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ABSTRACT
In recent years random-walk-based algorithms have been
proposed for a variety of networking tasks. These propos-
als include searching, routing, self-stabilization, and query
processing in wireless networks, peer-to-peer networks and
other distributed systems. This approach is gaining popu-
larity because random walks present locality, simplicity, low-
overhead and inherent robustness to structural changes. In
this work we propose and investigate an enhanced algorithm
that we refer to as random walks with choice. In this algo-
rithm, instead of selecting just one neighbor at each step,
the walk moves to the next node after examining a small
number of neighbors sampled at random. Our empirical re-
sults on random geometric graphs, the model best suited for
wireless networks, suggest a significant improvement in im-
portant metrics such as the cover time and load-balancing
properties of random walks. We also systematically inves-
tigate random walks with choice on networks with a square
grid topology. For this case, our simulations indicate that
there is an unbounded improvement in cover time even with
a choice of only two neighbors. We also observe a large re-
duction in the variance of the cover time, and a significant
improvement in visit load balancing.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous

General Terms: Algorithms, Design.

Keywords: Power of Choice, RandomWalks,Wireless Net-
works.
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1. INTRODUCTION
A random walk on a graph is the process of visiting the

nodes of the graph in some sequential random order. The
walk starts at some fixed node, and at each step it moves
to a neighbor of the current node chosen randomly. The
random walk is called simple when the next node is cho-
sen uniformly at random from the set of neighbors. Since
this process presents locality, simplicity, low-overhead and
robustness to structural changes, applications based on ran-
dom walk techniques are becoming more and more popu-
lar in the networking community. In recent years different
authors have proposed the use of random walk for query-
ing/searching, routing and self-stabilization in wireless net-
works, peer-to-peer networks, and other distributed systems
[12, 29, 8, 28, 5, 15, 1].

For example, for a query processing task in wireless sen-
sor networks, a base station can issue a query with some
description, such as “return the maximum temperature in
the network”. The token then takes a random walk in the
network and updates its answer at each node; after visiting
enough nodes, or after enough time, the query traces its way
back to the base station with the answer.

One of the main reasons that random walk techniques are
so appealing for networking application is their robustness to
dynamics. Many wireless and mobile networks are subject to
dramatic structural changes created by sleep modes, chan-
nel fluctuations, mobility, device failures, and other factors.
Topology-driven algorithms are at a disadvantage for such
networks as they incur high overhead to maintain up-to-date
topology and routing information and also have to provide
recovery mechanisms for critical points of failure (e.g. clus-
ter heads, nodes close to the root in a spanning tree). By
contrast, algorithms that require no knowledge of network
topology, such as the random walk, are at an advantage. In
random walks, there are no critical points of failure; on the
contrary, all the nodes are equally unimportant at all times
so long as the probability of a node failing during the short
time it holds the message is considered negligible.

While at first glance, the process of a token wandering ran-
domly in the network may seem overly simplistic and highly
inefficient, many encouraging results that prove its compa-
rability with other approaches have been obtained over the
years. Two basic properties of random walks need to be
evaluated in order to bound the efficiency of this approach:
cover time and partial cover time. The cover time CG of a
graph G is the expected time taken by a simple random walk
to visit all nodes in G and the partial cover CG(c) is the ex-
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pected time to visit a constant fraction c of the nodes. These
properties are relevant to a wide range of algorithmic appli-
cations [18, 32, 21, 5, 15], and various methods of bounding
the cover time of graphs have been thoroughly investigated
[4, 23, 3, 10, 9, 33]. An optimal cover time is a cover time of
Θ(n log n), the some order as the cover time of the complete
graph. Several bounds on the cover time of random walks
on different classes of graphs have been obtained with many
positive results [10, 9, 19, 20, 11].

