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Abstract—We formulate a Bayesian congestion control problem
in which a source must select the transmission rate over a
network whose available bandwidth is modeled as a time-
homogeneous finite-state Markov Chain. The decision to transmit
at a rate below the instantaneous available bandwidth results in
an under-utilization of the resource while transmission at rates
higher than the available bandwidth results in a linear penalty.
The trade-off is further complicated by the asymmetry in the
information acquisition process: transmission rates that happen
to be larger than the instantaneous available bandwidth result
in perfect observation of the state of the bandwidth process.
In contrast, when transmission rate is below the instantaneous
available bandwidth, only a (potentially rather loose) lower
bound on the available bandwidth is revealed. We show that
the problem of maximizing the throughput of the source while
avoiding congestion loss can be expressed as a Partially Observ-
able Markov Decision Process (POMDP). We prove structural
results providing bounds on the optimal actions. The obtained
bounds yield tractable sub-optimal solutions that are shown via
simulations to perform well.

I. INTRODUCTION

In many network protocols, a device must set the communi-
cation parameters to maximize the utilization of the resource
whose availability is a stochastic process. One prominent
example is congestion control, in which a transmitter must
select the transmission rate to utilize the available bandwidth,
which varies randomly due to the dynamic nature of traffic
load imposed by other users on the network.

In our congestion control problem, we consider a user
whose available bandwidth varies as a Markovian process. A
sender wants to set its transmission rate at each time step. If
the sender selects a rate higher than the available bandwidth,
it can utilize the whole available bandwidth but has to pay
an over-utilization penalty (which is a function of how much
the selected rate exceeds the available bandwidth). In this case,
we assume that perfect information about the current available
bandwidth is revealed (full observation). If the user selects a
rate less than the available bandwidth, it does not experience
loss (no penalty), but the available bandwidth is under-utilized.
Also, in this case, the sender gets partial information about the
available bandwidth, i.e. it can infer that the current available
bandwidth is larger than or equal to the selected rate, but not
its exact value. In such a setting, there is a trade-off between
getting more information about the available bandwidth and
paying less penalty. The goal is to find the optimal policy to
maximize the total reward (utilization minus penalty) over a

finite horizon.1

We formalize this problem as a Partially Observable Markov
Decision Process (POMDP) [1], since the state of underly-
ing Markov chain, called the “resource state”, is not fully
observed. Since the POMDP problem does not have an ef-
ficiently computable solution [2], we instead present upper
and lower bounds on the optimal actions. The lower bounds
correspond to the myopic policy which at each time step
selects an action maximizing the immediate expected reward,
ignoring the future. Intuitively, selecting actions higher than
the myopic action results in less immediate reward but also
more information about the resource state. Thus, to learn
more about the resource state the optimal action prefers to
exceed the myopic action. We prove that the myopic policy
has a percentile threshold structure, i.e. it selects an action
corresponding to the lowest state above a given percentile
of the beliefs. The upper bound on the optimal action has
a similar closed-form structure, based on the belief vector and
the system parameters. In order to derive the upper bound,
we further assume that the background Markov chain has
a particular State-Independent State Change (SISC) structure
(see Section III for more details). We consider the effect of
different parameters on the bounds via simulation.

The remainder of the paper is organized as follows: Related
works are presented in Section II. In Section III, the problem
formulation is introduced. In Section IV, the main results of
the paper are derived. Section V presents some key properties
needed for deriving our main results. Simulation results are
presented in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK

Congestion control is a fundamental problem in networking
and has a rich literature on algorithms and theoretical analyses
(see e.g. [3], [4]). Existing techniques, such as Transmission
Control Protocol (TCP), adopt an Additive Increase Multi-
plicative Decrease (AIMD) algorithm, introduced in [5], that
adjusts the congestion window based on the transmission
acknowledgments. The performance of AIMD is analyzed in
literature, e.g. [6] where Altman et al. introduce a general
model based on a multi-state Markov chain for the moments
at which the congestion is detected. Although AIMD often

1The results in this paper can be readily extended to infinite horizon
discounted reward



works well in practice, it is a heuristic that is not guaranteed
to be optimal. In this work, we aim to identify the structure
of optimal congestion control, albeit under the special case of
a Markovian available bandwidth process.

Threshold structures of optimal transmission policies have
been established for simpler related problems with a two-state
Gilbert-Elliott channel in [7], [8]. But here, we consider a
more general case of multi-state Markovian channel

Some recent works in literature, e.g., [9], [10], formulate
the problem of inventory management where some number
of items needs to be stock (inventory) and the demand is
a stochastic process. The problem of inventory management
has a close connection to our problem as we can map the
demand to the resource (bandwidth) and the inventory level to
the action (rate allocated). Of these, the most closely related
work is that of Bensoussan et al. [9], who consider a POMDP
problem where the demand is a Markovian process. They
consider the setting where the resources and actions are both
continuous, as well as the case where the resources are discrete
but the actions remain continuous. They use the un-normalized
beliefs to prove the existence of the optimal policy which
is challenging for the continuous setting. For these settings,
they also show that the optimal actions exceed the myopic
actions. In this paper, in contrast to their work, we consider
the case where both the resource states and the actions are
discrete and finite. Thus, the existence of the optimal policy
is trivial [1]. Further, by investigating a specific form of the
transition probability, SISC, we derive additional properties of
the optimal policy and the reward functions. Furthermore, this
work is the first to present an upper bound for the optimal
action. Besides giving insight into the optimal actions, this
bound can also be used to speed up the search for the optimal
actions in the dynamic programming.

