. This occurs because
some of the nodes in the tree eventually exhaust their storage,
being filled up with other events’ replicas. After the first phase,
additional replicas are to be produced in the nodes of the path
that a reply follows whenever a query for the event is issued.
It can be shown that the structure of replicas grows as the
dynamic Steiner tree ( [30]) in this phase. Further, the number
of total replicas of a certain event also does not exceed the fair
share on average because of the bounded per-node storage.

The analysis we have given in the previous sections does not
cover this scheme because (1) on-demand replicas do not incur
energy cost for replication, but help the search cost decreased;
and (2) the replicas are not necessarily deployed uniformly.
However, we provide the problem formulation for optimizing
the communication energy cost of the system as follows:

Minimize
r = (r1, ..., rm)

∑m
i=1

∑qi

j=1 C̃
i
s(ri, j − 1, qi∑

qk
sN)

+C̃r({ri|1 ≤ i ≤ m})
s.t

∑m
i=1 ri ≤ sN

(30)

whereri is the number of target nodes for the initial replication
for eventi, C̃i

s(x, y, z) is the expected search cost for eventi
when the replicas of eventi is in the subset of nodes of the
tree structure, which starts as a Steiner tree forx randomly
chosen leaves. Then, the tree grows as a dynamic Steiner tree
for y additional leaves keeping the fair sharez number of
replicas.C̃r(·) is the expected joint cost for initial replication
for all events. Note that multicast can be used for this initial
replication to further decrease the cost.

While the exact analysis for the above optimization is
hard because of the complex dynamics and non-uniformity
of the on-demand replication, we can still provide a bound
on the energy cost which gives a necessary condition for
scalability that applies to any replication scheme. The bound
can be derived by assuming the best possible replication
scheme which produce the maximum number of replicas being
disseminated uniformly over the network without incurring
any replication energy cost. We assume that the storage of
each node is bounded as in the practical system, and the
network has a large number of events so that the number of
replicas of each event cannot grow on average more than a
number which is much less than the total number of nodes in
the network. This assumption prevents the trivial case where
every node eventually acquire a replica. The optimum number
of replicas for each event can be obtained using the following
optimization formulation:

Minimize
r = (r1, ..., rm)

∑m
i=1 qiCs(ri)

s.t
∑m

i=1 ri ≤ sN

(31)

The optimizer turns out to be exactly same as given in (23).
Based on this optimization, the following Theorems 9

and 10 describe thenecessaryconditions for the scalability
for unstructured and structured networks, respectively, with
the assumption that the query rate is same for each event, i.e
qi = q ∀i, as in previous sections.
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Theorem 9: (Necessary Condition for Scalability of Un-
structured Networks):For unstructured networks, the energy
requirement per node is bounded only if

m
√
q = O(

√
N)

Proof: Because it is assumed thatqi = q ∀i, the optimum
number of replicas for the best possible replication schemeis
sN/m. Substituting the optimum number for each event into
the search cost expression, it can be proven in a similar way
as in Theorem 3.

Theorem 10: (Necessary Condition for Scalability of Struc-
tured Networks):For structured networks, the energy require-
ment per node is bounded only if

mq
d

d+1 = O(N
d

d+1 )

Proof: It can be proven in the same way as the proof of
Theorem 9.

XI. CONCLUSION

We have investigated the scaling behavior of storage and
querying in wireless sensor networks. The main take away
from this study is that the event and query rates must scale suf-
ficiently slowly with the network size if scalable performance
is desired. In particular, an important scaling condition is
ensuring thatq1/2 ·m beO(N

d−1
2d ) for unstructured networks,

and thatq
d

d+1 ·m beO(N
d−1

d ) for structured networks. Satis-
fying this condition ensures that adding nodes to the network
is beneficial in that the energy and storage resources they
bring outweigh the additional event and query activity they
induce. This can be seen from many perspectives: satisfying
this condition implies that (i) sensor networks require bounded
energy and storage per node, (ii) arbitrarily large networks can
be operated successfully with a limited energy budget, and
(iii) that the network lifetime increases with network sizefor
a given energy budget.

