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We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular,
we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is
a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the
underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying
thresholds on the link packet reception rate (PRR). A transition from positive curvature (“meshed” network) to negative curvature
(“core concentric” network) is observed by increasing the threshold. Even though this paper deals with network curvature per se,
we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid),
and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.
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1. INTRODUCTION

With the advent of wired and wireless networks, graph the-
ory has seen a renewed interest, as it provides a mathematical
model of the interconnection of the various communication
channels, along with a cost associated with each channel.
The latter network model is conceptualized as a (possibly
directed) weighted graph. Along with the widespread utiliza-
tion of graph models of networks, those graph properties
embodying their large size and complexity and having a
direct bearing on the communications problems have been
the more specific targets of the recent investigations.

In the context of wireless networks, the idealized model
of random geometric graphs G(n,R) has been studied in
great depth [1–5]. In this model, n nodes are scattered
uniformly at random in a given area and any pair of
nodes within a Euclidean distance R is connected with an
edge. Recent empirical studies of low-power wireless sensor
networks [6–10] have, however, shown that the real situation
is more nuanced: between the distance range within which
there is perfect connectivity and a range beyond which the
link does not exist lies a large transitional region/gray area
which is characterized by high variance in link quality (as
measured by the packet reception rate (PRR)). It is of crucial
interest to understand the fundamental properties of these
realistic wireless networks.

More closely related to the present paper is the fact
that the G(n,R) model utilizes the geographical distance
between agents, whereas in the context of wireless trans-
mission a more relevant distance is − log PRR(vi, v j) /=
dgeographical(vi, v j). It turns out that the G(n,R) model of
uniformly distributed sensor relative to the geographical
distance is positively curved [11]. However, relative to the
communication distance − log PRR(vi, v j) the sensors look
nonuniformly distributed and a general result asserts that
the resulting Delaunay triangulation is negatively curved
[12, 13]. The present paper utilizes the communication
distance and hence reveals curvatures different than the
mere vanishing one [14]. Even though the triangulation is
random [14] because of idiosyncrasies of the propagation,
the curvature, however, appears robust.

The preceding considerations call for a Riemannian
geometry approach to analyzing such wireless networks.
From a more practical standpoint, the proposed approach is
motivated by the need to understand the various minimum
communication cost flows on the graph and the potentially
resulting congestion [15–23]. In Riemannian geometry [16],
cost minimizing paths are conceptualized as geodesics, and
the fundamental properties of the latter are encapsulated
in that single parameter—the curvature. Among those flow
properties regulated by the curvature, one can mention the
exponential growth of balls in negative curvature [17], which
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Figure 1: Illustration of clustering coefficient of node a. Solid lines
between nodes indicate direct links of weight 1, while dotted lines
represent multiple link paths of weight >1. The total number of
possible triangles is 10. In Figure (a), the clustering coefficient is
1/10, while in Figure (b) it is 4/10.

is a model of worm propagation [18], the reduced sensitivity
of the geodesics to link cost variation in negative curvature,
which is a model of the fluttering problem, the availability
of a great many quasigeodesics in negative curvature [17],
which is a model of multipath routing [19, 20], the existence
of a unique centroid of a negatively curved manifold, which
is a model of congestion, an so forth. Those Riemannian
features relevant to communication call for a Riemannian
analysis of graphs along with a curvature concept for graphs.

A Riemannian analogue of graphs that has been quite
successful in its application to wired networks of massive size
is provided by Gromov’s coarse geometry [17, 21], modified
so as to make it useful at scales relevant to real-life networks
[22, 24]. The latter relies on a distance-based approach to
curvature that emulates the Riemannian geometry premise
that curvature regulates geodesic flows.

The present paper specifically investigates how a semilo-
cal curvature concept, based on the clustering [15], applies
to indoor sensor networks. This approach is “semilocal,”
in the sense that it not only takes into consideration the
neighbors of a vertex like the popular degree/heavy-tail
analysis, but it also takes into consideration the way the
neighbors of the nominal vertex are wired. The latter is
crucial, as it provides a quick snapshot at congestion around
the nominal vertex. The semiglobal analysis of [22, 24],
closer to the mathematically idealized Gromov analysis, is
more accurate, but at the expense of accrued computational
complexity. One of the premises of Riemannian geometry
that extends to distance-based geometry is that a uniformly
bounded local curvature implies global properties. The most
salient practical manifestation of this fact is that a network
with uniformly negative local curvature has a centroid
through which most of the (global) traffic transits. Since
real-life networks could have high variance in their local
properties, here, this heterogeneity is analyzed by means of
the distribution of the local curvature across the network.

Another curvature concept, very much in the same spirit,
but somewhat more closely related to Gauss curvature, is
the one based on Alexandrov angles. The latter is expanded

cn = b1 c1

α1

αn

bn bk

αk

αk+1

ck+1

a

ck = bk+1

Figure 2: Gluing of triangles to make a surface of various curvatures
depending on the sum of the αks.

upon in a companion paper [25], where it is shown that
the clustering and the Alexandrov angles analyses of the
benchmark real-life sensor networks are fully consistent.