In [10], Besbes et al. consider a similar problem with the
assumption that the resource state is an independent-identical
distribution process which is a specific form of Markovian pro-
cesses. They assume that the underlying resource distribution
is not available and need to be estimated from historical data.
They show that a percentile threshold policy (similar to our
myopic action) is optimal and characterize the implications
of partial observations on the performance of the optimal
policy in both discrete and continuous settings. We consider
the Markovian case in which the given percentile threshold
policy constructs a lower bound for the optimal actions.

III. PROBLEM FORMULATION

We consider a discrete-time finite-state Markov process,
whose state is denoted by Bt. At each time step, the user
selects an action according to the history of observations- thus
earning a reward as a function of the selected action and the
state Bt and gathers some partial information about the current
state. The objective is to find an optimal policy as a sequence
of actions to select in order to maximize the total expected
discounted reward accumulated over the finite horizon.

Let us denote the finite horizon by T and let the discrete
time steps be indexed by t = 1, 2, ..., T . We formulate our

problem within a POMDP-based framework defined as a tuple
{M, P,B,A,O, U,R} where:
• State: The state, Bt, is one of the elements of a finite set

denoted by M = {1, 2, ...,M}
• State transition: The state Bt varies over time according

to a Markov process with a known transition probability
matrix, denoted by P . This matrix is an M ×M matrix
with elements Pi,j = Pr(Bt+1 = j|Bt = i), i, j ∈ M
which indicates the probability of moving from state i at
a time step to the state j at the next time step.

• Belief vector: The probability distribution of the resource
state (assuming a finite state set), given all past observa-
tions, is denoted by a belief vector bt = [bt(1), ..., bt(M)],
with elements of bt(k) = Pr(Bt = k), k ∈ M. In other
words, bt represents the probability distribution of Bt
over all possible states ofM. The set of all possible belief
vectors is denoted by B. The goal is to make a decision at
each time step based on the history of observations; but
due to the lack of full information, the decision should be
based on the belief vector. It can be shown that the belief
vector is a sufficient statistic of the complete observation
history (see e.g., [1]).

• Action: At each time step, according to the current belief,
we choose an action rt ∈ A = {1, ...,M}. Note the set
of actions are equal to the set of states, i.e. A =M.

• Observed information: The observed information at time
step t is defined by the event ot(rt) ∈ O as a function
of selected action. The possible events corresponding to
the action rt is as follows:
- ot(rt) = {Bt = i}, i = 1, ..., rt − 1 is the event of
fully observing Bt. This corresponds to the selection of
the action higher than Bt.
- ot(rt) = {Bt ≥ rt} is the event that Bt is larger than
or equal to the selected action.

• Belief updating: The belief updating is a mapping U :
A×O×B → B. The belief vector for the next time step,
upon the selected action and the observation, is governed
by:

bt+1 =

{
TrtbtP if rt ≤ Bt
IBtP if rt > Bt,

(1)

where Ia is the M -dimensional unit vector with 1 in the
a-th position. Tr is a non-linear operation on a belief
vector b, as follows:

Trb(i) =

{
0 if i < r

b(i)∑M
j=r b(j)

if i ≥ r. (2)

• Reward: The immediate reward earned at time step t is
a mapping R : A×O → R, which is given by:

R(Bt, rt) =

{
Bt − C(rt −Bt) if rt > Bt

rt if rt ≤ Bt,
(3)

where C is the over-utilization penalty coefficient.
The policy π specifies a sequence of functions π1, ..., πT ,

where πt is the decision rule and maps a belief vector bt to an



action at time step t, i.e., πt : B → A, rt = πt(bt). The goal
is to maximize the total expected discounted reward in finite
horizon, over all admissible policies π, given by

max
π

JπT (b0) = max
π

Eπ[

T∑
t=0

βtR(Bt; rt)|b0], (4)

where 0 ≤ β ≤ 1 denotes the discount factor and b0 is the
initial belief vector. JπT (b0) is the total expected discounted
reward accumulated over the horizon T under policy π and
starting in the initial belief vector b0. The optimal policy
denoted by πopt is a policy which maximizes (4) and it exists
since the number of admissible policies are finite.