While our analysis is primarily focused on the total energy
consumption, we have also considered the hot-spot problem
to handle per-node energy constraints. In this context, we
have shown that with an appropriate load-balancing scheme,
the ratio of the peak energy consumption to average energy
consumption remains bounded, implying that our results still
remain meaningful. Further, we have also provided necessary
conditions for scalability to handle potentially more sophisti-
cated replication strategies than those considered in our basic
analysis.

In our study we have not explicitly considered bandwidth
capacity; we have implicitly assumed that the energy con-
straints will be more severe than bandwidth constraints in
the system. However, if energy constraints are not significant
(consider as an extreme case if all nodes could be wired for
power), bandwidth issues could be the dominant consideration.
This is a topic for future work.

We have made the strong assumption that queries are uni-
formly distributed. However, our results showing the existence
of a maximum network size for a given energy budget can

be potentially interpreted as an argument that queries needto
be kept localized to within a fixed distance of corresponding
events. In a practical large-scale system where queries are
uniformly generated and the rate of events and queries large
enough that the scalability thresholds are exceeded, these
results motivate the decomposition of large-scalable sensor
networks into a two-tier architecture. In this case, the lower-
tier would consist of the wireless nodes within each limited-
size cluster, while the upper-tier would provide a wired con-
nection between cluster-heads that can be used to inject queries
from any point in the network into any cluster with minimal
energy expense.

In the future, we would like to explicitly consider scala-
bility under localized queries. It would also be of interestto
undertake realistic simulations and large-scale experiments to
validate the analytical results presented in this work.
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APPENDIX

In the appendix, we focus on the closed form expressions2

for the expected energy costs of search and replication. We
assume that the unit successful transmission cost is one since
it turns out to play a role only on scaling. And we assume
that the boundary effect is negligible.

A. Search Cost for Structured Network

As we mentioned earlier in section III, We consider that
the nodes in the network are deployed with constant node
densityρ in the d-dimensional ball. We further assume that
the network is sufficiently dense so that all nodes within a
distancekR of the sink can be reached inck hops, wherec is
a constant. Becausec has an effect only on the constant factor
and we are more interested in the order of the cost, we assume
c = 1 for the rest of this appendix. The nodes in the network
are all located withinL hops of the sink. When modelling the

2Some additional details on these derivations as well as generalizations that
cover uniform random deployments can be found in [29].

search cost we assume that the sink is located in the center
of the region. In our previous work [26], we have shown that
relaxing this assumption does not provide big differences by
simulation. LetVd(x) denote the volume of ad-ball of radius
x, Nd(h) the number of nodes at mosth hop away from the
sink. The volume of the ball is known to be expressed as
follows:

Vd(x) = f(d) · xd (A-1)

wheref(d) = 2πd/2

d·Γ(d/2) .
In this paper,Γ(·) is the Gamma function. Then,Nd(h) =

ρ f(d) · (hR)d. Note that the total number of nodesN can be
expressed as follows:

N = Nd(L) = ρ f(d) · (LR)d (A-2)

Now we recall that there arer number of copies of an event
distributed uniformly randomly in the network. Let the random
variableXmin denote the hop distance to the nearest copy of
them from the querier. Its tail distribution is as follows:

P{Xmin > x}

=

r∏

i=1

P{i-th copy is not inx hop neighbors}

=

(

1 − Nd(x)

N

)r

=

(

1 − xd

Ld

)r

(A-3)

In the structured network, the search cost is related to a path
of the lowest cost from a querier to the nearest node which has
one of the copies. We assume the shortest path routing scheme
so that the path would be their shortest path. Hence, the search
cost is equal to the hop count from the querier to the nearest
copy through the shortest path, which is denoted byXmin.
Hence, the expected search cost of the network deployed ind
dimension is as follow:

C
(d)
s,st = E[Xmin]

Using the tail distribution given in (A-3) and approximating
summation to integration, we have

E[Xmin] =

L∑

x=0

P{Xmin > x} ≈
∫ L

0

(

1 − xd

Ld

)r

dx

=
L · Γ( 1

d
)

d
· Γ(r + 1)

Γ(r + 1
d

+ 1)
(A-4)

Using Lemma A-1 stated below and the equationL =
1

R d
√

ρf(d)
· d
√
N (from (A-2)), we can calculate the lower and

upper bounds of the search cost:

C
(d)
s,st(N, r) > l(d) ·

d
√
N

d
√
r

(A-5)

C
(d)
s,st(N, r) < u(d) ·

d
√
N

d
√
r

(A-6)

where

l(d) =
Γ( 1

d
) exp

(
1
d

)

d R d
√
ρ f(d)

(
d

d+ 1

) 3d+2
2d

u(d) =
Γ( 1

d
) exp

(
1
d

+ 12+d
12(12+13d)

)

d R d
√
e ρ f(d)
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TABLE A-1: The coefficients of lower and upper bounds of
the search cost for the structured network. The number of
neighbors of a node is set to 10.

d = 1 d = 2 d = 3

l (d) 0.0480529 0.205357 0.341365

u (d) 0.104429 0.288987 0.424769

Table A-1 shows the numerically calculated values ofl(d)
andu(d) when the average number of one-hop neighbor is 10
for 1, 2, and 3 dimensional deployments. As the table illus-
trates, the lower and upper bound are close, and proportional
to d

√
N/d

√
r. Hence, we can approximate with good accuracy

the search cost as follows:

C
(d)
s,st = α1 ·

d
√
N

d
√
r

(A-7)

where l(d) < α1 < u(d) (we can achieve the more accurate
value ofα using the curve fitting.)

Lemma A-1:For r ≥ 1 and 1 ≤ d ≤ 12, the following
double inequality holds:

(
d

d+ 1

) 2+3d
2d exp ( 1

d
)

d
√
r

<
Γ(r + 1)

Γ(r + 1
d

+ 1)

<
exp

(
1
d

+ 12+d
12(12+13d)

)

d
√
e

· 1
d
√
r

Proof: From Robbins 1955 [28], Stirling’s approximation
can be extended to the following double inequality:

Γ(r + 1) >
√

2πrr+ 1
2 e

−r+ 1
12r+1 (A-8)

Γ(r + 1) <
√

2πrr+ 1
2 e

−r+ 1
12r (A-9)

Using (A-9),

Γ(r +
1

d
+ 1) <

√
2π(r +

1

d
)r+ 1

d
+ 1

2 e
−r− 1

d
+ d

12rd+12

From the above equation and (A-8),

Γ(r + 1)

Γ(r + 1
d

+ 1)
>

1
d
√
r

(
rd

rd+1

) 2rd+d+2
2d e

(
1
d
+ 12−d

12(12r+1)(rd+1)

)

≥ 1
d
√
r

(
d

d+ 1

) 3d+2
2d

e

(
1
d
+

12−d
12(12r+1)(rd+1)

)

≥ 1
d
√
r

(
d

d+ 1

) 3d+2
2d

e
1
d

Note that the second inequality holds since
(

rd
rd+1

) 2rd+d+2
2d

is increasing with respect tor for r ≥ 1 so that it has its
minimum value atr = 1. And the third inequality holds since

12−d
12(12r+1)(rd+1) ≥ 0 for r ≥ 1 andd ≤ 12.