One class of graphs that has received particular attention
in this context is the class of random geometric graphs which
are most suitable for modeling wireless networks. A random
geometric graph is a graph G(n, r) resulting from placing n
points uniformly at random on the unit square and connect-
ing two points if and only if their Euclidean distance is at
most r. In the last few years random geometric graphs have
been used as a fundamental model for randomly-deployed
wireless ad-hoc and sensor networks. Recently it has been
proven that, when r = Θ(rcon) then w.h.p.1 G(n, r) has op-
timal cover time of O(n log n) and optimal partial cover time

of O(n) [6] where rcon growing as O(
q

log n
πn

) is the critical

radius to guarantee connectivity w.h.p. [17].
Improving the cover time without losing the locality, sim-

plicity and robustness of the random walk is an important
goal that is directly related to the performance and energy
usage of a random-walk-based query mechanism. There are
other properties of the walk that also need to be addressed
in order to improve overall application performance. One is
reducing the variance of cover time (i.e. preventing queries
that take a very long time); Another is balancing the load
on the nodes (i.e. number of visits) by the time of cover,
which will increase the system lifetime, in case of battery-
constrained wireless sensor networks. In this paper, we take
a step in this direction by combining random walks with a
probabilistic tool known as the power of choice.

The essential idea behind the power of choice is to make
some decision process more efficient by selecting the best
among a small number of randomly generated alternatives.
The most basic results about the power of choice are as fol-
lows: suppose one throws n balls into n bins one by one,
where at each time the next bin is chosen independently
and uniformly at random. It is well known that the most
loaded bin at the end of the process will have about log n

log log n

balls w.h.p. [25]. Consider the following change to the above
scheme involving choice. At each step, instead of one bin, we
choose a constant d ≥ 2 bins independently and uniformly
and put the ball in the bin with the minimum number of
balls. In a somewhat-surprising result by Azar et al. [7], it
has been shown that with this change, the most loaded bin
will have log log n

log d
+ Θ(1) balls w.h.p. So with only a little

more work a each step, (choosing two bins instead of one)
we see a large improvement. Notice that increasing d further
yields only a constant factor improvement giving diminish-
ing returns. Since it was first offered, the idea of the power
of choice has spread in different directions with new results
and applications to hashing, load balancing in distributed
systems, and low-congestion routing, among others [24].

In this work we propose (for the first time, to our knowl-
edge) to combine the power of choice with random walks.
We introduce the Random Walk with Choice, RWC(d), in

1Event En occurs with high probability (w.h.p.) if probabil-
ity P (En) is such that limn→∞ P (En) = 1.

which, instead of selecting one neighbor at each step, the
walk selects d neighbors uniformly at random and then chooses
to step to the least visited node among them2. Note that
the random walk with choice consumes a bit more memory
and more energy (communication) at each step. This is be-
cause we need to keep track of visits at each node and need
to consider and choose between d nodes at each step. The
question we wish to explore is whether there will be some
substantial gain from making this change.

For the complete graph (which resembles the balls-in-
bins), the analytical result shows that the cover time of
RWC(d) will be reduced by a factor of d. For general graphs
the lack of the Markov property3 suggest that the analyti-
cal results may be harder to obtain. In the current work we
therefore turn to a simulation-based study of the behavior
of the random walk with choice. Our results demonstrate
the power that comes with choice. We observe a consistent
improvement in the cover time, cover time distribution and
the load balancing at cover time for different graphs and
different sizes. A surprising result is that, for 2-dimensional
mesh network (i.e, the 2-dimensional grid on a torus), choice
seems to improve the cover time and the load on the most
visited node by an unbounded factor. Specifically, while the
cover time of the n nodes mesh is known to be Θ(n log2 n),
our simulations shows that with d = 2 random walk with
choice has lower cover time than the simple random walk
on the hyper-cube that is known to have optimal cover time
of Θ(n log n). We also find improvements in the variance of
the cover time, and load balancing of visits.

The rest of the paper is organized as follows: Section 2
gives background and formal definitions. Section 3 presents
the RWC(d) and proves results for the complete graph. In
section 4 we describe the simulation details and discuss the
metrics of interest. Section 5, 6 and 7 and presents the
results for various graph models. We present our conclusions
in Section 8.

2. BACKGROUND AND PRELIMINARIES

2.1 Cover Time and Partial Cover
Let G(V, E) be an undirected graph with V the set of

nodes and E the set of edges. Let n = |V | and m = |E|. For
v ∈ V let N(v) = {u ∈ V | (vu) ∈ E} the set of neighbors
of v and δ(v) = |N(v)| the degree of v. A δ-regular graph is
a graph in which the degree of all the nodes is δ.