We may solve this POMDP problem using Dynamic pro-
gramming (DP), as the following recursive equations holds:

Vt(bt) = max
rt

Vt(bt; rt), (5a)

Vt(bt; rt) = R̄(bt; rt) + βE{Vt+1(bt+1)|rt}, ∀t 6= T (5b)
VT (bT ; rT ) = R̄T (bT ; rT ), (5c)

where bt+1 is the updated belief vector for the next time step
shown in (1). The value functions Vt(bt) is the maximum
remaining expected reward accrued starting from time t when
the current belief vector is bt. Note for all t = 1, ..., T ,
Vt(bt) = maxr̄ J

π
T−t+1(bt). Vt(bt; rt) is the remaining ex-

pected reward accrued after time t with choosing action rt at
time t and following the optimal policy for time t + 1, ..., T
with updated belief vector according to the action rt. Vt(bt; rt)
is the summation of two terms: (i) the immediate expected
reward, given by taking expectation of (3):

R̄(bt; rt) =
∑
i∈M

bt(i)R(i, rt)

= rt

M∑
i=rt

bt(i) +

rt−1∑
i=1

bt(i)[(1 + C)i− Crt], (6)

and (ii) the discounted future expected reward which can be
computed as follows:

V ft (bt; rt) = E{Vt+1(bt+1)|rt}

=

M∑
i=rt

bt(i)Vt+1(TrtbtP ) +

rt−1∑
i=1

bt(i)Vt+1(IiP ). (7)

A policy π is optimal if and only if for t = 1, ..., T , rt =
πt(bt) achieves the maximum in (5a), denoted by:

roptt (b) = arg max
r∈A

Vt(b; r). (8)

We present upper and lower bounds on the optimal actions
in two theorems given in the next section using some lemmas.
All the proofs are given in the appendices. For some of our
results we need the following assumptions.

Assumption 1. The P matrix satisfies the State-Independent
State Change (SISC) property.

Assumption 2. The P matrix satisfies the State-Independent
State Change (SISC) property with edge effects, defined below.

By SISC property, we mean that Pi,i+k = pj,j+k. Therefore,
we can define our transition matrix P by indicating the
probability of moving k step higher, pk, independent of which
state we are, such that k < 0 corresponds to moving −k steps
lower.

By edge effect, we mean that the transition matrix will be
affected by the limits (edges) of the state set, since the state set
M is limited from both sides. Therefore, the elements of the P
matrix for our desired SISC process are equal to Pi,j = pj−i,
for all i, j except the following:

P1,j = P1,j+1 + P2,j+1, j ≤M − 1 (9)
PM,j = PM,j−1 + PM−1,j−1, j ≥ 2 (10)

where (9) and (10) reflect the lower and upper edge effects of
M, respectively.

Note that for simplicity of notations, from now on we drop
the subscripts of t from the belief vectors and the actions.

IV. MAIN RESULTS

The main result of our paper is stated in the following two
theorems.

Theorem 1. The optimal action is bounded by an action from
below, denoted by rlb, given by

rlb = min{r ∈M :

r∑
i=1

b(i) ≥ 1

1 + C
}. (11)

This lower bound is equal to the myopic action which at
each time step selects the action maximizing the immediate
expected reward and ignores its impact on the future reward.
The myopic action, for problem (4), under belief vector b is
given by:

rmyopic(b) = arg max
r∈M

R̄(b; r). (12)

Theorem 2. Under Assumption 1 or 2, the optimal action is
bounded from above by an action, denoted by rub, which is a
function of C, β, and belief vector b as follows:

rub = min{r ∈M :

f(β)S̄r + [(1 + C)− f(β)r]Sr − C ≤ 0}, (13)

where for simplicity we define the following notations:

Sr ,
rh∑

i=r+1

b(i), S̄r ,
rh∑

i=r+1

ib(i), f(β) , β
1− βT−1

1− β
.

(14)

Note that from the above inequalities, rl ≤ rlb = rmyopic ≤
ropt ≤ rub ≤ rh, where rl and rh are the lowest and the
highest states with non-zero beliefs, respectively.



V. ANALYSES

To prove Theorem 1, we need the following lemmas.

Lemma 1. The expected immediate reward is a uni-modal
function of the action r, which is increasing when

∑r
i=1 b(i) <

1
1+C and it is decreasing otherwise. Therefore, the myopic
action which maximizes the expected immediate reward (given
in (12)) is equal to the lowest action r satisfying the inequality∑r
i=1 b(i) ≥

1
1+C . Interestingly, the myopic action has a

percentile threshold structure, i.e. it corresponds to the lowest
state above a given percentile of the beliefs.

Lemma 2. The remaining expected discounted reward in the
action r, Vt(b; r), and the value function, Vt(b), are convex
with respect to the belief vector b, i.e.

Vt(b; r) ≤ λVt(b1; r) + (1− λ)Vt(b2; r), ∀r ∈M,

Vt(b) ≤ λVt(b1) + (1− λ)Vt(b2), ∀0 ≤ λ ≤ 1. (15)

Lemma 3. The future expected reward, V ft (b; r) defined in
(7), is monotonically increasing in the action, i.e.,

V ft (b; r1)− V ft (b; r2) ≥ 0, ∀r1 ≥ r2. (16)

Now let define an ordering for the belief vectors and derive
a key property of value functions, their monotonicity with
respect to an ordering of the belief vectors. Then we state
some lemmas which are needed to prove Theorem 2.