As already said, and as we show in Sections 6 and 7, the
results we obtain have some practical applications. However,
there are deeper implications that deserve further study. In
particular, there is a tradeoff in the energy costs associated
with minimum length routing paths that are impacted by the
connection we find between the network’s global curvature
and the “blacklisting” threshold chosen for the link packet
reception rate.

2. FROM CONGESTION TO CLUSTERING, CURVATURE
AND BETWEENNESS

Consider a network G = (V ,E) specified by its vertex set V
and its edge set E, along with a routing based on the number
of hops. We proceed to show how congestion naturally leads
to such a mathematical concept as clustering. Consider a
network node a ∈ V along with its neighboring vertices
N(a) = {v ∈ V : av ∈ E}. Take two neighboring vertices
b, c ∈ N(a). If the nodes b, c are not directly connected, that
is, if bc /∈E, messages from b to c will transit via a, hence
congesting a. If, on the other hand, bc ∈ E(G), messages
from b to c will follow the edge bc, hence not contributing
to congesting a. Consider a demand function Λd : V × V →
R+, whereΛd(x, y) is a transmission rate to be achieved from
the source x to the destination y. If the demand is uniformly
distributed over N(a)×N(a), the congestion at the nominal
node a can be defined as proportional to the number of
geodesics paths ba ∪ ac traversing a. The latter is equal to
the total number of paths ba∪ac minus the number of those
making a triangle Δabc. Hence the congestion is

ΛT(a) =
((

deg (a)
2

)
− ∣∣{Δabc : b, c ∈ N(a)

}∣∣)Λd

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
∣∣{Δabc : b, c ∈ N(a)

}∣∣(
deg (a)

2

)
︸ ︷︷ ︸

c(a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
deg (a)

2

)
Λd.

(1)



F. Ariaei et al. 3

0

2

4

6

8

10

12

14

(M
et

er
s)

0 2 4 6 8 10 12 14

(Meters)

Graph representation of a wireless sensor network
(225 nodes in a grid topology)

(a)

0.98

1

1

1

1

1

0.065

0.71

0.15

0.99

0.45

0.99

1

1

0.012

0.9

0.68

0.95

1

1

0.11

0.65

1

1

1

1

1

1

1

1

0.99

0.89

1

1

0.96

0.87

1

1

1

1

0.79

0.11

1

1

1

1

0.64

0.017

1

1

1

1

1

0.97

1

1

1

0.85

1

1

0.87

0.8

0.89

0.77

1

1

1

1

1 1111

1 11111

1

1

11111

1

0.98 0.190.83

0.780.8

0.940.960.990.26

0

0.5

1

1.5

2

2.5

3

(M
et

er
s)

0 0.5 1 1.5 2 2.5 3

(Meters)

Zoom in of graph representation (bottom-left corner)

(b)

Figure 3: (a) Asymmetric graph; 225 nodes. (b) Zoom in of asymmetric graph: bottom-left corner, 16 nodes. The PRR of a given directed
link is written close to the transmitter. For example, the link from (0, 0) to (1, 0) has a PRR of 0.98, and the link from (1, 0) to (0, 0) has a
PRR of 1.

If we define the clustering coefficient c(a) as above, the
congestion at the node a, defined as the numbers of packets
transiting per second through a in a greedy routing, is

ΛT(a) = (1− c(a)
)(deg (a)

2

)
Λd. (2)

The last factor of the right-hand side reveals the trivial
feature that the congestion is proportional to the demand.
The middle factor is the traditional “heavy-tailed” paradigm
that the congestion at node a should depend on the
degree of the node a. The first factor is the novel feature
that the congestion depends on a more subtle topological
feature—the clustering coefficient.

3. MATHEMATICAL BACKGROUND: FROM
CLUSTERING TO LOCAL CURVATURE

Clustering and curvature are concepts that are, here, applied
to graphs. The connection between the two concepts is easily
understood by considering a complete graph. Interpreting
clustering as a measure of connectivity, such graph has high
clustering coefficient. But geometrically, a complete graph
embedded in a high-dimensional space “looks like” a sphere,
which is the archetypical example of a positively curved
manifold. Hence high clustering is equivalent to positive
curvature.

Here the vertex set V is endowed with an adjacency
matrix A : V × V → R+ such that Aij = d(vi, vj),
the nonnecessarily symmetric distance from vi to vj . Such
distance matrix can be generated experimentally from a
packet reception rate (PRR) matrix as Aij = −log (PRRi j).
The sensor network adjacency matrix is symmetrized, that is,
if a link does not have the same packet reception rate (PRR)

in both directions, the two PRR’s of the link are replaced by
their product. Then a threshold is chosen such that, if the
PRR is greater than the threshold, it is assumed that a link is
present, otherwise the link does not exist. The latter defines
the edge set E.

3.1. Clustering coefficient

The new (symmetrized) adjacency matrix is used to define
the edge set, which is itself used to calculate the clustering
coefficient. The clustering coefficient at node a is defined as

c(a) = number of existing triangles with a vertex at node a
maximum possible number of triangles

.