In the other hand, using the Robbins’ double inequality in
the other way around produces the following:

Γ(r + 1)

Γ(r + 1
d + 1)

<
1

d
√
r

(
rd

rd+1

) 2rd+d+2
2d

e

(
1
d + d+12

12r(12rd+d+12)

)

(A-10)

Let p(r) =
(

rd
rd+1

) 2rd+d+2
2d

and q(r) = e

(
1
d + d+12

12r(12rd+d+12)

)

.
Then, let’s calculate the supremum of each of them.

sup
r≥1

p (r) = lim
r→∞

((

1 − 1

rd+ 1

)rd+1
) 1

d ( rd

rd+ 1

)− 1
d

(∵ p (r) is increasing w.r.tr for r ≥ 1)

= lim
t→∞

((

1 − 1

t

)t
) 1

d

· lim
r→∞

(
rd

rd+ 1

)− 1
d

(∵ substitutingt
.
= rd+ 1)

= e
− 1

d (A-11)

sup
r≥1

q (r) = exp

(
1

d
+

d+ 12

12r(12rd+ d+ 12)

)∣
∣
∣
∣
r=1

(∵ the exponent is decreasing w.r.tr for r ≥ 1)

= exp

(
1

d
+

d+ 12

12(13d + 12)

)

Hence, the RHS of inequality (A-10) can be further upper-
bounded using the above supremums resulting in the follow-
ing:

Γ(r + 1)

Γ(r + 1
d + 1)

<
exp

(
1
d + 12+d

12(12+13d)

)

d
√
e

· 1
d
√
r

B. Search Cost for Unstructured Network

We derive the search cost expression using the optimal
expanding ring-based flooding query [26]. We consider the
samed-Ball as a network deployment space as in section A..
We first consider the lower bound of the optimal expected
search cost. Suppose a querying node happens to know the
hop distanceXmin to the nearest copy of the desired event
before disseminating queries. Then, the flooding cost up to
Xmin hops away is certainly the lower bound. The distribution
of Xmin is given in section A.. Under our assumption the
expression for the flooding cost up toh hops away is given
by,

C
(d)
f (h) = 1 +Nd(h− 1) (B-1)

whereNd(h) is the number of nodes up toh hops away given
in section A.

The lower bound of the expected search cost is given by,

C
(d)
s,lower = E[C

(d)
f (Xmin)]

≈ ρ f(d) Rd
E[Xd

min] (B-2)

In order to obtain thed-th moment ofXmin, we make
an approximation thatXmin is continuous. The probability
density function ofXmin is given by,

fXmin(k) =
rd

Ld
kd−1

(

1 − kd

Ld

)r−1

(B-3)

Then, thed-th moment is given by,

E[Xd
min] =

rd

Ld

∫ L

0

k
2d−1

(

1 − kd

Ld

)r−1

dk

=
1

Rdf(d)ρ
· N

r + 1
(∵ (A-2)) (B-4)
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Substituting (B-4) into (B-2) we have the following expres-
sion:

C
(d)
s,lower =

N

r + 1
(B-5)

In our previous work [26] we have shown that the optimal
search cost is proportional to its corresponding lower bound
in two dimensional deployment with approximation, using
its upper bound and numerical results. With the same chain
of reasoning, we reasonably approximate that the optimal
search cost ofd-dimensional deployment is proportional to
its corresponding lower bound3. Therefore, we have

C(d)
s,un = α2 ·

N

r + 1
(B-6)

whereα2 is constant w.r.tr andN , but a function ofd.

