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Abstract

We introduce SensorDCSP, a naturally distributed benchmark based on a real-world application
that arises in the context of networked distributed systems. In order to study the performance of
Distributed CSP (DisCSP) algorithms in a truly distributed setting, we use a discrete-event network
simulator, which allows us to model the impact of different network traffic conditions on the perfor-
mance of the algorithms. We consider two complete DisCSP algorithms: asynchronous backtracking
(ABT) and asynchronous weak commitment search (AWC), and perform performance comparison
for these algorithms on both satisfiable and unsatisfiable instances of SensorDCSP. We found that
random delays (due to network traffic or in some cases actively introduced by the agents) combined
with a dynamic decentralized restart strategy can improve the performance of DisCSP algorithms.
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In addition, we introduce GSensorDCSP, a plain-embedded version of SensorDCSP that is closely

related to various real-life dynamic tracking systems. We perform both analytical and empirical study
of this benchmark domain. In particular, this benchmark allows us to study the attractiveness of so-
lution repairing for solving a sequence of DisCSPs that represent the dynamic tracking of a set of
moving objects.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years we have seen an increasing interest in Distributed Constraint Satisfaction
Problem (DisCSP) formulations to model combinatorial problems arising in distributed,
multi-agent environments. In the world of networked systems, there is a rich set of distrib-
uted applications for which the DisCSP paradigm is particularly useful. In such distributed
applications, constraints among agents, such as communication bandwidth and privacy
issues, preclude the adoption of a centralized approach. During the last decade, many in-
teresting results have been presented on algorithmic [3,5,10,24,27,31,32,34–36,38] and
applicative [4,11,21–23,25] issues of dealing with DisCSPs (and this list is far from being
exhaustive).

Study of alternative algorithms for a certain class of computational problems requires a
comprehensive set of benchmark domains. These domains should provide us with problem
instances inducing various forms of structure and various levels of complexity. Several
success stories in the recent research in AI and other related areas show us that a wide
palette of benchmark domains, accomplished with extensive analysis of their structure and
complexity, helps to develop new algorithmic techniques. Examples of this can be found
in the areas of AI planning [12–14], SAT solvers [30], etc.

To the best of our knowledge, so far DisCSP algorithms have been mostly studied on
benchmarks from classical CSP (such as N-Queens, Graph Coloring, etc.), formulated in
a distributed fashion. In this paper we introduce and study SensorDCSP, a naturally dis-
tributed benchmark inspired by several distributed applications arising in networked sys-
tems [2,8,19]. SensorDCSP involves a network of distributed sensors simultaneously track-
ing multiple mobile objects, and the problem underlying SensorDCSP is NP-complete. We
show that the SensorDCSP domain undergoes a phase transition in satisfiability with re-
spect to two control parameters: the level of sensor compatibility and the level of the sensor
visibility. Standard DisCSP algorithms on problem instances of SensorDCSP exhibit the
easy-hard-easy profile in complexity, peaking at the phase transition, which is similar to the
pattern observed in centralized CSP algorithms. More interestingly, the relative strength of
standard DisCSP algorithms on SensorDCSP is highly dependent on the satisfiability of
the instances. This aspect has been overlooked in the literature on account of the fact that,
so far, the performance of DisCSP algorithms has been evaluated primarily on satisfiable
instances [37,38]. We study the performance of two well-known DisCSP algorithms—
Asynchronous Backtracking (ABT) [36], and Asynchronous Weak-Commitment search
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(AWC) [35]—on SensorDCSP. Both ABT and AWC use agent priority ordering during the

search process. While these priorities are static in ABT, AWC allows for dynamic changes
in the ordering and was originally proposed as an improvement over ABT. One of our find-
ings is that although AWC does indeed perform better than ABT on satisfiable instances,
just the opposite is true on unsatisfiable instances.

Our SensorDCSP benchmark also allows us to study other interesting properties that
are specific to DisCSPs and dependent on the physical characteristics of the distributed
environment. For example, while the underlying infrastructure or hardware is not critical
in studying CSPs, we argue that this is not the case for DisCSPs in communication net-
works. This is because the traffic patterns and packet-level behavior of networks affect the
order in which messages from different agents are delivered to one another, and thus can
significantly impact the distributed search process. To investigate these kinds of effects,
we implemented our DisCSP algorithms using a fully distributed discrete-event network
simulation environment with a complete set of communication oriented classes. The net-
work simulator allows us to realistically model the message delivery mechanisms of varied
distributed communication environments ranging from wide-area computer networks to
wireless sensor networks.

We study the impact of communication delays on the performance of DisCSP algo-
rithms. We consider different link-delay distributions. Our results show that the presence
of a random element due to the delays can improve the performance of AWC. Moreover,
though link delay causes the performance of the standard ABT algorithm to deteriorate, a
decentralized restart strategy that we have developed for ABT improves its solution time
dramatically while also increasing the robustness of solutions with respect to the variance
of the network link-delay distribution. These results are consistent with results on suc-
cessful randomization techniques that were developed for the purpose of improving the
performance of CSP algorithms [9]. Another novel aspect of our work is the introduction
of a mechanism for activelydelaying messages. The active delay of messages decreases the
communication load of the system and, somewhat counter-intuitively, can also decrease the
overall solution time.

While SensorDCSP provides a general abstraction for many real-life resource allocation
problems, in tracking systems (that SensorDCSP was inspired by) the problems typically
induce some clear spatial structure, leading to a relatively high decomposability of the
problem. Addressing these systems, we introduce GSensorDCSP, a variant of SensorDCSP
in which constrainedness of compatibility and visibility is conditioned by the locations of
the sensors and objects on the plane. For this benchmark we perform both analytical and
empirical complexity analysis. We show that, inspite of its inherently decomposable nature,
GSensorDCSP is NP-complete, except for some special tractable cases. Identification of
these tractable cases allows us to study performance of the DisCSP algorithms on a prov-
ably polynomial distributed problems. On the other hand, we show that DisCSP algorithms
scale nicely on a wide subclass of GSensorDCSP, and this scalability makes using DisCSP
algorithms feasible in many real-life applications. In particular, we analyze the AWC algo-
rithm on a sequence of GSensorDCSP problems that represent a system of sensors tracking
a set of moving objects. We discuss some properties of such a dynamic GSensorDCSP, and
show how these properties could be exploited in the dynamic tracking systems.
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The remainder of the paper is organized as follows: In Section 2 we describe SensorD-

CSP and model it as a DisCSP. In Section 3 we describe two standard DisCSP algorithms
and the modifications we have incorporated into the algorithms. In Section 4 we present an
empirical complexity analysis for SensorDCSP, and study active introduction of random-
ization by the agents. In Section 5 we present results on delays caused by different traffic
conditions in the communication network. In Section 6 we introduce GSensorDCSP, and
describe its modeling as a DisCSP. In Section 7 we present formal complexity results for
GSensorDCSP, evaluate the performance of the DisCSP algorithms on various subclasses
of this problem, and discuss solution repairing as a technique for dynamic CSPs. Finally,
we present our conclusions in Section 8.

2. SensorDCSP—a benchmark for DisCSP algorithms

In a distributed CSP, variables and constraints are distributed among the different
autonomous agents that have to solve the problem. A DisCSP is defined as follows:
(1) A finite set {A1,A2, . . . ,An} of agents; (2) A set {P1,P2, . . . ,Pn} of local (private)
CSPs, where CSP Pi pertains to agent Ai (and Ai is the only agent that can modify the
values assigned to the variables of Pi ); (3) A global CSP, each of whose variables is also a
variable of one of the local CSPs.

In analysis of DisCSP algorithms, each agent is traditionally assumed to control only
one problem variable. However, in our DisCSP modeling of SensorDCSP every agent
needs to control not one, but three local variables. We extend the single-variable approach
by modeling each agent as a set of multiple virtual agents, one for each agent’s local
variable. In order to distinguish between communication and computation costs, in our
discrete-event simulator we use different delay distributions to distinguish between mes-
sages exchanged between virtual agents of a single real agent (intra-agent messages) and
those between virtual agents of different real agents (inter-agent messages). This model-
ing technique seems to be useful in general, since in many realistic problems an agent
might control more than one variable. In that case, the time spent by an agent trying to find
an assignment for its own local variables (consistent with its intra-agent and inter-agent
constraints) would be only affected by the computation cost of the agent hardware.