(3)

The denominator can be computed as

maximum possible number of triangles=
(

degree(node a)

2

)
,

(4)

and degree (node a) is a number of links incident upon node
a. The number of existing triangles with a vertex at node a is
the number of triples (abk, abk+1, bkbk+1), where abk, abk+1

are two edges flowing out of a and bkbk+1 denotes a direct
link joining bk to bk+1.

3.2. Alexandrov angles approach to curvature

Here the network graph is weighted by a symmetric
adjacency matrix. The difference between negatively and
positively curved surfaces can easily be understood by
formalizing the intuitive difference between a saddle and
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Figure 4: Histogram of clustering coefficients: (a) simulation data;
(b) real dataset A; (c) real dataset B.
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Figure 5: Variation of mean of clustering coefficient with threshold.

a sphere. Assume we have a collection of rectilinear triangles
abkck, where k = 1, 2, . . . ,n. In each such triangle, let
αk = ∠bkack be the angle at the vertex a. αk is easily
computed using the rectilinear law of cosine, in which case it
is called Alexandrov angle for background Euclidean metric.
Let us glue the edge abk+1 along the edge ack, k ≤ n−1, with
the understanding that cn = b1. If

∑
kαk < 2π, the resulting

surface is a pyramid, and with a little bit of imagination, it
looks like a sphere at its apex. The Gauss curvature at the
apex a is defined as κ(a) = (2π − ∑kαk)/

∑
kA(abkck) > 0,

whereA(·) denotes the area functional. If, on the other hand,∑
kαk > 2π, the resulting surface will have a “fold” and hence

will look like a saddle. The local curvature at the vertex a is
κ(a) = (2π −∑kαk)/

∑
kA(abkck) < 0.

Consider the more general setting of an N-dimensional
Riemannian manifold M. By the definition of a manifold,
there exists a local homeomorphism h : M → RN , h(a) =
0. A section through a is defined as σ = h−1(R2), where
R2 ⊆ RN . By the Nash theorem, there is an isometric
embedding f : M → RD of M in a Euclidean space of
dimension D = N(3N + 11)/2. In this latter space, f (σ) is a
surface; its curvature can be computed using the methods of
the preceding paragraph, resulting in the sectional curvature
κ(a, σ) of the manifold.

Next, to develop a Riemannian manifold approach to
graphs, we need to define the sectional curvature around
a vertex a. Clearly, a cyclic ordering of a subset of vertices
flowing out of a could be thought of as a section. However,
a typical feature of a network graph is that the degree of a
vertex is a heterogeneous property, with high variance in the
scale-free case. There is thus a need to define the concept of
a section consistently across the network, which calls for a
minimum number of edges. Here we invoke the Gromov 4-
point condition [26], essentially saying that the curvature can
be assessed from 4 points, that is, the sectional curvature is
defined from 3 edges.

As an illustration consider a tree [27, 28]. Assume the
degree of the nodes is three at least. Consider a triple
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Figure 6: Estimated probability distribution of clustering coeffi-
cient: (a) simulation data; (b) real dataset A; (c) dataset B.
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Figure 7: Power law for distribution of clustering coefficient: (a)
simulation data; (b) dataset A; (c) dataset B.
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Figure 8: Power law for distribution of clustering coefficient (MATLAB): simulation data.

ab1, ab2, ab3. Clearly, d(bk, bk+1) = d(a, bk) + d(a, bk+1)
from which the rectilinear law of cosines yields α1 =
cos−1((d2(a, b1) + d2(a, b2)− d2(b1, b2))/2d(a, b1)d(a, b2)) =
π. Hence 2π−∑3

k=1αk = −π, but since the area of every single
triangle abkbk+1 vanishes, the curvature is −∞.

3.3. Clustering coefficient approach to curvature

Now, we have to assemble the triangles offered to us by the
clustering analysis in such a way as to make sections in which
the curvature can be assessed. From the simplified clustering
analysis, two vertices are either connected by one single edge,
with a weight normalized to 1, or can only be connected by
a path of at least two edges, in which case their distance is
≥2. From the clustering analysis around a vertex a, the two
edges ab1, ab2 either make a triangle or not. In case they
make a triangle, b1, b2 are directly linked by an edge of weight
normalized to one, in which case the triangle is equilateral

with Alexandrov angle αk = π/3. The other possibility is that
there is no triangle associated with ab1, ab2, which means
that b1, b2 are connected by a string of at least two edges
making a path of length at least 2. Since d(b1, b2) is defined
as the minimum of all lengths of paths joining b1, b2, the
minimum length path is [ab1] ∪ [ab2]; hence d(b1, b2) = 2.
From the metric point of view, ab1b2 appears a “flat” triangle
and the rectilinear law of cosines yields an Alexandrov angle
α1 = π.

If the node a is completely clustered, if N(a) is completely
meshed, the Alexandrov angles are all equal to π/3 and 2π −∑3

k=1αk = π > 0, and the curvature is positive. If the node has
vanishing clustering coefficient, if N(a) is star connected, the
Alexandrov angles are all equal to π and 2π−∑3

k=1αk = −π <
0, and the curvature is negative.