Definition 1. (First Order Stochastically Dominance, [11]) Let
b1, b2 ∈ B be any two belief vectors. Then b1 first order
stochastically dominates b2 (or b1 is FOSD greater than b2),
denoted as b1 ≥s b2, if

M∑
j=r

b1(j) ≥
M∑
j=r

b2(j), r ∈ {1, ...,M}. (17)

Lemma 4. Under Assumption 1 or 2, the value function is a
FOSD-increasing function of the belief vector. i.e., if b1 ≥s b2,
then V (b1) ≥ V (b2).

Now let consider two belief vectors b and bα such that bα is
shifted version of b by α steps, i.e. bα(i) = b(i+α). Because
of similarity in their probability distribution shapes, they have
some common properties, given in the following lemmas.

Lemma 5. The immediate expected reward and the myopic
action follow the shifting property:

R̄(bα; r) = R̄(b; r − α) + α, (18)

rmyopic(bα) = rmyopic(b) + α. (19)

Lemma 6. Under Assumption 1, the value functions and the
optimal policies of the belief vector b and its shifted version,
bα, have the following properties:

Vt(b
α; r)− Vt(b; r − α) = α

1− βT−t+1

1− β
, (20)

roptt (bα) = roptt (b) + α, (21)

Vt(b
α) = Vt(b) + α

1− βT−t

1− β
. (22)

Note for β = 1, we need to substitute 1−βx
1−β by x.

Lemma 7. Under Assumption 2, the following relation be-
tween the value functions of b and bα holds:

Vt(b
α) ≤ Vt(b) + α

1− βT−t

1− β
. (23)

The proofs of the above lemmas are given in Appendix A,
followed by the proofs of Theorems 1 and 2 in Appendix B.

VI. SIMULATION

We present some simulation results to consider the upper
and the lower bounds achieved in the previous section. The
simulation parameters, except in the figures that their effect
is considered, are fixed as follows: the number of states
M = 10, the over-utilization penalty coefficient C = 5,
the discount factor β = 0.8, and the transition probabilities
p1 = p−1 = 0.3, p0 = 0.4. Due to computational complexity
it is hard to find the optimal policy. Instead, we could consider
the Extended Myopic (EM) policy with future window of size
τ as an approximation for the optimal policy. This policy,
at each time step t, solves the dynamic programming for
short horizon of t, t + 1, ..., t + τ . Here we use τ = 4
for our simulations. Note that we could limit our dynamic
programming searches between the upper and the lower bound
to speed up the simulations.

A. Upper and Lower Bound on Optimal Actions

Fig. 1 shows an example of a sequence of optimal actions
and their corresponding upper and lower bounds. We assume
that the selected actions does not exceed Bt till time step 14.
Note that the stars in the figure indicate the non-zero beliefs.
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Fig. 1. Selected actions by optimal policy (EM, τ = 4) and their
corresponding lower and upper bounds, for C = 5, β = 0.8, and transition
of p1 = p−1 = 0.3, p0 = 0.4

Next, we consider the effect of β on the gap between the
upper and the lower bounds of optimal actions in Fig. 2. As
expected, this gap increases with increasing β.

Fig. 3 shows the gap between the upper and the lower
bounds versus the variance of SISC transition, defined as
E[(Bt+1 −Bt)2]. This figure confirms that by increasing the
variance, the gap will increase.
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Fig. 2. The gap between the lower and the upper bounds versus β, for
C = 5.
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Fig. 3. The gap between the lower and the upper bounds versus the variance
of random walk steps, for β = 0.8, C = 5.

B. Myopic and Upper-Bound policies

Now we compare two sub-optimal policies: (i) the myopic
policy, (ii) the upper-bound (UB) policy, which pick the
actions given in (11) and (13), respectively, at all time steps
and update their belief vectors according to these actions. Fig.
4 shows the total expected discounted reward versus β for the
myopic and the UB policies. For smaller β the reward of the
myopic policy is higher than that of UB policy, but for larger
β (close to 1) the UB policy outperforms the myopic policy.
Fig. 5 shows the total expected discounted reward versus C for
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Fig. 4. The total expected discounted reward for two sub-optimal policies
versus β for C = 5, τ = 4, for horizon T = 100.

the myopic and the UB policies for β = 0.8. The difference
between the reward of two policies will increase as C grow.