The availability of a realistic benchmark of satisfiable and unsatisfiable instances, with
tunable complexity, is critical for the study and development of new search algorithms.
Unfortunately, in the DisCSP literature one cannot find such a benchmark. SensorDCSP,
the sensor-mobile problem, is inspired by a real distributed resource allocation problem [1]
and offers such desirable characteristics.

In SensorDCSP we have multiple sensors S = {s1, . . . , sm} and multiple mobiles T =
{t1, . . . , tn} which are to be tracked by the sensors. The goal is to allocate three sensors
to track each mobile node, such that all these triplets of sensors are pair-wise disjoint and
consistent with two sets of constraints: visibility constraints and compatibility constraints.
Fig. 1 shows an example with six sensors and two mobiles. Each mobile has a set of sen-
sors that can possibly detect it, as depicted by the bipartite visibility graph in Fig. 1(a). In
addition, it is required that each mobile be assigned three sensors that satisfy a compatibil-
ity relation with each other; this compatibility relation is depicted by the graph in Fig. 1(b).
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Fig. 1. A SensorDCSP problem instance: (a) Visibility graph; (b) Compatibility graph; (c) Feasible sen-
sors/mobiles assignment.

Finally, it is required that each sensor only track at most one mobile. A possible solution
is depicted in Fig. 1(c), where the set of three sensors assigned to each mobile is indicated
by the lighter edges.

SensorDCSP is NP-complete, since the problem of partitioning a graph into cliques of
size three can be reduced to it [2,17]. This is not true, however, of the limiting case in
which every pair of sensors is compatible. That case is polynomially solvable, because as
each such problem can be reduced to a feasible flow problem in a bipartite graph [18].

For our experiments, we define a random distribution of instances of SensorDCSP. An
instance of the problem is generated from two different random graphs, the visibility graph
and the compatibility graph. Apart from the number of mobiles and number of sensors,
we also specify parameters controlling edge density of the visibility graph (Pv) and edge
density of compatibility graph (Pc). Each of these parameters specifies the independent
probability of including a particular edge in the corresponding graph. As these two graphs
model the resources available to solve the problem, Pv and Pc control the number of con-
straints in the generated instances.

We have developed an instance generator for these random distributions that gener-
ates DisCSP-encoded instances of SensorDCSP. We believe that SensorDCSP is a good
benchmark problem because it abstracts many real-life resource allocation problems, and
because, as we shall show, one can easily generate easy/hard, unsatisfiable/satisfiable
instances by tuning the parameters Pv and Pc appropriately. Our DisCSP encoding of Sen-
sorDCSP is as follows: Each mobile is associated with a different agent. There are three
different variables per agent, one for each sensor that we need to allocate to the corre-
sponding mobile. The value domain of each variable is the set of sensors that can detect
the corresponding mobile. The intra-agent constraints between the variables of one agent
are that the three sensors assigned to the mobile must be distinct and pair-wise compatible.
The inter-agent constraints between the variables of different agents are that a given sensor
can be selected by at most one agent. In our implementation of the DisCSP algorithms, this
encoding is translated to an equivalent formulation where we have three virtual agents for
every real agent, each virtual agent handling a single variable.

We should also address the question of where the agents actually reside. The original
problem [1] that inspired SensorDCSP assumes passive/non-collaborative mobile nodes,
in which case it must be assumed that there exists a mechanism whereby one of the sensor
nodes within range of each mobile node contains the agent corresponding to that mobile



122 R. Béjar et al. / Artificial Intelligence 161 (2005) 117–147

(the description of such a mechanism is beyond the scope of this study, but it could be

implemented using distributed leader election algorithms, for example). Alternatively, in
other tracking scenarios the mobile nodes may be collaborative and have the computational
ability to execute their own agents.

3. DisCSP algorithms

In this work we consider two specific DisCSP algorithms, Asynchronous Backtracking
Algorithm (ABT), and Asynchronous Weak-Commitment Search Algorithm (AWC). We
provide a brief overview of these algorithms but refer the reader to [38] for a more com-
prehensive description. We also describe the modifications that we introduced into these
algorithms. As mentioned earlier, we assume that each agent can only handle one vari-
able. In what follows, the neighborsof a given agent are the agents with whom it shares
constraints.

The Asynchronous Backtracking Algorithm(ABT) is a distributed asynchronous version
of a classical backtracking algorithm. This algorithm needs a static agent ordering that
determines an ordering of the variables of the problem. Agents use two kinds of messages
for solving the problem—okmessages and nogoodmessages. Agents initiate the search by
assigning an initial value to their variables. An agent changes its value when it detects that
it is not consistent with the assignments of higher priority neighbors, and so it maintains
an agent view, which consists of the variable assignments of its higher priority neighbors.

Each time an agent assigns a value to its variable, it issues the ok message to inform
its lower-priority neighbors of this new assignment. If an agent is unable to find an assign-
ment that is consistent with the assignments of all of its higher-priority neighbors, it sends
a nogoodmessage, which consists of a subset of that agent’s view that makes it impossible
for the agent to find a consistent assignment for itself; the nogoodmessage is sent to the
lowest-priority agent among all the (higher-priority) agents in that particular subset of that
agent’s view. Receipt of a nogoodmessage causes the receiver agent to record the content
of that message as a new constraint and then try to find an assignment that is consistent
with its higher-priority neighbors and with all of its recorded constraints. If the top-priority
agent is forced to backtrack (which implies that its assignment is inconsistent with at least
one of its recorded constraints, since there is no higher-priority neighbor with which its as-
signment could possibly clash), this means that the problem has no solution. If, on the other
hand, the system reaches a state where all agents are happy with their current assignments
(no nogoodmessages are generated), this means that the agents have found a solution.

The Asynchronous Weak-Commitment Search Algorithm(AWC) can be seen as a mod-
ification of the ABT algorithm. The primary differences are as follows: A priority value
is determined for each variable, and the priority value is communicated using the ok mes-
sage. If an agent’s current assignment is inconsistent with that agent’s view, the agent
selects a new consistent assignment that minimizes the number of constraint violations
with lower-priority neighbors. When an agent cannot find a consistent value and generates
a new nogood, it sends the nogoodmessage to all its neighbors and raises its priority by
one unit above the maximal priority of its neighbors. Then it finds an assignment that is
consistent with the assignments of its higher-priority neighbors and informs its neighbors
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by sending them ok messages. If no new nogoodcan be generated, the agent waits for the

next message.

Considering both ABT and AWC, in recent years it has been recognized that randomiza-
tion is a useful technique for enhancing the performance of complete backtracking-based
CSP solvers [9]. We therefore wish to explore randomization strategies in our context. The
most obvious way of introducing randomization in DisCSP algorithms is by randomizing
the value selection strategy used by the agents. In the ABT algorithm this is done by per-
forming a uniform random value selection, among the set of values consistent with the
agent view and the nogoodlist, every time the agent is forced to select a new value. In
the AWC algorithm, we randomize the selection of the value among the values that are
not only consistent with the agent view and the nogood list but also minimize the num-
ber of violated constraints. This form of randomization is analogous to the randomization
techniques used in backtrack search algorithms.

A novel way of randomizing the search in the context of DisCSP algorithms is to intro-
duce forced delays in the delivery of messages. Delays introduce randomization in that the
order in which messages from different agents reach their destination agents determines
the order in which the search space is traversed. More concretely, every time an agent has
to send a message, it follows the following procedure:

1. with probability p:
d := D · (1 + r);

else(with probability (1 − p))
d := D;

2. deliver the message with delay d .

Transmitting message m with delay d means that the agent requires its communication
interface to add d seconds to the delivery time currently scheduled for m and all the succes-
sors of m in the message queue. The latter preserves the order of transmission and reception
for the messages sent from one agent to another agent. The parameter r is the fraction of
the communication delay (D) added by the agent. Section 4.2 details more accurately this
active introduction of delays. In our implementation of the algorithms, this strategy is per-
formed by using the services of the discrete event simulator that allow specific delays to be
applied selectively in the delivery message queue of each agent.

We have also developed the following decentralized restarting strategy suitable for the
ABT algorithm: the highest-priority agent uses a timeout mechanism to decide when a
restart should be performed. It performs the restart by changing its value at random from
the set of values consistent with the nogoodslearned so far. Then, it sends ok messages to
its neighbors, thus producing a restart of the search process, but without forgetting the no-
goodslearned. This restart strategy is different from the restart strategy used in centralized
procedures, such as Satz-rand [9]. Here, the search is not restarted from scratch, but rather
benefits from prior mistakes since all agents retain the nogoods.