It should be noted that an ad hoc wireless mesh network
need not have positive curvature, unless it is fully meshed.
As a counterexample, observe that a planar network of node
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Figure 9: Power law for distribution of clustering coefficient (MATLAB): dataset A.

degree uniformly greater than 6 has uniformly negative
curvature, even though it would be qualified as “meshed.”

4. SIMULATION/EXPERIMENTAL SETUP

4.1. Simulation data

The virtual network consists of 225 nodes in a grid topology,
where the grid size is 1 meter. Simulation was based on the
following environmental parameters, which were measured
on the aisle of the third floor in the Electrical Engineering
Building in the University Park Campus of the University of
Southern California (USC):

(i) path loss exponent = 3.0,

(ii) shadowing standard deviation = 3.8,

(iii) path loss reference = 55.0 dB (for a distance of 1
meter),

(iv) radio parameters: these parameters characterize an
MICA2 mote using noncoherent FSK modulation
with Manchester encoding and a frame length of 52
bytes,

(v) output power = −20 dBm,

(vi) standard deviation of output power = 1.2 dB,

(vii) noise floor = −90 dBm,

(viii) standard deviation of noise floor = 0.7 dB.

The connectivity matrix for the topology is the prrMa-
trix.mat MATLAB file available at http://ceng.usc.edu/
∼anrg/downloads.html

(3. Realistic Wireless Link Quality Model and Generator).
The nodes are numbered in a right-top approach, where the
node at (0, 0) is node 1, the node at (14, 0) is node 15, the
node at (0, 1) is node 16, and so forth.

Figure 3 shows a random instance of the connectivity
graph for the given topology. Figure 3(a) has the following
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Figure 10: Power law for distribution of clustering coefficient (MATLAB): dataset B.
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Figure 11: Variation of degree of the node with threshold.

convention for the links (edges). Recall that this is a
directed graph. The direction of the edges is not shown
and instead the following convention is used for illustration
purposes.

(i) If a pair of nodes (A,B) has a packet reception rate
(PRR) above 0.9 in both directions (i.e., A → B and
B → A), then the edge is drawn as a full line. In this
case, the link can be considered as symmetric.

(ii) If a pair of nodes (A,B) has a PRR above 0.3 in both
directions, but one or both directions are below 0.9,
then the edge is drawn as a dotted line. This link can
be considered as asymmetric.

(iii) If a pair of nodes (A,B) has a PRR below 0.3 in
at least one direction, then the edge is not drawn.
However, in Figure 3(b) (zoom in), it is plotted as
a dotted red line. These links can be considered as
highly asymmetric or very weak.
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Figure 12: Variation of clustering coefficient with degree of nodes: simulation data.

4.2. Real data

Two other sets of data, those real, are also analyzed. These
are two representative deployments of 100 nodes placed
on the ground in an indoor basketball court at USC. The
deployments consisted of a mix of 59 moteiv tmote sky
wireless devices and 41 crossbow micaz wireless devices.
Both devices have the same IEEE 802.15.4 radio transceiver
(chipcon CC2420), but as evident in the results, the tmote
sky nodes have a significantly higher transmission range.
This is attributable to differences in antenna design (external
wire versus printed-on-board). The key difference between
the two deployments is the higher internode spacing in one
(10 ft apart versus 6 ft apart).

This real network deployment data is also made avail-
able online at http://ceng.usc.edu/∼anrg/downloads.html (6.
Measurement of pairwise PRR values from two real 100-node
rectangular grid deployments).

5. RESULTS

After computing the clustering coefficients for all nodes of
the graph, their distribution is plotted and the best fitting
probability distribution, estimated using a kernel smoothing

method, is derived. Also, using Curve Fitting Toolbox in
MATLAB, the power-law behavior of the network clustering
distribution is tested for some values of threshold. It should
be reminded that the analysis of Section 2 singled out the
clustering as a degree-independent factor contributing to
congestion. The experimental analysis of Section 5.2.3 will
confirm the near independence of the clustering on the
degree. Hence the power law behavior of the clustering
coefficient should not be confused with the traditional heavy-
tailed phenomenon.

5.1. Probability distribution of clustering

The clustering coefficient for each node is calculated. This
has been done by symmetrizing the adjacency matrix and
considering different values of the threshold. The distribu-
tion of the clustering coefficients for the whole graph is
shown in Figure 4 for simulated data, real data A, and real
data B.

The clustering coefficient varies with the threshold. The
average values of the clustering coefficients for various
thresholds are listed in Table 1 and the graphical represen-
tation is found in Figure 5.