The simple random walk, SRW, is a walk where the next
node is chosen uniformly at random from the set of neigh-
bors. That is when the walk is at node v the probability to
move in the next step to u is P (v, u) = 1

δ(v)
for (v, u) ∈ E

and 0 otherwise.
The cover time CG of a graph G is the expected time

taken by a simple random walk on G to visit all nodes in
G. Formally, for v ∈ V let Cv be the expected number of
steps for the simple random walk starting at v to visit all
the nodes in G, and the cover time of G is CG = maxv Cv.

2a related modification to random walks called Vertex-
Reinforced Random Walks, VRRW, was proposed in [26, 31].
However, in VRRW the walk prefers the most visited nodes,
without choice. Further, VRRW is not studied in the con-
text of cover time.
3In the simple random walk the next step is independent
of past steps; this is not the case for the random walk with
choice.
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The cover time of graphs and methods of bounding it have
been extensively investigated [23, 3, 10, 9, 33, 4]. Results
for the cover time of specific graphs vary from the optimal
cover time of Θ(n log n) associated with the complete graph
to the worst case of Θ(n3) associated with the lollipop graph
[14, 13]. The known best cases correspond to dense, highly
connected graphs; on the other hand, when connectivity de-
creases and bottlenecks exist in the graph, the cover time
increases. In this paper we consider three types of graphs:

1. meshes: G2
n - the 2 dimensional mesh (i.e. grid on

the torus) of size n. It is known to have non-optimal
cover time of Θ(n log2 n) [10].

2. hyper-cubes: Hn - the hyper-cube which is the log2(n)-
dimensional grid of size n. Hn is known to have an
optimal cover time [25].

3. random geometric graphs: G(n, r) - for r ≥ √
8rcon

G(n, r) has optimal cover time w.h.p. [6].

The partial cover time [5] is the expected time taken by
a random walk to visit a constant fraction of the nodes and
is defined formally as follow: For 0 ≤ c ≤ 1, let CG(c) be
the expected time taken by a simple random walk on G to
visit �cn� of the nodes of G (starting from the worst case
node). Let Huv be the hitting time, the expected time for a
random walk starting at u to arrive to v for the first time
and let Hmax be the maximum Huv over all ordered pairs
of nodes. In [5] it was proven that for any graph G, and
0 ≤ c < 1 we have CG(c) = Θ(Hmax). This implies the
following interesting results: for graphs in which Hmax = n,
the partial cover becomes linear in n and we consider it to
be optimal partial cover ; known graphs of this type are the
complete graph, the star, the hyper-cube, the 3-dimensional
mesh and random geometric graph which have been added to
this list recently. On the other hand, for the 2-dimensional
mesh, the maximum hitting time is Θ(n log n) [33], so partial
cover becomes Θ(n log n).

Note that the analytical results about cover and partial
are about the expected time. Less is known about the dis-
tribution of the cover time, but it has been observed that in
some contexts random-walk-based algorithm have “heavy-
tailed” distribution, meaning that with non-negligible prob-
ability we should expect some very long cover times [16].

2.2 Load Balancing and the Stationary
Distribution

The probabilistic rules by which a random walk operates
are defined by the corresponding Markov chain. Let M be a
Markov chain over state space Ω and probability transition
matrix P (i.e. P (x, y) is the probability to move from x
at time t to y at time t + 1). In such terms, the stationary
distribution of M, if such exists, is then defined as the unique
probability vector π such that

πP = π

It is well known that the simple random walk M = (Ω, P )
over a connected graph G = (V, E) has a stationary distri-
bution π such that, for any node q ∈ V [22],

π(q) =
δ(q)

2m
(1)

Further, when the underlying graph G is δ regular, the sta-
tionary distribution is the uniform distribution [22],