4. Complexity profiles of DisCSP algorithms on SensorDCSP

As mentioned earlier, when studying distributed algorithms several factors may deter-
mine their performance. Some of those factors are inherent to the search procedure, such



124 R. Béjar et al. / Artificial Intelligence 161 (2005) 117–147

as agent ordering. In this work, we always assume an arbitrary lexicographic ordering of

the agents, focusing our attention on other factors, specifically these related to the phys-
ical characteristics of the distributed environment. For example, the traffic patterns and
packet-level behavior of networks can affect the order in which messages from different
agents are delivered to each other, significantly impacting the distributed search process.
To investigate these kinds of effects, we have developed an implementation of the algo-
rithms ABT and AWC using the Communication Networks Class Library (CNCL) [16].
This library provides a discrete-event network simulation environment with a complete
set of communication-oriented classes. The network simulator allows us to realistically
model the message-delivery mechanisms of various distributed communication environ-
ments ranging from wide-area computer networks to wireless sensor networks. Finally, in
our implementations of ABT and AWC we have not limited the number of nogoods learned
by the agents. Although in the worst case this can require exponential space, in our exper-
iments we have not noticed any exponential blow-up in the number of nogoods learned by
any agent. Two reasons for this could be as follows. First, for the typical instances of the
random distribution, the particular characteristics of the SensorDCSP constraints could be
bounding the number of variables that a given variable can have constraints with. Second,
it is possible that the size of the instances tested so far is insufficient to discover such an
exponential blow-up in space complexity.

The results shown in this section have been obtained according to the following sce-
nario: The communication links used for communication between virtual agents of dif-
ferent real agents (inter-agent communication) are modeled as random-delay links, with
a negative-exponential distribution and a mean delay of 1 time unit. The communication
links used by the virtual agents of the same real agent (intra-agent communication) are
modeled as fixed delay links, with a delay of 10−3 time units. Here we use fixed-delay
links because we assume that a set of virtual agents work inside a private computation node
and this allows virtual agents to communicate with each other using dedicated communi-
cation links. This scenario could correspond to a heavy-loaded network situation where
inter-agent delay fluctuations obey to the queuing-time process on intermediate systems.
The difference between the two delays by a factor of 1000 reflects that intra-agent com-
putation is usually less expensive that inter-agent communication. In Section 5 we will
see how different delay-distribution models over the inter-agent communication links can
impact the performance of the algorithms.

In our experiments with SensorDCSP we considered different sets of instances with 3
mobiles and 15 sensors. Every set contained 19 instances and was generated with a dif-
ferent pair of values for the parameters Pc and Pv (ranging from 0.1 to 0.9), providing us
with 81 data points. Each instance has been executed 9 times, each time with a different
random seed. The results reported in this section were obtained using a sequential value se-
lection function for the different algorithms. By sequential we mean that values are chosen
according to a lexicographic order.

Fig. 2 shows the percentage of satisfiable instances as a function of Pc and Pv . When
both probabilities are low, most of the generated instances are unsatisfiable. For high proba-
bilities, however, most of the instances are satisfiable. The transition between the satisfiable
and unsatisfiable regions occurs within a relatively narrow range of these control parame-
ters, analogous to the phase transition in CSP problems, e.g., in SAT [26]. Also consistent
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Fig. 2. Percentage of satisfiable instances depending on the density parameter for the visibility graph (Pv ) and
the density parameter for the compatibility graph (Pc).

Fig. 3. Mean solution time with respect to Pv and Pc for ABT and AWC algorithms. Points A and B show the
locations of the two hard instances analyzed in Section 4.2.

with other CSP problems is our observation that the hardest instances for these backtrack-
ing algorithms generally occur in the region where the phase transition occurs. Fig. 3 shows
the mean solution time with respect to the parameters Pc and Pv . As can be seen there, the
hardest instances lie on the diagonal that defines the phase-transition zone, with a peak for
instances with a low Pc value. The dark and light solid lines overlaid on the mesh depict
the location of the iso-lines for Psat = 0.2 and Psat = 0.8, respectively, as per the phase-
transition surface of Fig. 2. As mentioned earlier, the SensorDCSP problem is NP-complete
only when not all sensors are pairwise compatible (i.e., when Pc < 1) [18]. Therefore, the
parameter Pc could separate regions of different mean computational complexity, as in
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other mixed P/NP-complete problems like 2 + p-SAT [26] and 2 + p-COL [33]. This is

particularly noticeable in the mean-time distribution for AWC shown in Fig. 3.

We observe that the mean times to solve an instance with AWC appear to exceed those
with ABT by an order of magnitude. At first glance, this is a surprising result, considering
that the AWC algorithm is a refinement of ABT and that results reported for satisfiable
instances in the literature [37,38] point to better performance for AWC. One plausible
explanation for the discrepancy is the fact that our results deal with both satisfiable and
unsatisfiable instances. On further investigation, we found that while AWC does indeed
outperform ABT on satisfiable instances, it is much slower on unsatisfiable instances. This
result seems consistent with the fact that the agent hierarchy on ABT is static, while for
AWC the hierarchy changes during problem solving; consequently, AWC might be ex-
pected to take more time to inspect all the search space when unsatisfiable instances are
considered.

4.1. Randomization and restart strategies

In this subsection we present the benefits of using randomized value selection and restart
strategies for distributed CSP algorithms. The introduction of a randomized value selection
function was directly assumed in [37]. In extensive experiments we performed with our
test instances, we found that the randomized selection function is indeed better than a
sequential value selection. Randomization can result in greater variability in performance,
however, so ABT should be equipped with a restart strategy. We have not defined a restart
strategy for AWC, because, as will be seen in Section 5, the dynamic priority strategy of
AWC can be viewed as a kind of built-in partial restart strategy. In the results reported in
the rest of the paper, both ABT and AWC use randomized value selection functions.

To study the benefits of the proposed restart strategy for ABT, we have used restarts in
solving hard satisfiable instances with ABT. Fig. 4 shows the mean time needed to solve a
hard satisfiable instance, together with the corresponding 95% confidence intervals, for a
number of cutoff times. We observe that there is clearly an optimal restart cutoff time that

Fig. 4. Mean time to solve a hard satisfiable instance by ABT using restarts, plotted with different cutoff times.
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gives the best performance. As will be discussed in Section 5, use of restart strategies is es-

sential when dealing with the delays that occur in real communication networks, given the
high variance in the solution time due to randomness of link delays in the communication
network.

4.2. Active delaying of messages

One rather novel way of randomizing a DisCSP algorithm is to introduce delays in the
delivery of the agents’ outgoing messages, as we described in Section 3. In this subsection
we present the results of our experiments with the AWC and ABT algorithms. The amount
of delay added by the agents is a fraction r (from 0 to 1) of the delay in the inter-agent
communication links. Here, we consider the case where all the inter-agent communication
links have fixed delays of 1 time unit, because we want to isolate the effect of the delay
added by the agents. This is in contrast to the experiments described elsewhere in this
section, where we report the effects of allowing variable inter-agent delays.

Fig. 5 shows the results of using AWC to solve a hard satisfiable instance from our Sen-
sorDCSP domain (namely, the one that corresponds to point A in Fig. 3). The solution time
and the number of messages are plotted for various values of p, the probability of adding a
delay, and r , the fraction of delay added with respect to the delay of the link. The horizontal
plane cutting the surface shows the median time needed by the algorithm when we con-
sider no added random delays (p = 0, r = 0). We see that agents can indeed improve the
performance of AWC by actively introducing additional, random delays when exchanging
messages. The need to send messages during the search process is almost always reduced
when agents add random delays; in the best case the number of messages delivered can
be as much as a factor of 3 smaller than in the worst case. Perhaps more surprisingly, the
solution time can also improve if the increase in delay (r) is not too high.

Fig. 6 shows the results with AWC (left) and ABT (right) for a hard satisfiable instance
(namely, the one that corresponds to point B in Fig. 3). We observe that the performance
of AWC is improved in a greater number of cases than that of ABT. Moreover, in the best
case the solution time is smaller than that in the worst case by a factor of 2.25 for AWC
and 1.63 for ABT. It appears that AWC benefits to a greater extent overall than ABT when
it comes to the incorporation of delays added by agents. The reason for this could be the
ability of AWC to exploit randomization via its inherently restarting search strategy.

Fig. 5. Median time and number of messages needed to solve a hard satisfiable instance (point A in Fig. 3) with
AWC when agents add random delays in outgoing messages. The horizontal plane represents the median time (or
the median number of messages) for the case where no delay is added (p = 0).