10 EURASIP Journal on Wireless Communications and Networking

0.4

0.5

0.6

0.7

0.8

0.9

C
lu

st
er

in
g

co
effi

ci
en

t

0 20 40 60 80

Degree of nodes

Threshold = 0

(a)

0.2

0.4

0.6

0.8

1

C
lu

st
er

in
g

co
effi

ci
en

t

0 20 40 60 80

Degree of nodes

Threshold = 0.2

(b)

0.2

0.4

0.6

0.8

1

C
lu

st
er

in
g

co
effi

ci
en

t

0 20 40 60 80

Degree of nodes

Threshold = 0.4

(c)

0

0.2

0.4

0.6

0.8

C
lu

st
er

in
g

co
effi

ci
en

t

0 20 40 60

Degree of nodes

Threshold = 0.6

(d)

Figure 13: Variation of clustering coefficient with degree of nodes: dataset A.

The mean of the clustering coefficient decreases as the
threshold increases. This appears to be a specific property of
the wireless protocol, as there is no way to predict how in
general the clustering coefficient of a weighted graph would
vary with the threshold. Indeed, by increasing the value of the
threshold, the degree of the nodes decreases (as it is shown
later) and hence both the numerator and the denominator of
c(a) decrease. For example, if we set threshold to zero, that
is, considering all links even the weakest ones in the network,
the average of the clustering coefficient (for symmetrized
adjacency matrix) would be equal to 0.5702, 0.592, and
0.47118 for simulated data, real data A, and real data B,
respectively.

For example, if we set the threshold to zero, that is,
considering all links even the weakest ones in the network,
the average of the clustering coefficient (for symmetrized
adjacency matrix) would be equal to 0.5702, 0.592, and
0.47118 for simulated data, real data A, and real data B,
respectively.

The probability distribution estimation for the clustering
coefficient is done using a kernel smoothing method in
MATLAB. The graphs of Figure 6 show the variation of the

Table 1: Average of clustering coefficient versus threshold.

Threshold
Average of clustering coefficient

Simulation data Real data A Real data B

0.0 0.5702 0.59200 0.47118

0.1 0.40637 0.54088 0.42361

0.2 0.40132 0.53346 0.40419

0.3 0.39763 0.52327 0.40871

0.4 0.39513 0.52027 0.38939

0.5 0.38846 0.50095 0.37233

0.6 0.37657 0.49171 0.36372

0.7 0.36929 0.47562 0.34293

0.8 0.35847 0.45492 0.32908

0.9 0.33943 0.43005 0.31704

1.0 0.04444 0.16992 0.16729

probability distribution with the threshold for all three sets
of data.

For simulated data and real dataset A, the probability
distribution is more right skewed whereas it turns out



F. Ariaei et al. 11

0.2

0.3

0.4

0.5

0.6

0.7

C
lu

st
er

in
g

co
effi

ci
en

t

0 20 40 60

Degree of nodes

Threshold = 0

(a)

0

0.2

0.4

0.6

0.8

C
lu

st
er

in
g

co
effi

ci
en

t

0 10 20 30 40 50

Degree of nodes

Threshold = 0.2

(b)

0

0.2

0.4

0.6

0.8

C
lu

st
er

in
g

co
effi

ci
en

t

0 10 20 30 40 50

Degree of nodes

Threshold = 0.4

(c)

0

0.2

0.4

0.6

0.8

C
lu

st
er

in
g

co
effi

ci
en

t

0 10 20 30 40 50

Degree of nodes

Threshold = 0.6

(d)

Figure 14: Variation of clustering coefficient with degree of nodes: dataset B.

to be left skewed for real dataset B. For a value of the
threshold equal to zero, these curves have maximum means,
hence pointing toward positive curvature. This result is not
surprising, since decreasing the threshold creates more and
more links (of poor PRR’s), and tends to make the graph fully
meshed, hence positively curved. By increasing the value of
the threshold, it is seen that the mean value decreases and
the variance increases. Therefore, for very high threshold,
the graph tends to be negatively curved and the clustering
distribution tends toward becoming heavy tailed.

5.2. Degree-independent power-law behavior
of clustering

5.2.1. Clustering coefficient distribution

Considering the clustering coefficient as a random variable,
the power-law behavior of its density is investigated. This is
the issue of whether the probability density could be fitted
by

fc = βcα, (5)

where β and α are constants, c is the clustering coefficient,
and fc represents the density at clustering coefficient c. The
above behavior is investigated in two different ways.

First, by trial and error, the best fit could be found as
fc = 1/c5 for simulation data, which, as seen in Figure 7(a),
is almost verified for all threshold values. For real dataset A,
α varies from 4.3 to 7 and for real dataset B, from 4 to 5.5 (see
Figures 7(b) and 7(c)).

As it can be seen, this curve fitting works best at low
threshold and, on the other extreme, it does not match the
distribution of the clustering coefficients as the threshold
increases.

The second method utilizes the Statistic Toolbox of
MATLAB to estimate with a confidence level the exponent
in the tail. The results are plotted in Figures 8, 9, and
10 for simulated data, real dataset A, and real dataset B,
respectively.

These statistically more reliable results are consistent
with those of the first method. In all cases, the absolute value
of α is greater than 3. One can conclude that the tail of
distribution of the clustering coefficient obeys a Pareto law,
but is not exactly heavy tailed, especially for low values of the
threshold (see Table 2).
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Figure 15: Power law for distribution of clustering coefficient versus degree of nodes: simulation data.