VII. CONCLUSION

We formulated a Bayesian congestion control problem in
which a source must select the transmission rate (the action)
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Fig. 5. The total expected discounted reward for two sub-optimal policies
versus C for β = 0.8, τ = 4, for horizon T = 100 and transition of
p1 = p−1 = 0.3, p0 = 0.4.

over a network whose available bandwidth (resource) evolves
as a stochastic process. We modeled the problem as a POMDP
and derived some key properties for the myopic and the op-
timal policies. We proved structural results providing bounds
on the optimal actions, yielding tractable sub-optimal solutions
that have been shown via simulations to perform well. Since
the myopic action has a percentile threshold structure on the
state beliefs, and we can simplify our upper bound to get a
looser one with a similar form, we conjecture that there may
be even better approximation for the optimal policy with the
similar percentile threshold structure.
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APPENDIX A

Proof of Lemma 1:
To prove this lemma, let us compute the derivative of the

expected immediate reward given in (6),

∆R̄(b; r) = R̄(b; r + 1)− R̄(b; r)

= 1− (1 + C)

r∑
i=1

b(i). (24)

It’s easily seen that if the inequality in (11) holds, ∆R̄(b; r) ≤
0. Otherwise it is positive. This concludes that R̄(b; r) is uni-
modal with unique maximum at the myopic action given in
(11).

Proof of Lemma 2:
We use induction to prove the convexity of Vt(b; r) with

respect to the belief vector, b, for finite horizon. Let’s assume
b is a linear combination of two belief vectors b1 and b2, such
that:

b = λb1 + (1− λ)b2, 0 ≤ λ ≤ 1. (25)

First at horizon T , the remaining expected reward is equal
to the expected immediate reward which is affine linear with
respect to the belief vector and using (6) and (25) we have:

R̄(b; r) = λR̄(b1; r) + (1− λ)R̄(b2; r), (26)

which confirms the convexity of the remaining expected re-
ward at horizon T . Now assuming the convexity holds at t+1,
we will consider the time step t. Using (5b) and (7) we have:

Vt(b; r)− λVt(b1; r)− (1− λ)Vt(b2; r)

= [R(b; r)− λR̄(b1; r)− (1− λ)R̄(b2; r)]

+ β[Vt+1(TrbP )

M∑
i=r

b(i)− λVt+1(Trb1P )

M∑
i=r

b1(i)

− (1− λ)Vt+1(Trb2P )

M∑
i=r

b2(i)] (27a)

= β

M∑
i=r

b(i)[Vt+1(TrbP )− λ′Vt+1(Trb1P )

− (1− λ′)Vt+1(Trb2P )] (27b)

where λ′ = λ
∑M
i=r b1(i)∑M
i=r b(i)

. Note using (26), the term inside
[.] in (27a) is zero. Multiplying the transition matrix P is
a linear operation, and with some manipulation, we can show

that λ′Trb1 + (1− λ′)Trb2 = Trb:

A = λ′Trb1 + (1− λ′)Trb2

=
λ
∑M
i=r b1(i)Trb1 + (1− λ)

∑M
i=r b2(i)Trb2∑M

i=r b(i)

A(j) =
1∑M

i=r b(i)
[λ

M∑
i=r

b1(i)
b1(j)∑M
i=r b1(i)

+ (1− λ)

M∑
i=r

b2(i)
b2(j)∑M
i=r b2(i)

]

=
λb1(j) + (1− λ)b2(j)∑M

i=r b(i)
=

b(j)∑M
i=r b(i)

, j ≥ r

A(j) = 0, j < r

(28)

So from definition of (2), we have A = Trb. Now from
convexity at t + 1 the term inside [.] in (27b) is less than
or equal to zero and we have:

Vt(b; r)− λVt(b1; r)− (1− λ)Vt(b2; r) ≤ 0 (29)

which means the convexity of Vt(b; r) with respect to b.
To prove the convexity of value function, Vt(b), with respect

to b we use the definition of (5a) and the result of Lemma 2
to get:

Vt(b) = max
r
Vt(b; r) = Vt(b; r

∗) (30a)

≤ λVt(b1; r∗) + (1− λ)Vt(b2; r∗) (30b)
≤ λmax

r1
Vt(b1; r1) + (1− λ) max

r2
Vt(b2; r2) (30c)

= λVt(b1) + (1− λ)Vt(b2), (30d)

where r∗ = arg maxr Vt(b; r). Applying the definition of (5a)
one more time in (30d) completes the proof.

Proof of Lemma 3:
We can write (16) as follows:

V ft (b; r1)− V ft (b; r2)

=

r=r1−1∑
r=r2

{V ft (b; r + 1)− V ft (b; r)} (31)

and for each term inside the summation, using (7), we have:

∆V ft (b; r) = V ft (b; r + 1)− V (
t b; r)

=

M∑
i=r+1

b(i)Vt+1(Tr+1bP )−
M∑
i=r

b(i)Vt+1(TrbP )

+ b(r)Vt+1(IrP ) ≥ 0 (32)

The inequality (32) is achieved from the convexity of value
function in (15) for b = TrbP , b1 = Tr+1bP , b2 = IrP and
λ =

∑M
i=r+1 b(i)∑M
i=r b(i)

. Therefore, (31) is greater than or equal to
zero and proof is complete.