π(q) =
δ

2m
=

1

n
∀q ∈ Ω

where n = |Ω| = |V |.
At stationary distribution, it is clear that the random walk

has optimal load-balancing qualities for regular graphs G.
Similarly, it is clear that the faster the random walk on a
regular graph converges to stationarity, the greater its load-
balancing qualities. The efficiency with which a random
walk of M may be used to sample over state space Ω with
respect to stationary distribution π is precisely given by the
rate at which the distribution of the states at time t con-
verges to π as t → ∞. In order to speak of convergence of
probabilities, one must have a notion of distance over time.
Let x be the state at time t = 0 and denote by P t(x, ·) the
distribution of the states at time t. The variation distance
at time t with respect to the initial state x is defined to be
[30, 27]

Δx(t) = max
S⊆Ω

|P t(x, S) − π(S)| =
1

2

X
y∈Ω

|P t(x, y) − π(y)|

In general, the variation distance is used to determine the
mixing time (i.e. the time in which the chain is ε close to
stationary) of the chain and if the chain is rapidly mixing,
namely the mixing time is O(poly(log n)). In this work, we
will be using the variation distance at the time of cover to
evaluate the load balancing of the random walk.

3. RANDOM WALKS WITH CHOICE
The balls in bins scenario can be described as a random

walk on the complete graph Kn (with the addition of one
self-loop for each node). The most loaded bin corresponds to
the most visited node after n steps of the walk. The idea we
set out to investigate here is to generalize choice at each step
to random walks on arbitrary graphs. Formally we define
the Random Walk with d Choice RWC(d) as the following
process: let ct(v) be the number of visits to v up to time
t. When the walk reaches v at time t it does the following:

RWC(d) at node v, at time t

1. Select d nodes from N(v) independently and uniformly
at random (with replacement).

2. Step to node u that minimizes ct(u)+1
δ(u)

(break ties in

an arbitrary way).

Few remarks are in place: If the graph is regular, the walk
steps to the least-visited neighbor; if not, the walk steps to
the node that is farthest away from its stationary distribu-
tion π(u). Clearly for d = 1 this is the simple random walk.
For d > 1 the Markov property doesn’t hold anymore since
the current step depends on all the past steps.

The last property is what seems to make the analytical
results harder to obtain. We can regain the Markov property
by changing the state space to one in which each state is a
vector of size n + 1 that holds the number of visits at time
t for each node and the current node. This is a direction
we have been following to prove theoretical results similar
in flavor to those obtained for the balls in bins problem, but
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it is still challenging. In this work, we will focus, instead, on
providing some preliminary observations obtained through
careful simulations.

Our overall goal, as mentioned above, is to use choice in
order to reduce the cover time and to obtain better load bal-
ancing. At first it may not be clear that choice will have any
asymptotic affect on the cover time. The complete graph is
easy to analyze, and we can show a constant factor improve-
ment in this case. Let CA

G denote the cover time of algorithm
A on the graph G.

Lemma 1. For a constant d ≥ 2 and the complete graph

Kn (with self-loops) the cover time C
RWC(d)
Kn

is

C
RWC(d)
Kn

=
CSRW

Kn

d
(1 + o(1))

Proof. Let hn be the harmonic sum hn =
Pn

1 i−1 ≈
log n. It is well known that CSRW

Kn
= nhn−1. For simplicity

we present the case of d = 2 and we will follow the proof
for the simple random walk, SRW, from [2]. Let Cm be the
first time at which m distinct nodes have been covered. For
each step after time Cm we will step to a visited node with
probability (m

n
)2 (sampling twice from visited nodes), so we

will hit a new node with probability n2−m2

n2 and the expected

time to hit such a node is E(Cm+1 − Cm) = n2

n2−m2 . The
cover time will be:

C
RWC(d)
Kn

=

n−1X
m=1

E(Cm+1 − Cm) =

n−1X
m=1

n2

n2 − m2

taking m = n − x we get:

C
RWC(d)
Kn

=

n−1X
x=1

n2

n2 − (n − x)2

=

n−1X
x=1

n2

2nx − x2

=
n

2

n−1X
x=1

(
1

x
+

1

2n − x
)

=
n

2
hn−1 +

n

2
(h2n−1 − hn)

=
n

2
hn−1 +

n

2
(log(

2n − 1

n
))

=
CSRW

Kn

2
+ o(CSRW

Kn
)

Intuitively, since the complete graph has the lowest cover
time for the simple random walk, SRW, over all graphs, it
will have the lowest cover time for RWC as well. It fol-
lows that for any graph that has optimal cover time we can
expect at most a constant factor improvement in the cover
time (regardless of the order of improvement in the load bal-
ancing). What will be the results of choice in a non-optimal
graph? In the next sections we will explore this on the the 2-
dimensional grid that is known to have a non-optimal cover
time of Θ(n log2 n).