5.2.2. Probability distribution of the degree of nodes

The degree of each node is calculated for different values of
the threshold. In all cases, except for a threshold equal to zero,
the degree of the nodes is much less than the total number of
nodes, n.

The average of the degree of the nodes for each value of
the threshold is shown in Table 3 and a graphical represen-
tation can be found in Figure 11 for all three datasets. The
average of the degree of the nodes varies almost linearly with
the threshold between 0.1 and 0.9. But the bigger conclusion
drawn from this figure is that, as long as the threshold is
increased, the degree of the nodes decreases. This can be
justified on the ground that, as the threshold is increasing,
we remove some poor quality links, while keeping the good
ones, which decreases the degree.

5.2.3. Clustering coefficient versus degree

In this part, the subset of clustering coefficients of nodes
of a fixed degree is considered as a function of the degree.

The graphs in Figures 12, 13, and 14 show the distribution
of the clustering coefficient versus the degree for different
values of the threshold. In Figures 15, 16, and 17, we inspired
ourselves from [15] and plotted the best power law fit of the
clustering versus the degree using the Curve Fitting Toolbox
of MATLAB (see Table 4).

We take the simulated data of Figure 15 as benchmark
case study. It is quite obvious that at zero threshold (positive
curvature), we have a well-defined power law (α negative
enough) whereas at high threshold (negative curvature), the
power law is less marked (α ↑ 0) and in fact the dependency
of the clustering on the degree becomes almost constant.
From Table 4, it transpires that as we proceeded from low
to high threshold, the relative size of the confidence interval
for α increases, hence statistically the analysis is slightly less
reliable. The same trend can be seen for dataset A. The overall
trend for dataset B is more toward constancy, which can be
justified on the ground that the curvature is more negative
for this dataset.
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Figure 16: Power law for distribution of clustering coefficient versus degree of nodes: dataset A.

Table 2: Confidence intervals for parameters of power law distribution of clustering coefficients (confidence level = 95%).

fc = βcα Threshold

Confidence interval 0.0 0.2 0.4 0.6

Simulation data
β 0.8835 (−.224, 1.991) 2.432 (.7948, 4.07) 0.3751 (−.291, 1.041) 0.1833 (−.3859, .731)

α −7.335 (−9.867, −4.803) −3.571 (−4.244, −2.897) −5.019 (−6.929, −3.109) −6.08 (−9.182, −2.303)

Real data A
β 0.5912 (−1.078, 2.26) 1.194 (.07214, 2.351) 1.29 (−.8332, 3.414) 4.834 (−2.975, 12.64)

α −6.914 (−13.13, −.6997) −4.596 (−5.998, −3.193) −4.485 (−7.076, −1.893) −2.135 (−4.195, −.0761)

Real data B
β 0.01378 (−.02385, .0514) 0.4498 (−.8301, 1.709) 0.2986 (−.7255, 1.298) 0.4522 (−.6654, 1.57)

α −11.25 (−15.28, −7.227) −4.944 (−8.309, −1.631) −5.275 (−9.397, −1.252) −4.452 (−7.038, −1.866)

It therefore appears that positive curvature can be
characterized by a well-defined power law for the clustering
coefficient versus the degree. This observation is consistent
with [15], where for the positively curved World Wide Web
α ≈ −1. Negative curvature on the other hand can be

characterized by a “flatter” and statistically somewhat less
reliable clustering versus degree curve.

The fact that in negative curvature the clustering is
nearly constant relative to the degree provides experimen-
tal confirmation of our earlier assertion that clustering
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Figure 17: Power law for distribution of clustering coefficient versus degree of nodes: dataset B.

Table 3: Average of degree of nodes and threshold.

Threshold
Average of degree of nodes

Simulation data Real data A Real data B

0.0 53.049 38.82 33.2

0.1 7.7156 32.64 27.76

0.2 7.4933 30.84 26.52

0.3 7.2622 29.98 25.2

0.4 6.9867 28.88 24.06

0.5 6.7556 27.82 22.84

0.6 6.5422 26.76 21.98

0.7 6.2311 25.80 20.70

0.8 5.8933 24.28 19.28

0.9 5.5111 22.20 17.38

1.0 1.2622 8.04 6.18

is a degree-independent factor contributing to conges-
tion.

5.3. Spatial distribution of clustering

Figures 18–20 show the spatial distribution of the clustering
coefficients across the network. It is quite obvious that, for
low threshold, the clustering is nearly constant, whereas,
at high threshold, it is much more heterogeneous. The
homogeneity at low threshold can be justified on the ground
that taking all links into consideration makes the wiring
homogeneous. At high threshold, there are isolated areas of
high clustering, which might be called “cores.” As shown
in the figures, the core of the network (i.e., nodes with
higher clustering coefficients) is almost in the center of the
graph, and the areas of negative curvature (nodes with low
clustering coefficient) are at the periphery. This is more
visually obvious from the simulation data. For real networks



F. Ariaei et al. 15

0

0.2

0.4

0.6

0.8

115

10

5

Tr = 0

5 10 15

(a)

0

0.2

0.4

0.6

0.8

115

10

5

Tr = 0.3

5 10 15

(b)

0

0.2

0.4

0.6

0.8

115

10

5

Tr = 0.6

5 10 15

(c)

0

0.2

0.4

0.6

0.8

115

10

5

Tr = 0.9

5 10 15

(d)

Figure 18: 3D illustration of spatial distribution of clustering coefficient across the graph: simulation data.