Proof of Lemma 4:



If b1 ≥s b2, i.e., by recalling Definition 1,

M∑
j=r

b1(j) ≥
M∑
j=r

b2(j), r ∈ {1, ...,M}, (33)

we can write b1 as a linear combination of some belief vectors
with coefficients equal to the elements of b2, as follows:

b1 =

j∑
i=1

b2(i)b′i,

b′i ∈ B, b′i(j) = 0, j < i. (34)

We can obtain (33) using (34), as follows:

M∑
j=r

b1(j) =

M∑
j=r

j∑
i=1

b2(i)b′i(j)

≥
M∑
j=r

j∑
i=r

b2(i)b′i(j) (35a)

≥
M∑
i=r

M∑
j=i

b′i(j)b2(i) (35b)

≥
M∑
i=r

b2(i), (35c)

where (35a) and (35b) come from switching the indexes and
in (35c) we substitute

∑M
j=i b

′
i(j) = 1, because b′i is a belief

vector. For the proof of the other direction, in a similar way,
we can show that if b1 ≥s b2, there are valid belief vectors
b′i, i ∈ {1, ...,M} such that (34) holds.

Let recall the definition of value function.

Vt(bk) = max
πt:T

Vt(bk;πt:T ), k = 1, 2

(36)

where πt:T = [πt, πt+1, ..., πT ] is the sequence of policies
such that πt′ is the selected action at each time step t′ =
t, ..., T . Then Vt(bk) ≥ Vt(bk;πt:T ) for any policy sequence
πt:T .

Now we only need to prove that the remaining expected
reward achieved by policy sequence πt:T , for belief vector b1
is higher than b2, i.e.,

Vt(b1;πt:T ) ≥ Vt(b2;πt:T ) (37)

Let’s name the sequence of the belief vectors with initial
vector of b1 by b1,τ , t ≤ τ ≤ T − 1, and the sequence of the
belief vectors with initial vector of b2 by b2,τ .

Considering all possible sample paths of [Bt, Bt+1, ..., BT ],
defined as Bt:T , the total remaining expected rewards for k =
1, 2 will be as follows:

Vt(bk;πt:T ) = EBt:T [

T∑
τ=t

βτ−tR(Bτ ;πτ )|bk, πt:T ]. (38)

Therefore, we can write Vt(bk;πt:T ) as follows:

Vt(bk;πt:T ) =

M∑
i=1

{bk(i)×

EBt:T [

T∑
τ=t

βτ−tR(Bτ ;πτ )|Bt = i]} (39)

So using (39) and substituting (34) we have:

Vt(b1;πt:T )− Vt(b2;πt:T ) =

M∑
i=1

{b2(i)×

[

M∑
j=i

b′i(j)EBt:T [

T∑
τ=t

βτ−tR(Bτ ;πτ )|Bt = j]

− EBt:T [

T∑
τ=t

βτ−tR(Bτ ;πτ )|Bt = i]]}

=
M∑
i=1

b2(i)[

M∑
j=i

b′i(j)∆Ej,i],

(40)

where,

∆Ej,i = EBt:T [

T∑
τ=t

βτ−tR(Bτ ;πτ )|Bt = j]

− EBt:T [

T∑
τ=t

βτ−tR(Bτ ;πτ )|Bt = i]]. (41)

To prove (37), we only need to show ∆Ej,i ≥ 0. Without
loss of generality, we can assume i = j − 1 = l. The result
will be easily extendable to j > i + 1, by using ∆Ej,i =∑j−1
l=i ∆El+1,l.
For any sample path Bt:T starting from l (call it Blt:T ), there

is a corresponding sample path Bl+1
t:T starting from l+ 1, such

that, Bl+1
τ = Blτ + 1. So we can have the expectation over

only all possible Blt:T and write (41) as follows:

EBl+1
t:T

[

T∑
τ=t

βτ−tR(Bl+1
τ ;πτ )]− EBlt:T [

T∑
τ=t

βτ−tR(Blτ ;πτ )]

= EBlt:T [

T∑
τ=t

βτ−t{R(Blτ + 1;πτ )−R(Blτ ;πτ )}] (42)

Now if we show
∑T
τ=t β

τ−t{R(Blτ+1;πτ )]−R(Blτ ;πτ )} ≥ 0
for any sample path Blt:T , (42), therefore (40) are greater than
or equal zero and (37) holds. We could use induction to prove
this inequality. For the base case at horizon T , it holds using
the fact that (3) is monotonically increasing with respect to
Bt. Now assuming it is true for time steps t + 1, ..., T , we
need to show it for time step t.