128 R. Béjar et al. / Artificial Intelligence 161 (2005) 117–147
Fig. 6. Median time for AWC and ABT to solve a hard satisfiable (point B in Fig. 3) instance when agents add
random delays in outgoing messages. The horizontal plane represents the median time for the case where no delay
is added (p = 0).

5. The effect of the communication network data load

As described in the previous section, when working on a communication network with
fixed delays, the performance of AWC can be improved, depending on the amount of ran-
dom delay addition that the agents introduce into the message delivery system. In real
networks, however, the conditions of data load present in the communication links used by
the agents cannot always be modeled with fixed-delay links. It would thus seem worthwhile
to determine how differences in communication network environments can affect the per-
formance of the algorithms. In Section 4.2 we considered inter-agent communication links
with random, exponentially distributed delays. In this section we study the effect produced
in the performance of DisCSP algorithms by considering delay distributions corresponding
to different traffic conditions.

We examine various link-delay distributions that can be used to model communication
network traffic. Because of their attractive theoretical properties, negative-exponential dis-
tributions of arrival times have traditionally been used to model data traffic. In the past
decade, however, it has been shown that although these models are able to capture single-
user-session properties, they are not suitable for modeling aggregate data links in local- or
wide-area network scenarios [7,20,28]. In view of this, we have simulated network delays
according to three different models for the inter-arrival time distribution: the aforemen-
tioned negative-exponential distribution, the log-normal distribution, and the Fractional
Gaussian Noise (FGN) [29] distribution.

The log-normal distribution can be used to obtain distributions with any desired vari-
ance, whereas FGN processes are able to capture crucial characteristics of the Internet
traffic, such as long-range dependence and self-similarity that do not lend themselves to
other models. We synthesize FGN from α-stable distributions with typical parameter val-
ues of H = 0.75 and d = 0.4. Fig. 7 shows the cumulative density functions (CDF) of
the time required for three algorithms (AWC, ABT, and ABT with restarts) to solve hard
instances when all the inter-agent communication links have delays modeled as fixed, neg-
ative exponential, and log-normal. The means were nearly identical, but the variances were
quite different. Table 1 presents the estimated mean and variance of the number of mes-
sages exchanged when using each of the three aforementioned algorithms, together with
several different inter-agent link-delay distributions, to solve the same hard instance. The
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Table 1

Estimated mean and variance, from the empirical distributions, of the number of messages for different algorithms
and different inter-agent link delay models when solving a hard satisfiable instance

Delay distribution Mean Variance

ABT ABT-rst AWC ABT ABT-rst AWC

Fixed 1.8 × 105 1.2 × 105 8.2 × 102 3.6 × 1010 1.3 × 1010 3 × 105

Negative expon. (σ 2 = 1) 1.7 × 105 1.5 × 105 3.5 × 102 2.8 × 1010 0.9 × 1010 4.5 × 105

Log-normal (σ 2 = 5) 2.2 × 105 1.3 × 105 3.5 × 102 5.0 × 1010 1.7 × 1010 4.8 × 105

Log-normal (σ 2 = 10) 2.6 × 105 1.6 × 105 3.5 × 102 7.1 × 1010 2.4 × 1010 4.9 × 105

Fig. 7. Cumulative density functions (CDF) of the time needed to solve hard instances for their respective algo-
rithms, AWC, ABT and ABT with restarts under different link delay models.

estimated mean and variance of the solution time for the same scenarios show an analogous
behavior to the one observed with the number of messages. The results in Fig. 7 and Table 1
show that the delay distributions have an algorithm-specific impact on the performance of
both AWC and basic ABT.
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For the basic ABT, the solution time on hard instances becomes worse when channel

delays are modeled by random distributions as opposed to the fixed delay case. The greater
the variance of the link delay, the worse ABT performs. However, introducing the restart
strategy has the desirable effect of improving the performance of ABT. Furthermore, ABT
with restarts is fairly robust and insensitive to the variance in the link delays. AWC behaves
differently from the basic ABT. On hard instances, having randomization in the link de-
lays improves the solution time compared to the fixed delay channel. Likewise, the mean
solution time for AWC is extremely robust to the variance in communication link delays,
although the variance of solution time is slightly affected by this. Note that our experi-
ments with FGN delay models show no significant differences in performance for the three
algorithms in relation to other traffic models with the same variance.

In general, we found that on satisfiable instances, AWC always performs significantly
better than both basic and restarts-enhanced ABTs. Therefore, AWC appears to be a better
candidate in situations where most instances are likely to be satisfiable, and where we
cannot avoid random delays in the links.

6. Grid-based SensorDCSP

The above analysis of SensorDCSP problems provides us with the first results on behav-
ior of distributed CSP algorithms in close-to-real-world distributed applications. Observe
that the very concrete specification of the SensorDCSP problem helps us both to analyze
its computational complexity, and to establish coherent experiments for empirical analysis.
However, getting closer to the real-world tracking systems, one may have to further spec-
ify the properties of the domain. The main information that we believe should be captured
in analysis of various tracking systems is the spatial properties of both communication
between the sensors and visibility of the mobiles. Two reasons make capturing this infor-
mation essential:

(1) Given spatial limitations for both communication between the sensors and visibility
of the mobiles, the complexity analysis for general SensorDCSP provides only upper
bounds on the complexity of any spatially-limited SensorDCSP. In addition, deriving
conclusions on various sub-classes of spatially-limited SensorDCSP from the empir-
ical results on general SensorDCSP is not straightforward whatsoever. In particular,
this makes hard to analyze scalabilityof the DisCSP algorithms with respect to real-
life tracking systems.

(2) The overall goal of any tracking system is to track a set of movingobjects, and this
set is not necessarily constant over time (e.g., some tracked objects run out of the
region covered by the sensors, while some new objects are getting into this region).
Performance analysis of such a dynamic system is impossible without some realistic
assumptions about the dynamicsof the moving objects, which in turn can be specified
only with respect to some concrete spatial model of SensorDCSP.

In addition, spatial nature of the problem instances is likely to lead to inherently decom-
posable problems, making adopting the DisCSP approach even more attractive. Influenced
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by the above motivation and the properties of a recently studied challenge problem for dis-

tributed tracking systems [1,15], we introduce a grid-basedSensorDCSP benchmark, and
perform both analytical analysis of this problem and empirical study of DisCSP algorithms
on both static and dynamic settings of this problem.

The Grid-based SensorDCSP(or GSensorDCSP, for short) is a specific variant of the
general SensorDCSP: as before, we have multiple sensors S = {s1, . . . , sm}, multiple ob-
jects T = {t1, . . . , tn} which are to be tracked by the sensors subject to visibility and
compatibility constraints, and the goal is to allocate three sensors to track each object,
while keeping these triplets of sensors pair-wise disjoint. However, in GSensorDCSP the
sensors are located on the nodes of a uniform grid of m nodes, and the mobile objects are
located within the surface enclosed by the grid (i.e., the grid specifies the generally track-
able region).1 Furthermore, the visibility and compatibility constraints in GSensorDCSP
relate to the physical limitations of the sensors and the properties of the terrain on which
the sensors are located. In this section we provide a formal classification of the GSensorD-
CSP problem instances, together with an abstract model for specifying such instances with
requested properties.

6.1. Locality of communication and visibility

The physical limitations of the sensors are modeled by the notions of k-compatibility
and k-visibility. The k-compatibility window for sensor si , denoted as Ck(si), corresponds
to the set of all sensors that are at most k general (rectilinear and/or diagonal) hops from
si . For example, the black sensors in Fig. 8(a) correspond to 1-compatibility windows
for the gray sensor. Similarly, the k-visibility window for a mobile tj , denoted as Vk(tj ),
corresponds to the set of all sensors that are at most k general hops around tj . For example,
the black sensors in Fig. 8(b) correspond to 2-visibility windows for the rectangular mobile.
Note that, we have |Ck(si )| � (2k + 1)2 − 1 (where the strict equality holds for all sensors
located at least k hops from the boundaries of the grid), and |Vk(tj )| � 4k2.