C. Replication Cost

We now consider the expected replication cost. Since our
replication strategy is to pick a destination uniformly at ran-
dom, for each copy of the event, it has nothing to do with the
network structure, and so the replication cost is same for both
structured and unstructured networks. Furthermore, underour
assumptions, the number of transmissions required to move
data between any pair of locations a distancex apart along
the shortest path between them is approximatelyx/R. Thus,
the expected cost of creating any replica is given by the ratio
of expected distance between any pair of points in the area
and the radio rangeR. Let ΨB(x) denote the average length
of line picked inBd(x) with radiusx, ψB(x) the integral of
all possible lines in the sameBd, andVd(x) the volume of the
ball which is dealt with in section A.. And, letψC(x) denote
the corresponding integral of lines in thed-cubeCd(x) with
the width ofx. BecauseCd(

√
2LR) ⊂ Bd(LR) ⊂ Cd(2LR),

ΨB(LR) has the following bounds:

ψC(
√

2LR)

VB(LR)2
< ΨB(LR) =

ψB(LR)

VB(LR)2
<
ψC(2LR)

VB(LR)2
(C-1)

Letting x̄ = (x1, . . . , xd) and ȳ = (y1, . . . , yd), ψC(x) is
given by,

ψC(x) =

2d
︷ ︸︸ ︷∫ x

0

· · ·
∫ x

0

|x̄− ȳ|dx1 · · · dxddy1 · · · dyd

= △(d) · x2d+1 (C-2)

where

△(d) =

2d
︷ ︸︸ ︷
∫ 1

0

· · ·
∫ 1

0

|x̄− ȳ|dx1 · · ·dxddy1 · · ·dyd

Let ΨB(LR) andΨB(LR) denote the upper and lower bound
of Inequality (C-1), respectively. From (A-1), (A-2), and (C-2),

ΨB(LR) =
2d
√

2 · △(d)

d
√
ρ · f(d)2+

1
d

· d
√
N (C-3)

3We have proven that the optimal search cost is upper-boundedby the same
order of the lower bound, using two upper bounds; the step-by-step expanding
ring search (ERS) and the full flooding. Due to lack of space, we omit the
proof here; details of this proof will be presented in [29].

ΨB(LR) =
22d+1 · △(d)

d
√
ρ · f(d)2+

1
d

· d
√
N (C-4)

Therefore, we can approximate the replication cost as follows:

C
(d)
r = (r − 1) · ΨB(LR)

= α3 · d
√
N · (r − 1) (C-5)

where
2d
√

2 · △(d)

f(d)2
< α3 <

22d+1 · △(d)

f(d)2

D. Proof of Theorem 5

Because proofs for both structured and unstructured net-
works are similar, we provide here the proof for unstructured
networks only.

1) m · q1/2 = Θ(N
d−1
2d −ǫ) whereǫ > 0. Then, the optimal

total cost is given from Theorem 1 by,

C
∗
t,u = Θ(m · q1/2

N
d+1
2d ) = Θ(N1−ǫ)

= αN
1−ǫ + o(N1−ǫ)

Since the total cost expenditure should be less than the
given energye ·N ,

αN
1−ǫ + o(N1−ǫ) ≤ eN

⇒ N
ǫ ≥ α

e
+
o(N1−ǫ)

N1−ǫ

Since ǫ > 0 and the last term of RHS goes to zero,
there existsN0 > 0 such thatN ≥ N0 implies this
inequality holds, whereN0 is a fixed constant and can
be considered as the minimum network size to make the
network operate successfully.

2) If m · q1/2 = Θ(N
d−1
2d ), then the total cost is given by,

C∗
t,u = Θ(m · q1/2N

d+1
2d ) = Θ(N)

Hence, there existsα > 0 andβ ≥ α such that

αN ≤ C∗
t,u ≤ βN , for all N (D-6)

Let e∗ be the infimum of suchβ so thate∗ = inf{β} ≥
α > 0. Suche∗ always exists since the real number has
the least-upper-bound property. Then, for∀e ≥ e∗,

E = e ·N ≥ C∗
t,u , for all N (D-7)

And for ∀e < e∗, sincee∗ is the infimum,

E = e ·N < C∗
t,u , for someN (D-8)

3) Similarly, m · q1/2 = Θ(N
d−1
2d +ǫ) whereǫ > 0. Then,

the optimal total cost is given by,

C
∗
t,u = Θ(m · q1/2

N
d+1
2d ) = Θ(N1+ǫ)