Table 4: Confidence intervals for parameters of clustering versus degree power law (confidence level = 95%).

fc = βcα Threshold

Confidence interval 0.0 0.2 0.4 0.6

Simulation data
β 3.201 (2.967,3.435) 0.9801 (.7958,1.164) 0.8852 (.7216,1.049) 0.5582 (.4194, .697)

α −0.4417 (−.4607, −.4227) −0.4616 (−.5614, −.3617) −0.4337 (−.5358, −.3317) −0.2187 (−.3572, −.0802)

Real data A
β 0.9496 (.8487,1.051) 0.8882 (.7942, .98230) 0.8244 (.7355, .9134) 0.7293 (.6518, .8067)

α −0.1357 (−.1664, −.105) −0.1605 (−.1942, −.1267) −0.1491 (−.1844, −.1138) −0.1271 (−.1624, −.0918)

Real data B
β 0.4014 (.3202, .4827) 0.2505 (.1892, .3118) 0.2436 (.1852, .3019) 0.212 (.1508, .2731)

α 0.04745 (−.0113, .1062) 0.1532 (.07867, .2278) 0.1568 (.08174, .2319) 0.1869 (.09472, .2791)

A and B, since the networks consist of two different types of
sensors, two cores in the center of each group are observed
while the nodes with negative curvature are located at
boundaries.

5.4. Clustering curvature versus threshold

The relationship between the clustering coefficient and the
curvature of the graph can be established as follows: if the
clustering coefficient of the node is closer to 1, then the
curvature is positive; otherwise, if it is closer to zero, the cur-
vature is negative. Looking at Table 1, one can see that, as the

value of the threshold increases, the average of the clustering
coefficients for the whole graph decreases, pointing toward
negative curvature. This can be explained by the fact that,
under increasing threshold, only the strong links are taken
into consideration and the same strong links interconnect in
a tree-like pattern, the perfect example of a negatively curved
graph. On the other hand, under diminishing threshold,
the clustering coefficient increases, pointing toward positive
curvature. Again, this is not surprising, since under small
threshold nearly all links are taken into consideration, the
graph tends to a fully meshed one, the perfect example of a
positively curved graph.
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Figure 19: 3D illustration of spatial distribution of clustering coefficient across the graph: dataset A.

6. LARGE-SCALE VERSUS SEMILOCAL
CONGESTION INTERPRETATION

As said, clustering is a semilocal approach to an inherently
large-scale congestion problem. Here we formulate the
genuine large-scale congestion issues and illustrate them on
the “dataset 06A,” which is generated from a real wireless
sensor network, deployed in an indoor basketball court at
USC, involving 100 nodes 6 feet apart. Next, we will compare
the exact large-scale analysis with the semilocal clustering
approach.

Given a network graph, we define the betweenness of
the node a, β(a), to be the number of geodesics passing
through a. Betweenness is a pure mathematics concept [29],
introduced in disguise in tree networks in [30], and quite
explicitly utilized in Protein Interaction Network (PIN) [31].
The inertia of the network relative to the vertex a is defined
as φ(a) = (1/2)

∑
v∈V(G)d

2(a, v). A center of mass or centroid
of the network is defined as a vertex relative to which the
inertia is minimum. Our general large-scale conjecture is
that for a negatively curved network graph, the vertex of
heaviest congestion (of maximum betweenness) occurs at
the centroid (vertex of minimum inertia). Proofs in some
specific setups are available in [12]. For a positively curved
network, the inertia tends to be uniform and the traffic tends
to be uniformly distributed across the network [12].

It is easy to illustrate the conjecture in the simple setting
of a graph of vertex set a ∪ N(a) along with the concept
of clustering. If we include in the traffic of a the traffic
transiting through a as well as the traffic departing from a
and arriving to a, the total traffic under normalized demand
is Λt(a) = 2deg(a) + ( deg(a)

2 )(1 − c(a)). On the other hand,
for b ∈ N(a), Λt(b) = 2deg(a). Hence Λt(a) ≥ Λt(b).
Regarding the inertia, it is easily seen that φ(a) ≤ φ(b).
Thus, as the conjecture says, traffic and inertia are going in
opposite directions. More specifically, traffic is maximum at
a, Λt(a) > Λt(b), when c(a) = 0, that is, when the graph has
local negative curvature, under the same conditions, φ(a) <
φ(b). If, on the other hand, c(a) = 1, that is, the case of a
positively curved graph, φ(a) = φ(b) and Λt(a) = Λt(b).