4. SIMULATION SET UP
We run our simulations on three types of graphs: (i)

the random geometric graph G(n, r), (ii) the 2-dimensional
mesh grid - G2

n and (iii) the hyper cube - Hn. The ran-
dom geometric graphs have been widely used to model link

connectivity and protocol behavior in randomly deployed
wireless networks. The grid mesh (with wrap around of
boundaries into a torus to avoid edge-effects) provides a de-
terministic graph which also has geometric locality and is
also used to model carefully deployed wireless sensor net-
works. Note that both the grid and the hyper-cube are
regular graph with a uniform stationary distribution. For
the random geometric graph, G(n, r), we used n = 900 and
r = 2rcon = 0.0981. On the grid we run the simulation
for n = {100x2 | x = 1, 2, 3, . . . , 10}. For the hyper-cube
we used n = {2x | x = 7, 8, . . . 13}. For each graph we
execute the RWC(d) for d = 1, 2, 3 and in each case we
average over 1000 runs. The results for the grid of sizes
n = 100, 400, 900 and G(900, 0.0981) are an exception; they
are based on 10, 000 walks for each case, and used in partic-
ular to obtain histograms for the cover time.

4.1 Metrics and Questions of Interest
We set out to consider and explore the following metrics

and related questions:

1. Cover time progress up to full cover: What is
the improvement in cover time and partial cover for
RWC(d), d ≥ 2? When dealing with cover time we
normalize the number of steps by dividing out by n,
the graph size. This allows us to compare different
graphs sizes on one figure.

2. Asymptotic behavior and asymptotic improve-
ment: The cover time improvement ratio for a con-
stant d ≥ 2 and a graph G of size n is defined to be:

Id(n) =
C

RWC(d − 1)
G

C
RWC(d)
G

What is the asymptotic behavior of Id(n) for the dif-
ferent graphs? We know that for the complete graph
Kn, Id(n) = d − o(1). Note that if Id(n) = ω(1) (i.e.

an order larger than a constant) then C
RWC(d)
G is of a

lower order than C
RWC(d − 1)
G . Similarly we define the

improvement ratio for the partial cover (e.g. 50%) and
ask the same question.

3. Cover time distribution: Will d ≥ 2 change the
variance of the cover time? Does it eliminate or min-
imize the long tail of the cover time distribution of
the simple random walk? How else does it change the
distribution?

4. Load balancing: Load balancing is of crucial interest
in energy-limited wireless networks where such proto-
cols may be implemented. To measure load balancing,
we check the effect of choice on the most visited node.
Let L

RWC(d)
G be the expected number of visits to the

most visited node at cover time. For a graph G and a
constant d ≥ 2 we define the improvement ratio of the
most visited node as:

Ld(n) =
L

RWC(d − 1)
G

L
RWC(d)
G

Finding Ld(n) was the original result for the power
of choice in the balls in bins (complete graph), do we
have a similar effect on the grid? Note one difference
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Figure 1: The distribution of the cover time on
G(900, 0.0981) as an histogram from 10000 runs

Table 1: Statistical data for the cover time distribu-
tion of G(900, 0.0981) (normalized by n)

Type mean std median max 95%

SRW 15.66 5.42 14.07 67.59 25.99
RWC(2) 6.52 1.95 6.04 32.03 10.25
RWC(3) 4.59 1.26 4.29 16.21 7.03

in our setting — the original result is for the load bal-
ancing time t = n, while here we consider the load
balancing at time of cover. Next, we extend this to
all the nodes: at cover time we order the nodes from
the most loaded to the least loaded (which always has
1 visit at cover time) and average over all runs. This
yields the expected number of visits to the i′th most
visited node.