Given a GSensorDCSP problem instance Π , denote by C(si) the set of sensors that the
sensor si can communicate with, and by V(tj ) the set of sensors that can track the mobile
tj . The compatibility graph of Π is called k-restrictedif and only if, for every sensor
si we have C(si) ⊆ Ck(si ), and there exists a sensor si′ such that C(si′) �⊆ Ck−1(si′). In
turn, the compatibility graph of Π is called k-enhancedif and only if, for every sensor
si we have Ck(si ) ⊆ C(si), and there exists a sensor si′ such that Ck+1(si′) �⊆ C(si′). The
corresponding notions of k-restrictness and k-enhanceness for the visibility graph of Π

are defined similarly. It is easy to see that higher values of k for both compatibility and
visibility correspond to more powerful sensors. For example, thinking of the gray sensor
in Fig. 8(c) as of the only sensor, the compatibility graph corresponding to Fig. 8(c) is
2-restricted and 1-enhanced. Similarly, thinking of the rectangular mobile in Fig. 8(d) as
of the only mobile, the visibility graph corresponding to Fig. 8(d) is 2-restricted and 0-
enhanced.

1 We adopt a general position assumption that the objects are not located on the edges of the grid, but in the
cells formed by the grid.
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Fig. 8. k-compatibility and k-visibility windows. Locality of communication and visibility.

6.2. Connecting locality and constrainedness

While physical limitations of the sensors in GSensorDCSP problems are modeled via
the locality windows, terrain limitations are modeled via incompleteness of compatibility
and visibility within the windows. This part of modeling is done in a way very similar
to this for the general SensorDCSP: Within a particular problem class (kc, kv) represent-
ing problems with kc-restricted compatibility graph and kv-restricted visibility graphs, the
problems can be ordered according to the local constrainedness, i.e., the average number
of sensors that a sensor can communicate with and the average number of sensors that
can track a mobile object. For the experiments, a random distribution of GSensorDCSP in-
stances for a particular pair of locality parameters (kc, kv) is defined as follows. Similarly
to the general SensorDCSP, an instance of GSensorDCSP is generated from two different
random graphs, the visibility graph and the compatibility graph. Apart of the parameters
number of mobiles and number of sensors, we also specify the parameters Pv,Pc ∈ (0,1]
that control the edge density of visibility and communication graphs, respectively. These
parameters specify the independent probability of including a particular edge in the corre-
sponding graph. However, not as for the general SensorDCSP, these parameters have only
a local effect: For every pair of sensors si and sj , the probability Pr(si , sj ) for the edge
(si , sj ) to be a part of the communication graph is given by:

Pr(si , sj ) =
{

0, sj /∈ Ckc (si),

Pc, sj ∈ Ckc (si).
(1)

Similarly, for the visibility graph, we have:

Pr(ti, sj ) =
{

0, sj /∈ Vkv (ti ),

Pv, sj ∈ Vkv (ti ).
(2)

Clearly, higher values for Pc and Pv correspond to less problematic terrain conditions for
communication and tracking, respectively. To conclude, each problem instance of GSen-
sorDCSP can be characterized by six parameters:

• Order of the problem, characterized by both the number of sensors and the number of
mobiles (n and m, respectively),

• Level of decomposition, modeled via locality of compatibility and visibility, using the
corresponding notions of window restrictness (kc and kv), and

• Level of constrainedness, modeled via the expected fraction of sensors that can com-
municate with a sensor and the expected fraction of sensors that can track a mobile
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object, out of the maximally possible such numbers specified by the level of de-

composition. These aspects of the problem instances are modeled using the uniform
probability distributions Pc and Pv with their corresponding means.

7. Computational analysis of GSensorDCSP

In this section we present a complexity analysis for GSensorDCSP. Despite the a priori
problematic multi-parametric nature of this problem, its concrete definition allows us to
perform both analytical and empirical complexity analysis. Our analytical analysis charac-
terizes both tractable and hard subclasses of GSensorDCSP. This classification both guides
our empirical evaluation, and describes the connection between various problem parame-
ters and the expected hardness of the problem. In turn, our experimental analysis shed light
on both the phase transition in satisfiability of GSensorDCSP and the scalability expected
from DisCSP algorithms on spatial SensorDCSP problems.

7.1. Complexity results for GSensorDCSP

In this section we perform an extensive formal complexity analysis of GSensorDCSP,
identifying both tractable and hard subclasses of the GSensorDCSP problem.

Lemma 1.GSensorDCSP isNP-complete.

Proof. GSensorDCSP is a special case of SensorDCSP, thus it is clearly in NP. The proof
of hardness is by a straightforward reduction from SensorDCSP. Given a general Sensor-
DCSP problem Π with sensors S = {s1, . . . , sm} and mobile objects T = {t1, . . . , tn}, the
corresponding GSensorDCSP problem Π ′ is defined as follows: Let k be the smallest num-
ber such that k � m and k = l × l′, where l, l′ ∈ N. The sensor set of Π ′ is S′ = {s′

1, . . . , s
′
k},

where, for 1 � i � m, we have s′
i = si , and all these k sensors are located on the nodes of

a uniform l × l′ grid. The set of mobile objects of Π ′ is this of Π , and these objects are
arbitrarily located within the grid. Finally, the compatibility and visibility graphs of Π ′ are
identical to these of Π . Obviously, there exist a solution for the problem Π if and only if
there exist a solution for the problem Π ′. �

Note that the notions of locality in the GSensorDCSP problems constructed from the
general SensorDCSP problems as in the proof of Lemma 1 are redundant: In general, if
l � l′, we can only say that the compatibility and visibility graphs of the generated prob-
lems Π ′ are (l − 1)-restricted. However, later we discuss GSensorDCSP with constantly
bounded compatibility and visibility windows.

Recall that SensorDCSP is polynomial for complete compatibility graphs [18]. The
corresponding notion in GSensorDCSP is this of locally completecompatibility graphs, as
it is summarized by Lemma 2.
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Lemma 2.Given an GSensorDCSP problem instanceΠ with ani-enhanced compatibility
l
graph, andj -restricted visibility graph, ifi � 2j − 1, thenΠ is solvable in polynomia

time.

Proof. Without loss of generality, assume that, for every sensor s, we have C(s) = Ci (s).
In this case, if i � 2j − 1, then, for every mobile t , we have that every pair of sensors
in V(t) can communicate one with the other. Therefore, this problem can be presented as
a feasible integral flow problem in a bipartite graph, similarly to the way it is done for
SensorDCSP problems with complete compatibility. �

Observe that, while Lemma 1 shows the general hardness of GSensorDCSP, the prac-
tical relevance of this result is extremely limited. Recall that the central motivation for
specifying a spatial model for SensorDCSP was that, in real world, both the communica-
tion and tracking abilities of the sensors are spatially limited. Therefore, the complexity
analysis of GSensorDCSP would be helpful only if it will be parametrized by the prob-
lem’s level of decomposition. Below we perform such an analytical analysis, parametrized
by the restrictness of visibility.

Theorem 3.Any GSensorDCSP problem instance with1-restricted visibility graphV is
solvable in polynomial time.

The proof of Theorem 3 by reduction to the problem of feasible integer flow appears in Ap-
pendix A. In turn, Theorem 4 shows that extending restrictness of visibility to V

2 makes
the GSensorDCSP problem hard, and this result is independent of the restrictness of com-
patibility between the sensors.

Theorem 4.GSensorDCSP with2-restricted visibility isNP-complete.

The proof of Theorem 4 by reduction from 3-SAT appears in Appendix A.

7.2. Complexity profiles of the AWC algorithm on GSensorDCSP

For the first experiment with the AWC algorithm, we consider different sets of instances
with 25 sensors (grid 5 × 5) and 5 mobiles, with every set generated with different values
for the parameters Pc and Pv with respect to Eqs. (1) and (2). The parameters Pc and Pv

are ranging from 0.1 to 1 with an increment of 0.1, giving a total number of 100 data sets,
where every set contains 50 instances. Recall that by kv and kc we refer to the parameters
controlling the restrictness of the visibility graph and compatibility graph, respectively. It is
worth to mention that in contrast to the time model assumed in Section 4, the forthcoming
experiments in the GSensorDCSP domain (but in the dynamic case) assume a random
negative exponential distributed delay, with a mean of 1 time unit for both inter-agent and
intra-agent communication. The reason for such an assumption is that we are no longer
interested in time performance but in complexity analysis of the problem. Obviously, such
scenario changes if dynamics of the mobiles is considered, shifting back to the time model
adopted in Section 4.
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Fig. 9. Percentage of satisfiable instances depending on density parameters for the visibility graph (Pv) and the
compatibility graph (Pc). (a) Plot for different values of Pv and Pc . (b) Plot when Pv and Pc are equal.