Now let’s define the fist time that the selected action will
exceed the Blτ , with µ, i.e.,

µ = min{t ≤ τ ≤ T : πτ > Blτ} (43)

There are three different possible cases to happen:



Case I: πτ ≤ Blτ , ∀τ ≤ T
Case II: πµ > Blµ + 1 = Bl+1

µ

Case III: πµ = Blµ + 1

Let’s consider Case I, first. In this case, the actions are
always lower than Blτ . Therefore by (3), both rewards for Blt:T
and Blt:T + 1 will be equal to the selected action. So,

T∑
τ=t

βτ−t{R(Blτ + 1;πτ )−R(Blτ ;πτ )} =

T∑
τ=t

βτ−tπτ ≥ 0

(44)

In Case II, the rewards accumulated before time µ are equal
for both beliefs. Therefore,

µ−1∑
τ=t

βτ−t{R(Blτ + 1;πτ )−R(Blτ ;πτ )} = 0 (45)

The rewards earned at time µ, by (3) is equal to:

R(Blµ + 1;πµ)−R(Blµ;πµ) = 1 + C (46)

The expected value of (46) is also equal to 1+C. After time µ,
both beliefs will be restarted to IBlµ and IBlµ+1, and from the
correctness of (42) at time step µ as the induction assumption,
the remaining expected reward related to Bl+1 will be higher
than the one related to Bl.

EBlµ+1:T
[

T∑
τ=µ+1

βτ−t{R(Blτ + 1;πτ )−R(Blτ ;πτ )}]

= βµ+1−t[Vµ+1(IBlτ+1P )− Vµ+1(IBlτP )] ≥ 0 (47)

Therefore, (42) which is the summation of three terms in (45),
(46) multiplied by βµ−t , and (47), will be greater than or
equal to zero.

For Case III, at µ the action will exceed Blµ and the belief
will be restarted to IBlµP , but the other sequence’s belief will
change as bµ+1 = TπµbµP . The difference between rewards
accumulated before time µ and at time µ are equal to 0 and
C + 1, respectively, similar to (45) and (46). Now for times
after µ we have:

EBlµ+1:T
[

T∑
τ=µ+1

βτ−t{R(Blτ + 1;πτ )−R(Blτ ;πτ )}]

= βµ+1−t[Vµ+1(TπµbµP )− Vµ+1(IBlτP )] ≥ 0 (48)

where the last inequality comes from the correctness of (37)
at time µ+ 1 as the assumption of the induction, considering
the new belief Tπµbµ and IBlτP . Note Blµ is the lowest index
of non-zero beliefs in Tπµbµ. Therefore, (42) is greater than
or equal to zero, so are (41) and (40), and thus (37) is true
for time t and the proof is complete.

Now assume π∗t:T = arg maxπt:T Vt(b2;πt:T ) is the optimal
policy sequence for the initial belief vector b2 at time t. We
have:

Vt(b1) ≥ Vt(b1;π∗t:T )

≥ Vt(b2;π∗t:T ) = Vt(b2), (49)

and this completes the proof of Lemma 4.
Proof of Lemma 5:

To prove the shifting property of immediate expected reward
we have:

R̄(bα; r) = r

M∑
i=r

bα(i) +

r−1∑
i=1

bα(i)[(1 + C)i− Cr] (50a)

= (r′ + α)

M∑
i′=r′

b(i′)

+

r′−1∑
i′=1

b(i′)[(1 + C)(i′ + α)− Cr′] (50b)

= R̄(b; r′) + α[

M∑
i′=r′

b(i′) +

r′−1∑
i′=1

b(i′)] = R̄(b; r′) + α,

(50c)

where, (50b) is achieved by substituting i and r with i′+α and
r′ + α, respectively. Also we already know that bα(i′ + α) =
b(i′). For the myopic actions, using (50c) we have:

rmyopic(bα) = arg max
r
R̄(bα; r)

= arg max
r
{R̄(b; r − α) + α} = rmyopic(b) + α. (51)

Proof of Lemma 6:
To prove (20), we use induction. For horizon T , it’s similar

to (18) with t = T . Now assuming it’s true for t+ 1, we will
consider time step t:

Vt(b
α; r) = R̄(bα; r) + β[

M∑
i=r

bα(i)Vt+1(Trb
αP )

+

r−1∑
i=1

bα(i)Vt+1(IiP )]

= R̄(b; r) + α+ β[

M∑
i′=r−α

b(i′)Vt+1(Trb
αP )

+

r−α−1∑
i′=1

b(i′)Vt+1(Ii′+αP )] (52a)

In (52a), we use (18) and the shifting property of belief vectors
and substitute i− α with i′. Using (20) at t+ 1 we have:

Vt(b
α; r) = R̄(b; r) + α

+ β

M∑
i′=r−α

b(i′)[Vt+1(Tr−αbP ) + α
1− βT−t−1

1− β
]

+ β

r−α−1∑
i′=1

b(i′)[Vt+1(Ii′P ) + α
1− βT−t−1

1− β
] (53a)

= Vt(b; r − α) + α+ αβ

M∑
i=1′

b(i′)
1− βT−t−1

1− β

= Vt(b; r − α) + α
1− βT−t

1− β
(53b)



To prove (21), using (20), we have:

roptt (bα) = arg max
r
Vt(b

α; r)

= arg max
r
{Vt(b; r − α) + α

1− βT−t

1− β
}

= arg max
r
Vt(b; r − α)

= arg max
r
Vt(b; r) + α = roptt (b) + α. (54)

Using (20), (22) and maximizing over actions, we obtain (22).