5. Speed of mixing time: At each step t we take the

probability to be at node v as ct(u)
t

and find the vari-
ation distance of this t′th-step distribution from the
stationary distribution. What is the effect of choice
on the variation distance and the corresponding mix-
ing time (the time at which the variation distance goes
below some ε)?

5. RANDOM GEOMETRIC GRAPHS
As mentioned earlier, random geometric graphs are the

most popular graph model for random wireless networks. To
give a flavor of the improvements achieved by random walk
with choice for these graphs, we present data from 10, 000
random walk runs on an instance of G(900, 0.0981).

Fig 1 compares the histograms of cover times for the sim-
ple random walk with random walk with choices 2 and 3.
Table 1 presents statistical data of these distributions. Note
that the x axis in all three figure is set to be from the mini-
mum cover time of the random walk with choice 3 to the time
that is larger than 99.9% of the cover times of the simple
walk. The strong effect of choice on the distribution is clear
from the figure and the table. It seems that choice eliminates
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Figure 2: The load balance at cover time for random
geometric graph G(900, 0.0981)

the heavy tail of the distribution and makes it more concen-
trated around its mean. This property is extremely impor-
tant in practice as one wants to avoid very long random-
walk-based queries even if this happens only occasionally.
In a centralized random walk application, (e.g. solving sat-
isfiability) the heavy tail can be eliminated by rapid restarts
of new walks in the case where retrieving an answer takes
too long. In distributed systems, there is a problem: while
the base station can issue a repeated query if the random
walk doesn’t return fast (i.e. rapid restart), it cannot effi-
ciently terminate the long walk which is somewhere in the
network, and it will continue to move and consume energy.

The expected load balancing at cover time is shown in Fig
2. From left to right, the figure shows the expected number
of visits to the i′th most visited node at cover time. The
first node on the left is the most visited node and right-
most node always has one visit at cover time. Note that the
total number of visits (or the area under each curve) is the
expected cover time. Again we can clearly see the reduction
in cover time as a result of choice. Moreover, not only is
there a large improvement in the most visited node, but the
visits are distributed much more evenly. Intuitively it looks
like the use of choice pushes ”down” the most loaded bin
causing the load to be distributed more evenly.

We next turn to 2-D mesh grids (with wrap-around into a
torus to avoid edge effects). Because this is a deterministic
graph model, we are able to undertake a more systematic
investigation, and carefully check the asymptotic behavior
of choice across different graph sizes.

6. GRIDS

6.1 Expected Cover and Partial Cover Time
Fig 3 presents the expected cover time progress up to

full cover for meshes of size n = 100, 400, 900. The re-
sults are based on 10, 000 runs. In all cases we can see
the improvement in cover and partial cover times as well as
the diminishing returns type of behavior. Choice of 2 gives
a large improvement compare to the simple random walk,
but for d = 3 the gain is much smaller. We analytically
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Figure 3: The expected cover time progress on a grid (normalized by grid size) for the simple random walk,
and choice of 2 and 3. (A) 100 nodes (B) 400 nodes (C) 900 nodes
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Figure 4: The cover time and 50% cover time for different grid sizes. (A) cover time (B) 50% cover time

know that for the simple random walk the partial cover is
an order less than the cover time (i.e. O(n log n) instead
of O(n log2 n)), meaning that most of the time in the cover
process is “wasted” on the last few nodes. We observe that
the same type of behavior is also presented by random walk
with choice.

6.1.1 Different grid sizes
Fig 4 is one of the most significant figures in this work,

and its results are surprising. Part (A) shows the expected
cover time for meshes varying from size 100 to 10000. Note
that the x axis is on log scale and the y axis is the expected
number of steps to cover normalized by n. As we expected
the simple random walk gives a cover time of Θ(n log2 n)
which results in Θ(log2 n) curve in the figure. More inter-

esting is the cover time C
RWC(2)