= αN
1+ǫ + o(N1+ǫ)

From the total cost expenditure constraints,

αN
1+ǫ + o(N1+ǫ) ≤ eN

⇒ N
ǫ ≤ e

α
+ o(Nǫ)

For the sufficiently large initial per-node energye >>
α, ∃Nmax > 0 such that the last inequality above
achieves the equality since the order of the LHS is
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bigger than that of RHS. Hence,N > Nmax implies
the negation of the above inequality so that the network
cannot operate successfully.
The following proof for subcategories requires knowl-
edge on storage constraints in section VIII.
As for the subcase a), We have another two subcases
here. If mq1/2 = O(N

d+1
2d ), then we can use the

inactive optimal total energy cost given by Theorem 1.
If mq1/2 = Ω(N

d+1
2d ), we should use the active cost

given by (24a). Note that whenmq1/2 = Θ(N
d+1
2d ),

the storage constraints might be either active or inactive
depending on the per-node storages by Theorem 7. That
is the reason why we investigate both active and inactive
optimal total costs for the boundary situation.
First of all, let us consider the first case;mq1/2 =
Θ(N

d−1
2d +ǫ), where0 < ǫ < d+1

2d . When0 < ǫ ≤ 1/d,
the optimal total cost is given by,

C
∗
t,u,inact = Θ

(

mq
1/2
N

d+1
2d

)

= Θ
(
N

1+ǫ
)

= αN
1+ǫ + o

(
N

1+ǫ
)

whereα > 0 is constant with respect toN .
From the total cost expenditure constraints,

αN
1+ǫ + o

(
N

1+ǫ
)
≤ eN

⇒ N
ǫ ≤ e

α
+ o(Nǫ) (D-9)

For the sufficiently large initial per-node energye >>
α, ∃Nmax(e) > 0 such that it achieves the equality
of (D-9) since the order of the LHS of the equation is
bigger than that of RHS. For largeNmax(e), Nmax can
be approximated as follows:

Nmax = (1/α)1/ǫ · e1/ǫ

Since1/ǫ ≥ d ≥ 1, thisNmax is a convex function of
e.
When 1/d ≤ ǫ < d+1

2d , we can use the active optimal
total cost. Through the similar reasoning, we can easily
achieve the following equality with approximation for
e >> α.

Nmax = (1/α)
d

2d·ǫ−1 · e d
2d·ǫ−1

Since d
2d·ǫ−1 > 1, thisNmax is a convex function ofe.

As for the other two subcases, we can prove them in the
same way using the active optimal total cost equation.

�

E. Proof of Theorem 6

Because proofs for both structured and unstructured net-
works are similar, we provide here the proof for unstructured
networks only.

1) Supposem · q1/2 = Θ(N
d−1
2d −ǫ · f(T )), where ǫ >

0, f(T ) is a monotonically increasing function. Then,
the optimal total cost is given from Theorem 1 by,

C
∗
t,u = Θ(m · q1/2 ·N

d+1
2d ) = Θ(N1−ǫ · f(T ))

= αN
1−ǫ · f(T ) + o(N1−ǫ · f(T ))

From the total cost expenditure constraints,

αN
1−ǫ

f(T ) + o(N1−ǫ
f(T )) ≤ eN

⇒ f(T ) ≤ e

α
N

ǫ +
o(N1−ǫf(T ))

N1−ǫ
(E-10)

For large enoughN , the second term of RHS of (E-
10) is negligible. Then, sincef(T ) is monotonically
increasing with respect to T, there existsTmax such
that it satisfies the above equality;T < Tmax satisfies
the inequality. Hence,f(Tmax) can be approximated as
follows:

f(Tmax) =
e

α
·N ǫ

Sincef(T ) is monotonically increasing,Tmax increases
with N .

The proofs for case 2) and 3) are analogous to the above
case. �
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