Given the results provided by Theorems 3 and 4, we consider three hard subclasses of
GSensorDCSP, corresponding to kv = 2 and kc ∈ {1,2,3}. Fig. 9(a) shows2 the percentage
of satisfiable instances as a function of Pc and Pv for kv = 2 with kc = 1 and kc = 2. As in
the case of general SensorDCSP (see Fig. 2), when both probabilities are low, the instances
generated are mostly unsatisfiable, while for high probabilities most of the instances are
satisfiable. Both for kc = 1 and kc = 2, the transition between the satisfiable and unsatis-
fiable regions occurs within a narrow range of the density parameters. Observe that, for
kc = 1 this range corresponds to significantly higher values of Pc and Pv , comparatively
to these for kc = 2 and kc = 2. However, the form of the transition for various values of
kc is very similar (see Fig. 9(b)), showing a similar phase transition behavior for various
subclasses of the GSensorDCSP problem with kv = 2.

Consistently with the general SensorDCSP, we observe that the phase transition coin-
cides with the region where the hardest instances occur. For instance, Fig. 10 shows the
mean solution time with respect to the density parameters Pv and Pc for the problem in-
stances with 25 sensors, 5 mobiles, kc = 1, and kv = 2. Somewhat less expected result is
depicted in Fig. 11 for the case of kv = 1 (and kc = 1), which is shown in Theorem 3 to
be polynomial by a reduction to the problem of feasible integral flow in bipartite graphs.
Despite the fact that AWC has no explicit connection with the algorithms for the latter
problem, Fig. 11(b) shows that these instances are practically easy for AWC as well.

For the second experiment with the AWC algorithm, we consider different sets of
instances for several orders of the problem (size of the grid), and several levels of de-
composition (visibility and compatibility restrictness). In particular, we consider grids of
25, 36, 49, 64, 81, and 100 sensors (N = 5,6,7,8,9,10), tracking 5, 7, 9, 12, 15 and 18
mobiles, respectively, giving us an approximately constant ratio between the number of
mobiles and the number of sensors for each case. Note that N = 10 was the largest prob-
lem size we were able to deal with using the CNCL simulator. The restrictness of visibility
and compatibility graphs is kept equal (kc = kv = k), and different sets correspond to k

equal 2, 3, 4, and 5. Each set of problem instances corresponding to a particular pair of

2 The case of kv = 2 and kc = 3 is not depicted in Fig. 9(a) as it is very close to this for kv = 2 and kc = 2
(see Fig. 9(b)).
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Fig. 10. Mean solution time with respect to Pv and Pc for the AWC algorithm on instances with 25 sensors, 5
mobiles, kc = 1 and kv = 2.

(a)

(b)

Fig. 11. (a) Percentage of satisfiable instances and (b) Mean solution time for the AWC algorithm on (polynomial)
instances with 25 sensors, 5 mobiles, kc = 1 and kv = 1.

values (N, k) contains 30 instances. The important point is that all the problem instances,
in all the sets (N, k), have been selected from the corresponding phase transition regions
with respect to the density parameters Pc and Pv , representing the regions of the hardest
problem instances (as it was shown in Figs. 9(a) and 10).3

3 The phase transition regions for every pair (N,k) have been determined in advance.
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Fig. 12. Mean solution time with respect to the order of the problem (size of the grid) for AWC algorithm on
problem instances from the phase transition regions for kc = kv = 2,3,4,5.

The mean solution time for satisfiable instances in this experiment is plotted in Fig. 12
as a function of N , where Figs. 12(a), (b) and (c) depict this graphs in logarithmic scale for
the problem instances with k = 2,3, k = 3,4, and k = 4,5, respectively, while Fig. 12(d)
presents the whole picture in the linear scale. We observe that the problem scalability
with N degrades dramatically as k increases, but it can be considered as reasonable for
k = 2 and k = 3. In order to capture the exponential behavior of AWC on these problems,
Figs. 12(a)–(c) depicts the obtained measures, showing 95% confidence interval of the
samples in logarithmic scale, as well as their corresponding linear regression plots. These
plots have been represented in three different interrelated pictures in order to facilitate a
pair-wise comparison. Two conclusions can be drawn from Fig. 12. First, it is easy to see
that the slopes of the regression lines increase with k. For our set of results, the obtained
slopes are 0.03, 0.202, 0.213 and 0.293 for k = {2,3,4,5}, respectively. Second, the ex-
ponential dependence of the mean solution time on N seems to fit well according to the
experiments. In particular, the obtained mean square error of the regressions is 0.039, 0.04,
0.002 and 0.11 for k equal to 2, 3, 4 and 5, respectively.

7.3. Exploiting solution repairing in dynamic GSensorDCSP

Considering the scalability of the DCSP algorithms on GSensorDCSP, our main concern
was about feasibility of striving to optimality in problems with real-life sensor/mobiles set-
tings, where time deadlines play a crucial role, and the objects being tracked are moving.
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More formally, the task of a tracking system can be specified as a dynamic GSensorD-

CSPproblem Π, which consists of an ordered sequence Π1, . . . ,ΠN of regular (static)
GSensorDCSP problems, that are:

(1) Defined over the same set of sensors Si = {s1, . . . , sm}, and having the same compati-
bility graph,

(2) Possibly differ in their sets of mobile objects and/or visibility graphs, where Ti =
{t i1, . . . , t ini

} is the set of mobiles associated with the problem Πi , and
(3) Each problem instance should be solved within a certain time window.

Attempting to address this problem, we conducted an experiment with 100 sensors that
suppose to track over time a continuously changing set of moving mobiles. The parameters
used in this experiment have been chosen to represent a network of radars controlling some
part of the airspace. As written, we considered a 10 × 10 uniform grid of sensors, with the
distance of 10 miles between any two adjacent sensors, and the tracking area covered by
these sensors is defined by the square of 8100 square miles enclosed by the grid. The
compatibility graph of Π is 4-restricted, and the visibility graphs of all the sub-problems
of Π (see below) are 4-restricted as well (kc = kv = 4).

The mobiles are assumed to move according to some independently chosen linear tra-
jectories, where the velocity of all the mobiles is 2 Mach (1500 miles/hour). Our intention
was to keep a controlled, relatively tight ratio between the number of mobiles and the num-
ber of sensors, thus we strived to keep the (now expected) number of 18 mobiles inside the
grid. On the other hand, we want to model both the mobiles leaving the grid, and the mo-
biles entering the grid, while keeping the movement of the mobiles independent one of
another. To achieve it, we extended the number of mobiles to 36, setting this mobiles to
move in (randomly initialized) linear trajectories inside an area larger than our sensor grid.
The area is modeled by a square of 16200 square miles (twice as big as the square defined
by the grid), and the center of this extended area is exactly the center of the grid. For the
first sub-problem Π1, each mobile is located at a randomly chosen point inside this ex-
tended area, and is annotated with a randomly chosen linear trajectory, that will determine
the position of this mobile in Π2 and so on. If, at some point, a mobile reaches the border of
the extended area, it reflectsfrom the border at a randomly chosen angle, which determines
a new linear trajectory for this mobile. Such modeling of the mobile dynamics provides us
with a continuously changing set of mobiles inside the grid, while the expected size of this
set is known (and is 18 mobiles in our experiment). The time window available to solve
each sub-problem Πi is set to 1.2 seconds, i.e., the minimum time spent by a mobile inside
a cell given a speed of 2 Mach, providing us at least 20 snapshots of a mobile during its
presence in a particular cell.

Fig. 13 depicts the results for two dynamic GSensorDCSP problems Π1 and Π2,
each consists of 100 static GSensorDCSP sub-problems, where the subproblems for Π1

(Figs. 13(a)–(b)) and Π2 (Figs. 13(c)–(d)) were selected from the regions of Psat ≈
0.7(Pc = Pv = 0.47) and Psat ≈ 0.5(Pc = Pv = 0.45), respectively. Recall that Psat ≈ 0.5
corresponds to the region of the hardest instances. The dashed lines in Figs. 13(a), (c)
depict the cumulative probability distributions of solving Πi within a time window of t
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Fig. 13. Dynamics of one problem, located at 70% of satisfiability ratio; (a) show the cumulative probability
distributions for the solution repairing and the naive solving approach; (b) plot time differences to solve between
the two approaches.

seconds. In Π1, all the solvable sub-problems were solved in less than 0.9 seconds, while
in Π2 all except to one sub-problems were solved within the time limit of 1.2 seconds.