G2
n

, of the random walk with

choice of 2. It seems to have a lower order of O(log n) which
implies a cover time of order O(n log n). This suggests that
a choice of 2 on the 2-dimensional mesh achieves optimal
cover time, the same order of cover as the complete graph.
Selecting d = 3 doesn’t seem to offer significant further im-
provement (in any case improvement in order is impossible
if indeed d = 2 already gives optimal cover time). Part
(B) of Fig 4 displays the expected time to cover 50% of the

graph. For the simple random walk we know that partial
cover is O(n log n) and this what the figure shows. For the
choice of 2, it is harder to conclude what is the order, but it
doesn’t seem to be optimal partial cover time. Recall that
optimal partial cover time is linear which should result in
a constant line since we normalize by n. The partial cover
of the random walk with choices d = 2, 3 is not a constant
and therefore does not appear optimal. Some interpolation
suggests a behavior of O(n log log n) but this is highly spec-
ulative.

Fig. 5 presents the improvement ratios I2(n) and I3(n) for
cover time achieved by random walk with choice. Clearly we
notice that the improvement ratio for d = 2 is non-constant,
supporting the claim that there is an unbounded improve-
ment in the cover time. On the other hand I3(n) behaves
as a constant, demonstrating concretely the diminishing re-
turns. The results are similar for the 50% cover time; there
seems to be an unbounded improvement ratio for a choice
of 2, and a constant for a choice of 3. Nevertheless, the im-
provement ratio for partial cover is smaller than the one for
cover time.

6.2 Cover Time Distribution
As in the case of the random geometric graph, Fig. 6

shows a consistent behavior in term of the cover time dis-
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Table 2: Mean and variance of cover times on grids (normalized by n)
Walk n = 100 n = 400 n = 900
Type mean std 99% mean std 99% mean std 99%

SRW 8.285 2.325 15.420 13.018 3.077 22.625 16.205 3.463 26.460
RWC(2) 3.414 0.715 5.560 4.527 0.736 6.780 5.185 0.745 7.404
RWC(3) 2.495 0.458 3.870 3.242 0.475 4.692 3.666 0.476 5.082
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Figure 5: The improvement ratio of cover time for
the choices of 2 and 3 for different grid sizes

tribution for different grid sizes. For all three sizes choice is
reducing the cover time as well as the variance. Choice elim-
inates the heavy tail and seems to change the distribution
envelop. The statistical data is summarize in Table 2.

6.3 Load Balancing
Reproducing the load balance figure of the random geo-

metric graph, Fig 7 presents the same behavior for different
grid sizes. The effect of choice is seen clearly as flattening
the load on nodes. Note that the y axis is normalized such
that the max bin in each sub-figure is 1. The original re-
sults on the power of choice were stated in term of the most
visited bin (after n balls, or n random walk steps), proving
a non constant improvement on the ratio between the most
visited node in the random walk with choice of 2 compare
to the simple random walk. Does something similar happen
on grids at cover time?

Fig 8 gives a positive answer to this question. It presents
the improvement ratios L2(n) and L3(n). Our experiments
show that the ratio between choice of 2 and the simple
walk, L2(n), is unbounded and seems to be of the order
of O(log n). On the other end, L3(n), the improvement be-
tween choice of 2 and 3 is a constant, similar to what we
observed for the improvement ratio of the cover time. This
figure, as before, confirms our observation that the addition
of choice has a large impact on the final outcome of the
random walk.

6.4 Mixing Rate
As stated before, the mixing time is another key met-

ric of interest. Since our graphs are regular, the stationary
distribution of the random walk is the uniform distribution
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Figure 8: The improvement ratios, L2(n) and L3(n),
of the most visited node in SRW, RWC(2) and
RWC(3) for different grid sizes

that, by definition, balances the load (number of visits) at
mixing time. Therefore, when the mixing time is smaller,
the faster P t(x, ·) (i.e. the distributions of states at time t)
converges to the uniform distribution; we should therefore
expect a better load balancing at cover time. Fig 9 plots the
expected variation distance at step t until cover time (pre-
sented as fraction of cover) between P t(x, ·) and the uniform
distribution. For the three grids we observe the impact of
choice on the rate by which the variation distance decreases.
At the start of the random walk, many new nodes are being
visited, which decreases the variation distance “fast”; later,
when discovering new nodes takes longer, the rate in which
the variation distance decrease is “slower”. From Fig 9 it
seems that choice extends the time for which the walk of-
ten discovers new nodes and the variation distance decreases
fast. This behavior results in a smaller variation distance at
cover time for random walks with choice.