Since our conjecture is that the mass center will have
the heaviest traffic congestion, we simulated both the
traffic distribution and the distance squared distribution (or
inertia) as the threshold is set to 0.1 (blue line) and 0.5 (black
line) in Figure 21, where we set all edges to be of length one
after threshold. (note: the node numbering of Figures 21–
24 is by scanning Figures 19 and 20 columnwise, with node
number 1 in Figures 21–24 corresponding to the point of
coordinates (0, 0) in Figures 19 and 20).

The congestion point (node number 88) and the low
inertia point (node number 88) are matching perfectly with
threshold 0.5 (clustering coefficient 0.50095); they are not
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Figure 20: 3D illustration of spatial distribution of clustering coefficient across the graph: dataset B.
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that the inertia of the negatively curved network (dashed black) is
lower than that of the positively curved network (solid blue).

quite matching once the network tends to be positively
curved with threshold 0.1 (clustering coefficient 0.54088).
However, more strikingly consistent with our conjecture
is the fact that, as seen from Figures 22 and 23, traffic
congestion is heavier around a limited number of nodes (of
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Figure 22: Traffic with threshold 0.1 (solid blue line, positive
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versus vertex index. Observe that the dashed black traffic curve
(negative curvature) has higher spikes.

minimum inertia) in negatively curved network (threshold
of 0.5) than in a positively curved one (threshold of 0.1).

Another way to see the results is through Figure 23, which
shows that the mean and the standard deviation of the graph
inertia increase with the threshold. In case of a positively
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Figure 23: The mean and the standard deviation of graph inertia as a function of the threshold. Observe that both of them increase as the
curvature becomes more and more negative.
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Figure 24: System-level diagram of curvature-based load balancing.

curved graph, the inertia is nearly constant, there are no
obviously identifiable minima of the inertia, and no vertices
stand out as heavily congested relative to the others. The
situation is quite different as the threshold increases; the
standard deviation of the inertia of the graph increases, some
points stand out as minima of the inertia and are hence
candidates for congestion.

The connection with the clustering coefficient can be
seen from Figure 19 (and to a lesser extent from Figures
18 and 20 dealing with different datasets). Figure 19 indeed
shows an area of low clustering (high congestion) around
position number 88. Furthermore, by mere visual inspection
of those figures, it is clear that the variance of the clustering
varies consistently with the variance of the inertia under
varying threshold.

To summarize, the higher the threshold, the smaller
the clustering, the more the graph is negatively curved, the
more is the tendency to have nodes standing out as heavily
congested relative to the others.

7. DISCUSSION AND CONCLUSIONS

This paper has provided a detailed analysis of the curvature
of a sensor network using the semilocal, but easily com-
putable, concept of clustering coefficient. The latter provides
a snapshot at the exact Riemannian curvature of the network.
As far as the benchmark sensor network examples are
concerned, numerical investigations have shown that, in case
of high threshold, that is, when only the strong links are taken

into consideration, the curvature is negative. On the other
hand, taking all links into consideration, including those of
very small PRR, yields a network of positive curvature.

What is not completely obvious is the fact that such a
local concept as clustering yields such a global insight as
congestion. The explanation is to be found in the Rieman-
nian geometry approach that this paper strives to justify.
Probably the most important paradigm of Riemannian
geometry is that the curvature, which can be defined very
locally by computing various partial derivatives, yields global
properties. Examples include the “sphere theorem,” saying
that a Riemannian manifold with its sectional curvature
uniformly bounded from below by κmin > 0 has its diameter
bounded by π/

√
κmin. Since the clustering emulates the local

sectional curvature, it provides a safe gateway to global
properties.

From a practical networking perspective, the background
motivation of this study has been congestion. The latter
can be rephrased, a bit simplistically, as the fact that
greedy routing on a negatively curved network creates very
heavy congestion around at a limited number of nodes.
Since congestion can be traced to negative curvature, load
balancing must somehow get around it. This leads to a
curvature-based load balancing algorithm in which the link
weights are deliberately distorted to create a virtual network
of positive curvature. Dijkstra’s algorithm with random pick
on the virtual network leads to paths, which, mapped back to
the real network, provide better load balancing. This concept
is illustrated in Figure 24 (see [12] for details).
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Another significant feature that emerges is that positive
curvature incurs a higher cost due to weak links and negative
curvature incurs higher costs due to longer paths. Hence,
it is fair to conjecture that there is an optimal threshold
value between both extremes. This bears further study. We
also speculate that there may be some other significant
connections between the curvature and the performance of
certain wireless sensor network algorithms. For instance, the
convergence of distributed localization algorithms (such as
iterative multilateration techniques [32]) and gossip-based
algorithms for distributed aggregate computation [33] are
likely to be impacted in a nontrivial manner by the graph
curvature. This is because these iterative algorithms require
local neighborhood message passing and computations (for
which intuitively positive curvature may be helpful), but
at the same time, they require rapid global dissemination
(for which negative curvature may be beneficial). Last but
not least, greedy geographic routing on hyperbolic plane
embedding of the graph [34] should have better properties
(e.g., smaller stretch and congestion) when applied to a graph
that is negatively curved in the first place.
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