Observe that, if no assumptions can be made about the connection between the mobiles
in Ti and Ti+1, there is no particular reason to treat Π differently than just solving its static
sub-problems Π1, . . . ,ΠN one by one independently, using one of the DCSP algorithms.
In what follows, we refer to this approach as to naivesolving of dynamic CS problems,
and the results depicted by the dashed lines in Figs. 13(a), (c) correspond to this straight-
forward approach. However, mobile dynamics are typically far from being chaotic (linear
trajectories in our experiment), i.e., the changes between the subsequent sub-problems are
governed by some clear model of mobile dynamics. For instance, consider a network of
radars controlling some airspace region. In such an application, it is reasonable to assume
that if an aircraft becomes trackable by a sensor, then this aircraft is likely to remain track-
able by this sensor in some near future.

One of our hypotheses was that continuity of mobiles movement can be exploited in
improving the performance of the tracking systems. An approach that a priori seems to be
promising for dealing with such a problem Π = {Π1, . . . ,ΠN } is to initialize the search
for Πi , 1 < i � N , by the solution already achieved for Πi−1 (comparatively to starting
from an random assignment in AWC used in the naive approach). In what follows, we refer
to this approach as to solution repairing. Note that in this approach, nogoods are not kept
and are removed once a solution is obtained, so no additional synchronization is required
between agents.
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The central question is whether the contribution of solution repairing (versus the naive

g

approach) is expected to be significant in real-life settings of both the mobiles dynam-
ics, and the time available to solve each one of the static sub-problems. One experiment
provides a positive evidence to this question: The solid lines in Figs. 13(a)–(c) depict the
cumulative probability distributions of solving Πi within a time window of t seconds using
the solution repairing approach. It is easy to see that solution repairing clearly outperforms
the naive approach, and Figs. 13(b)–(d) illustrate this even better: For each sub-problem
Πi , these graphs plot the difference between the times required to solve Πi using AWC
from scratch and starting from the solution for Pi−1, if this exists (�t). More interestingly,
the results of our experiment show that the relative attractiveness of solution repairin
is higher in the region of harder instances. For instance, using solution repairing, all the
sub-problems of Π2 were solved in less than 0.75 second. The reason could be that small
changes in the problem setting (as the changes between Πi and Πi+1 are expected to be)
usually will not change significantly the placement of the solutions in the search tree. If
so, then adopting solution repairing is likely to initialize the search at a node that is close
to a solution node in the search tree. Likewise, the contribution of this property is likely to
be more significant for sequences of harder problems, i.e., problems that a priori have less
alternative solutions.

8. Conclusions

We introduced SensorDCSP, a benchmark that captures some of the characteristics of
real-world distributed applications that arise in the context of distributed networked sys-
tems. The two control parameters of our SensorDCSP generator, sensor compatibility (Pc)
and sensor visibility (Pv), result in a zero-one phase transition in satisfiability. We tested
two complete DisCSP algorithms, synchronous backtracking (ABT) and asynchronous
weak commitment search (AWC). We show that the phase transition region of Sensor-
DCSP induces an easy-hard-easy profile in the solution time, both for ABT and AWC,
which is consistent with CSPs. We found that AWC performs much better than ABT on
satisfiable instances, but worse on unsatisfiable instances. This differential in performance
is most likely due to the fact that on unsatisfiable instances, the dynamic priority ordering
of AWC slows the completion of the search process.

In order to study the impact of different network traffic conditions on the performance
of the algorithms, we used a discrete-event network simulator. We found that random de-
lays can improve the performance and robustness of AWC. On hard satisfiable instances,
however, the performance of the basic ABT deteriorates dramatically when subject to ran-
dom link delays. However, we developed a decentralized dynamic restart strategy for ABT,
which results in an improvement and shows robustness with respect to the variance in link
delays. Most interestingly, our results also show that the active introduction of message
delays by agents can improve performance and robustness while reducing the overall net-
work load. These results validate our thesis that when considering networking applications
of DisCSP, one cannot afford to neglect the characteristics of the underlying network con-
ditions. The network-level behavior can have an important, algorithm-specific, impact on
solution time.
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In a more focused attempt to study practical applicability of the DisCSP algorithms

for various distributed tracking systems, we introduced and analyzed GSensorDCSP, a
variant of SensorDCSP that induces a spatial structure on the problem constraints. We
performed both analytical analysis of GSensorDCSP and an empirical study of DisCSP al-
gorithms on various instances of this problem. First, we analyzed the performance of AWC
on the tractable subclasses of GSensorDCSP, showing that AWC scales perfectly on such
instances. Next we have tested scalability of AWC on various hard subclasses of GSen-
sorDCSP. While in general GSensorDCSP induces phase-transition in satisfiability with
respect to the density parameters of the problem, we showed that AWC scales nicely on a
wide (a priori hard) subclass of GSensorDCSP. Finally, we analyzed the AWC algorithm
on a sequence of GSensorDCSP problems that represent a system of sensors tracking a set
of moving objects. We discussed some properties of such a dynamic GSensorDCSP, and
showed how these properties could be exploited in the dynamic tracking systems.

We believe that our study makes it clear that DisCSP algorithms are best tested and
validated on benchmarks based on real-world problems, using network simulators. We
hope our benchmark domains will be of use for the further analysis and development of
DisCSP methods.

Appendix A. Proofs

Theorem 3.Any GSensorDCSP problem instance with1-restricted visibility graphV is
solvable in polynomial time.

Proof. Consider such a problem instance Π , where S and T stand for the sets of sensors
and mobiles in Π , respectively. Let cell(ti) denote the cell of the grid in which object ti is
located. First, given that, for every object ti ∈ T , we have V(ti ) ⊆ V1(ti ), we determine the
following disjoint partition of T into T = T ′ ∪ T ′′:

(i) ti ∈ T ′ if and only if can be potentially tracked by any possible (out of four) triplet of
sensors from V1(ti), and

(ii) ti ∈ T ′′ if and only if there exists a pair of sensors in cell(ti ) (= V
1(ti)) that have to be

a part of any solution for ti in Π .

To show feasibility of such a partition, consider a mobile ti ∈ T . If the compatibility graph
restricted to the four sensors in V1(ti) is complete (i.e., all four sensors of cell(ti) can
communicate one with each other), then we have ti ∈ T ′, and this corresponds to locally
complete compatibility of sensors relevant to ti . Alternatively, if the communication be-
tween the sensors in V1(ti) is not complete, then there exist at least one pair of mutually
incompatible sensors s, s′ ∈ V

1(ti). Clearly, these two sensors cannot be simultaneously a
part of a solution for ti . Therefore, two other sensors V1(ti) \ {s, s′} have to be a part of
any solution for ti in Π , if one exists, and thus we have ti ∈ T ′′. Clearly, this partition of T

can be performed in linear time.
Observe that, for each object ti ∈ T ′′, the pair of sensors V1(ti) \ {s, s′} can be pre-

assignedto ti . Now, let S′ ⊆ {s1, . . . , sm} be the set of sensors that were not preassigned to
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the objects in the first stage. First, we construct a directed graph G = (S′ ∪T ,E), such that

there is an edge from a sensor s ∈ S′ to an object t ∈ T if and only if s ∈ V1(t). Likewise,
we add a super-source node s, and for each sensor s ∈ S′ we put an edge from s to s.
Similarly, we add a super-sink node t, and for each object t ∈ T we add an edge from t

to t.
Now we construct a feasible integer flow problem based on this graph. For each edge

(s, s) and for each edge (s, t) we place a lower bound flow of 0 and an upper bound flow of
1. For each edge (t, t), if t ∈ T ′, then we place a lower bound flow of 3 and an upper bound
flow of 3. Otherwise, if t ∈ T ′′, we place a lower bound flow of 1 and an upper bound flow
of 1. It is easy to see that our GSensorDCSP problem Π has a solution if and only if this
directed graph has a feasible flow of 3 · |T ′| + |T ′′|. As feasible-flow problems are known
to be polynomial-time solvable [6], so is this special case of GSensorDCSP. �
Theorem 4.GSensorDCSP with2-restricted visibility isNP-complete.

Proof. The membership in NP is straightforward, since the general SensorDCSP is in NP.
The proof of hardness is by reduction from 3-SAT. Let F be a 3-cnf formula specified
by the clauses {c1, . . . , cm} over the variables {x1, . . . , xn}. An equivalent GSensorDCSP
problem ΠF with 2-restricted visibility and 1-restricted compatibility can be constructed
as follows.