Proof of Lemma 7:
Consider a belief vector bu in the unlimited state set and

its correspond bl in the limited state set M. If bu has non-
zero elements above M , i.e., the upper edge of M, bl(M) =∑
i≥M bu(i), and bl(j) = bu(j), j < M . Therefore facing

the upper edge effect results in bl ≤s bu. Similarly, is bu

has non-zero elements below 1, i.e., the lower edge of M,
bl(1) =

∑
i≤1 b

u(i), and bl(j) = bu(j), j > 1. Thus facing
with the lower edge effect results in bl ≥s bu.

Now using Lemma 6, if the belief vector bt and its shifted
version bαt , α > 0 are in the unlimited state set, between their
value functions the equation (22) holds. Lets bτ and bατ denote
the sequence of belief vectors constructed by updating bt and
bαt , respectively, according to their optimal actions at all time
steps τ = t + 1, ..., T . Then bατ , τ = t + 1, ..., T are shifted
version of bτ . Now with limiting the state set,there are some
possibilities. If none of the bτ , bατ , τ = t + 1, ..., T face with
the edge effects and (22) will still hold. Otherwise, bατ will
face with the upper edge effect sooner than bτ , or bτ will
face with the lower edge effect sooner than bατ . In both cases,
combining the above argument about the FOSD orderings, the
results of Lemma 4 and (22), we can conclude the inequality
(23).

APPENDIX B

Proof of Theorem 1:
The immediate expected reward and the future expected

reward achieved by the action r < rmyopic are less than
those achieved by rmyopic, as results of Lemma 1 and Lemma
3, respectively. Combining them as (5b), we get Vt(b; r) ≤
Vt(b; r

myopic) which means r cannot be optimal and thus
ropt ≥ rmyopic.

Proof of Theorem 2:
To achieve the upper bound on the optimal action we will

show that:

∆Vt(b; r) = ∆R(b; r) + β∆V ft (b; r) ≤ 0, ∀r ≥ rub. (55)

By recalling (24) we know

∆R(b; r) = 1− (1 + C)

r∑
i=1

b(i) ≤ 0, ∀r ≥ rmyopic. (56)

Moreover, using (32),

∆V ft (b; r) =

M∑
i=r+1

b(i)[Vt+1(Tr+1bP )− Vt+1(TrbP )]

+ b(r)[Vt+1(IrP )− Vt+1(TrbP )], (57)

and according to lemma 3 we have ∆V ft (b; r) ≥ 0 for all r.
Hence (55) is equivalent to:

β∆V ft (b; r) ≤ |∆R(b; r)|, ∀r ≥ rub. (58)

To this end, it is sufficient to find an upper bound for
β∆V ft (b; r) such that it is less than |∆R(b; r)| for all r
greater than a specific action, i.e., our desired upper bound,
rub. Applying Lemma 4 one bp ≥s IrlP , we have:

Vt(bP ) ≥ Vt(IrlP ), (59)

Now by above inequality and the fact that r is the lowest non-
zero index of the belief vector Trb, the second term in (57) is
less than zero and we can bound ∆V ft (b; r) as follows:

∆V ft (b; r) ≤
M∑

i=r+1

b(i)[Vt+1(Tr+1bP )− Vt+1(TrbP )].

(60)

From the convexity of value function proved in lemma 2
and (59) we get:

Vt+1(Tr+1bP )− Vt+1(TrbP )

≤
rh∑

i=r+1

b′(i)Vt+1(IiP )− Vt+1(IrP )

≤
rh∑

i=r+1

{b′(i)[Vt+1(IiP )− Vt+1(IrP )]}, (61)

where b′ = Tr+1b. Now from (23) and substituting b = IiP
and α = j − i, it follows that:

Vt+1(Tr+1bP )− Vt+1(TrbP )

≤
rh∑

i=r+1

{b′(i) (i− r)(1− βT−1)

1− β
}

=
1− βT−1

1− β
[

rh∑
i=r+1

ib′(i)− r]

=
1− βT−1

1− β
[b̄′ − r], (62)

where b̄′ =
∑rh

i=r+1 ib
′(i) =

∑rh

i=r+1 ib(i)∑rh

i=r+1 b(i)
= S̄r

Sr
.

Accordingly, we may bound (60) using (62) as follows:

∆V ft (b; r) ≤ Sr
1− βT−1

1− β
[
S̄r
Sr
− r]. (63)



To obtain (58) using (63) it suffices to make the following
inequality satisfied:

βSr
1− βT−1

1− β
[
S̄r
Sr
− r] ≤ (1 + C)

r∑
i=1

b(i)− 1

= C − (1 + C)Sr, ∀r ≥ rub. (64)

Applying the definition of f(β) in (14) and doing some
straightforward manipulations, we can get:

f(β)S̄r + [(1 + C)− f(β)r]Sr − C ≤ 0, ∀r ≥ rub. (65)

rub is the smallest r satisfying (65), as mentioned in (13), and
the proof is complete.