7. GRIDS VS. HYPER-CUBES
In order to validate our results from Fig. 4 on the order

of the cover time of the random walk with choice on grids
we set out to compare those results with the cover time of a
graph which has optimal cover time. We repeated the same
set of experiment on the hyper-cube, Hn, and compared the
results with the grids.

Fig 10 shows the cover time for hyper-cube and grid of
different sizes. The cover time of the simple random walk
on the grid, CSRW

G2
n

, behaves as O(log2 n) as we saw before.

Regarding the hyper-cube, CSRW
Hn

, behaves as O(log n) as
we know analytically. The interesting result here is that the
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Figure 6: The distribution of the cover time on a grid as an histogram from 10000 runs for the simple random
walk, and choice of 2 and 3. (A) 100 nodes (B) 400 nodes (C) 900 nodes
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Figure 7: The expected load balance as number of visits at cover time on a grid. Average over 10000 runs
for the simple random walk, and choice of 2 and 3. (A) 100 nodes (B) 400 nodes (C) 900 nodes
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Figure 9: The variation distance progress until cover time on a grid average over 10000 runs for the simple
random walk, and choice of 2 and 3. (A) 100 nodes (B) 400 nodes (C) 900 nodes
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Figure 11: The improvement ratio of cover time for
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ent sizes

cover time of the walk with choice 2 on the grid, C
RWC(2)

G2
n

,

is less than the cover time of the simple random walk on
the hyper-cube, CSRW

Hn
. When interpolating these two line

as straight lines (on the log scale), C
RWC(2)

G2
n

has a slightly

smaller slope than CSRW
Hn

. This gives, yet another, evidence
for the order improvement of cover time on the grid with
choice of 2.

We proved that the improvement ratio for the complete
graph is constant. Since the hyper-cube has cover time of
the same order as the complete graph we expect that similar
results will apply to it. Fig 11 validates this intuition. It
compares the improvement ratio of the cover time of the grid
and the hyper-cube. We stated earlier that the improvement
ratio for the grid is unbounded for both the cover and partial
cover times. On the other hand, the figure shows that for
the hyper-cube, the improvement ratio for both cover and
partial cover time is constant.

8. CONCLUSIONS
It is of fundamental interest to understand and enhance

the behavior of simple low-state protocols for wireless net-
works such as query and routing mechanisms based on ran-
dom walks. Motivated by the successful use of the power of
choice technique for load-balancing problems, we have pro-
posed a novel random walk with choice in this work. In this
modified random walk algorithm, at each step the least vis-
ited among a set of randomly selected neighbors is chosen
as the next node. The intuition behind this idea is that this
choice will push the walk to visit less visited areas in the
graph in order to improve upon the cover time. Our analyt-
ical results for the complete graph shows that when choosing
between a constant number of neighbors we will have a con-
stant improvement in the cover time. This suggests that
for any graph with cover time on the order of the complete
graph we should expect at most a constant improvement in
the cover time. In particular, we should expect this to be the
case for random geometric graph with radius r ≥ √

8rcon.
It is an open question whether for a lower radius the im-
provement will be unbounded. Our simulation results sug-
gest that the effect of random walk with choice is larger for
graphs that have non-optimal cover time. For 2-dimensional
grid networks, we observed via simulations that the random
walk with choice can offer unbounded improvement in cover
time and the number of visits to the most visited node at
cover time. We formulate this observation in the following
conjecture:

Conjecture 1. For the 2-dimensional mesh, G2
n,

C
RWC(2)

G2
n

(n) = o(CSRW
G2

n
(n)) = o(n log2 n)

or in words, the cover time of the random walk with choice
2 is an order less than the cover time of the simple random
walk.

It is of great interest to prove this conjecture as well as
other theoretical results for the random walk with choice
regarding the distribution of cover time and the load balance
at cover time.

At any rate, our simulation results give a strong evidence
that incorporating choice into random-walk-based query or
routing applications for wireless networks can provide sig-
nificant performance improvements.
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