The grid of ΠF is an (4n + 2) × (9m + 3) grid of sensors; in what follows, by the
rows and columns of the grid we refer to the rows and columns of the grid cells, in terms of
which we have an (4n+1)× (9m+2) grid of cells. Except for the first row, the rows of the
grid can be considered in ordered quadruples, where the ith quadruple of rows corresponds
to the variable xi in F . For simplicity of presentation, we denote the rows of the grid as

00,10,11,12,13,20,21,22,23, . . . , n0, n1, n2, n3.

For an illustration, see Fig. A.3. Similarly, the columns of the grid (except for the first and
the last ones), can be considered in ordered nine-tuples

00,10, . . . ,18,20, . . . ,28, . . . ,m0, . . . ,m8, (m + 1)0

where the j th nine-tuple of columns corresponds to the clause cj in F .
Since we construct ΠF with 1-restricted compatibility between the sensors, every triplet

of mutually compatible sensors in ΠF has to lie on the vertexes of a certain grid cell. It is
easy to see that such a triplet of sensors will form a cell-embedded triangle of one of the
four forms:

To illustrate the notation we are using, the cell formed by the row i3 and the column j5
is denoted by (i3, l5), and 〈i3, l5,B〉 denotes the fact that the three sensors forming the
triangle of type B in cell (i3, l5) are mutually compatible.

First, for each variable xi ∈ F , the compatibility of the sensors in rows i0, . . . , i3 is
defined by the following template (for an illustration see Fig. A.1, where triangles depict
the compatible triplets of sensors):
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Fig. A.1. Mobiles, sensors, compatibility and visibility for a variable xi ∈F .

• In rows i0 and i2 we have no compatible triplets of sensors.
• In row i1, for all 1 � l � m, we have 〈i1,00,A〉, 〈i1, l0,B〉, 〈i1, l2,A〉, 〈i1, l3,B〉,

〈i1, l5,A〉, 〈i1, l6,B〉, 〈i1, l8,A〉, and 〈i1, (m + 1)0,B〉.
• In row i3, for all 1 � l � m, we have 〈i3,00,D〉, 〈i3, l0,B〉, 〈i3, l2,A〉, 〈i3, l3,B〉,

〈i3, l5,A〉, 〈i3, l6,B〉, 〈i3, l8,A〉, and 〈i3, (m + 1)0,C〉.

For each variable xi ∈ F , we have 6m + 2 mobiles, located and visible by the sensors
according to the following template (see Fig. A.1, where dashed lines connect between the
mobiles and the compatible triplets of sensors that can track these mobiles):

• The first 3m mobiles are located in row i1, in cells (i1, l1), (i1, l4), (i1, l7), 1 � l � m,
where the mobile in cell (i1, lk), k ∈ {1,4,7}, can be tracked only by the two sensor
triplets 〈i1, lk−1,B〉 and 〈i1, lk+1,A〉.

• The next 3m mobiles are located similarly in row i3, in the cells (i3, l1), (i3, l4), (i3, l7),
1 � l � m, where again the mobile in cell (i3, lk), k ∈ {1,4,7}, can be tracked only by
the two sensor triplets 〈i3, lk−1,B〉 and 〈i3, lk+1,A〉.

• The last two mobiles are located in row i2, in cells (i2,00) and (i2, (m + 1)0). The
mobile in (i2,00) can be tracked only by the two sensor triplets 〈i1,00,A〉 and
〈i3,00,D〉, and the mobile in (i2, (m + 1)0) can be tracked only by the two sensor
triplets 〈i1, (m + 1)0,B〉 and 〈i3, (m + 1)0,C〉.

Observe that the mobiles corresponding to a particular variable xi are “circularly” con-
strained: if all these mobiles are tracked, then either they are all tracked by the white sensor
triangles, or they are all tracked by the shadowed sensor triangles. Intuitively, this construc-
tion will ensure that xi takes the same value with respect to all the clauses in F .

Now we extend both the set of the mobiles, and the compatibility between the sensors
with respect to the clauses of F . For each clause cl = (ui, uj , uk), i < j < k, where each
ut ∈ {xt , xt }, the construction is as follows (see Fig. A.2):

• In the special row 00, we have 〈00, l3,C〉 and 〈00, l5,D〉.
• For each literal ut ∈ cl , let h be 1, 4, or 7, when ut is the first, second and third literal

of cl , respectively. Now, for each literal ut ∈ cl :
◦ For 1 � s � t − 1, we have 〈s1, lh,C〉, 〈s1, lh,D〉, 〈s3, lh,C〉, and 〈s3, lh,D〉.
◦ If ut = xt , then we have 〈t1, lh,D〉. Otherwise, if ut = xt , we have 〈t1, lh,C〉.
◦ For 1 � s � t −1, we have two mobiles located in the cells (s2, lh) and ((s+1)0, lh).

Each one of these two mobiles can be tracked only by all (one or two) compatible
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Fig. A.2. Mobiles, compatible triplets of sensors, and visibility constraints in the construction corresponding to a
clause cl ∈ F . In this case, uk = xk .

triplets of sensors in the cell immediately above it, and by all (one or two) compati-
ble triplets of sensors in the cell immediately below it.

• To accomplish the construction, in row 10 we have three mobiles in cells (10, l2),
(10, l4), and (10, l6). The mobile in cell (10, l2) can be tracked only by the sensor triplet
〈00, l3,C〉, and by all (one or two) compatible triplets of sensors in cell (11, l1). The
mobile in cell (10, l4) can be tracked only the sensor triplets 〈00, l3,C〉 and 〈00, l5,D〉,
and by all (one or two) compatible triplets of sensors in cell (11, l4). Finally, the mobile
in cell (10, l6) only by the sensor triplet 〈00, l5,D〉 and by all (one or two) compatible
triplets of sensors in cell (11, l7).

The construction is clearly polynomial-time since the number of sensors on the grid is
(4n+ 2) × (9m + 3), and the number of mobiles is �(n(6m + 2) + 3m(2n− 1)). Fig. A.3
illustrates the construction on a small example of F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Our claim is that a 3-cnf formula F is satisfiable if and only if there exist a solution to
the corresponding GSensorDCSP ΠF .

(⇒) First we show that if F is satisfiable, then there is a solution for ΠF . Let φ be an
assignment to {x1, . . . , xn} satisfying F . First, for each variable xi , we assign the 6m + 2
mobiles associated with xi (see the first stage of the construction) to be tracked consis-
tently with φ(xi): These mobiles are tracked by the white (shadowed) compatible triplets
of sensors if φ(xi) = true (φ(xi) = false), respectively.

Since φ is a satisfying assignment, let uli ∈ φ be a literal satisfying the clause cl . Con-
sider the vertical sequence of mobiles associated with the literal uli in the column lh (plus
one sensor in the row 10), and, in particular, consider the lowest such mobile. By the con-
struction, this mobile can be tracked by the compatible triplet of sensors in cell ((li)1, lh),
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Fig. A.3. Construction of ΠF for F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

since no sensor in this triplet has been assigned to track mobiles associated with xli . By
the same inductive argument, every sensor in this vertical sequence can be tracked by a
compatible triplet of sensors located immediately belowit. Therefore, the remaining two
mobiles associated with cl in row 10 can be tracked by the sensor triplets 〈00, l3,C〉 and
〈00, l5,D〉. Hence, all the mobiles are assigned to be tracked by pair-wise disjoint, com-
patible triplets of sensors, and thus ΠF is solved.

(⇐) Now we show that if ΠF is solvable, then F is satisfiable. It is easy to see that, if
there exist a solution for ΠF , then, for each clause cl ∈ F , there exist at least one literal
uli ∈ cl , such that the corresponding mobile in the row 10 is tracked by a triplet of compat-
ible sensors located immediately belowit in the column lh. In turn, this entails that all the
mobiles in the corresponding vertical sequence corresponding to the associated with the
literal uli will have to be tracked by the sensor triplets located immediately below them.

Given the set of m literals {u1i , . . . , umi } as above, we claim that the assignment φ =∧m
j=1 uji satisfies F . Since each literal uli satisfies the corresponding clause cl , the only

thing remains to be shown in order to prove the claim is that if uli ∈ φ, then uli /∈ φ.
However, this is apparent from the construction of ΠF , and the choice of uli for cl : Suppose
that uli corresponds to xli = true. In this case, uli will eliminate a shadowed triangle of
sensors in the row (li)1, and uli will eliminate a white triangle from the same row. It is
easy to see that in this case some of the mobiles in the rows (li)1, (li )2, and (li )3 will
remain untracked, which contradicts our assumption that there is a solution for ΠF . �
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