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Abstract—Smart city applications covering a wide area such
as traffic monitoring and pothole detection are gradually
adopting more image machine learning algorithms utilizing
ubiquitous camera sensors. To support such applications, an
edge computing paradigm focuses on processing large amount
of multimedia data at the edge to offload processing cost and
reduce long-distance traffic and latency. However, existing edge
computing approaches rely on pre-trained static models and
are limited in supporting diverse classes of edge devices as well
as learning models to support them. This research proposes
a novel crowd-based learning framework which allows edge
devices with diverse resource capabilities to perform machine
learning towards the realization of image-based smart city ap-
plications. The intelligent retraining algorithm allows sharing
key visual features to achieve a higher accuracy based on the
temporal and geospatial uniqueness. Our evaluation shows the
trade-off between accuracy and the resource constraints of the
edge devices, while the model re-sizing option enables running
machine learning models on edge devices with high flexibility.
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I. INTRODUCTION

Edge computing (EC) paradigm focuses on processing
information close to the data source to reduce long-distance
traffic and latency. Applications in the context of smart cities
are expected to benefit from the EC due to the increased
deployment of smart sensors such as IoT devices [1] and
CCTV cameras [2], [3]. Such deployments provide applica-
tion stakeholders with the ability to recognize objects and
events of interests by processing media content close to
the data source. Besides, the platforms such as MediaQ [4]
provide crowdsourcing of media content, wherein the users
can collect and share media content in a centralized media
repository for creating a geospatial media library [5]–[7] for
smart cities. Crowdsourced image data is typically used to
improve the algorithms that detect potholes [3], graffiti [8],
[9], and traffic flow [10], to name a few. In all these
applications, the edge devices such as smartphones, CCTV,
drones, police cars or Raspberry PIs are equipped with high-
resolution cameras, can capture videos with high frame rate
(ranging from 30FPS to 60FPS). Recent advances in neural
networks along with the processing power of edge devices

have made it possible to run deep learning models locally
on edge device, which provides a great potential to utilize
lots of mobile edge devices in public domain for urban
applications.

However, there exist challenges. Heterogeneous devices
exhibit different capabilities concerning processing power,
memory, communication bandwidth, and battery capacity,
which influences the inference time of machine learning
(ML) algorithms and subsequently the performance of ap-
plications. To demonstrate it, we performed object detection
using identical software developed using YOLO [11] library
on Raspberry Pi, Desktop computer without GPU, and a
server machine with GPU to study the performance of
various classes of platforms. As shown in Table I, an
edge server with GPU outperforms the other platforms,
even though all platforms are capable of performing object
detection. Although the devices are capable of detecting
objects using the given model, the processing time depends
on the resource capacity of the device which may limit the
practical application of the model.

Table I: Object Detection Time on Various Platforms
Platform CPU (GHz) GPU Processing Time (s)
Raspberry Pi 0.6 No 360
PC 1.596 No 29
Low-end server 1.386 Yes 0.2

One fundamental challenge is the uncertainty and hetero-
geneity of participating edge devices. Most of the existing
frameworks train a single model on the server side and then
distribute it to edge devices [11]. This approach works well
in the case when the model owner is well aware of the pro-
cessing and communication capabilities of the participating
edge devices. However, in many cases, the model owner may
not be the edge device owner, which is especially true for
crowd-based and incentive-driven smart city applications [1];
thus the processing power of edge devices is unknown.
Having a single model for a diverse set of edge devices with
different processing capabilities introduces new limitations
because high-end devices can run a more complex version
of the model which potentially can provide more accurate
results, or on the other side of the spectrum, a low-end device
can run a simpler version of the model much faster but with



less accurate results. In addition, edge devices are generating
new multimedia data, which can be used to retrain the model
for fine-tuning the inference accuracy. Existing frameworks
lack appropriate mechanisms to integrate big datasets from
the edge devices themselves into the retraining process for
quality and performance enhancement.

To address the above challenges, we integrate crowdsourc-
ing, ML, and EC in one framework dubbed as “crowd-based
learning framework using edge computing”. The framework
enhances the ML algorithm of interest by utilizing the
crowdsourced data collected by edge devices. One straight-
forward approach for crowd-based learning framework is
to exploit all of the crowdsourced data; however such
mechanism is infeasible in image ML due to network con-
straints, the high computational requirements at the server
and the potential degradation of the accuracy of learning
model1. Consequently, we propose a distributed selection
algorithm that prioritizes the crowdsourced data, transfers
only a selected subset of data, and still efficiently upgrades
the learning model at the server end.

The proposed generic crowd-based learning framework
for EC applications makes the following key contributions:
• An EC framework based on the client-server architec-

ture with built-in support for dispatching ML models
to edge devices based on the resource capacity and the
bandwidth availability.

• Classification, creation, and maintenance of image ML
models for a wide array of edge devices with hetero-
geneous resource and bandwidth capacities.

• Model enhancement algorithm which takes into account
the geospatial and temporal properties of the newly
collected data at edge devices to intelligently decide
when to retrain the model.

II. RELATED WORK

This section reviews the literature and explains how our
approach moves the state-of-the-art efforts in the EC domain.

Balan et al. [12] propose the concept of cyber forag-
ing for resource-constrained mobile platforms. The idea
of cyber foraging refers to the offloading of computation
and storage-heavy tasks to nearest resource-rich servers.
Our approach applies the principles of cyber foraging to
resource-constrained mobile and IoT platforms. Flinn et
al. [13] contribute Spectra for offloading computation based
on the resource availability of the neighboring servers.
Spectra deals with the trade-off among performance, en-
ergy consumption, and the Quality-of-Service requirements.
Unlike Spectra, our work focuses on reducing the band-
width requirement when offloading media streams. Pillai et
al. [14] introduce Sprout, which provides a framework for

1Several factors might cause the degradation of the accuracy of learning
model (e.g., the crowdsourced data might be of low-quality, or the new data
might change the distribution of the training dataset which may generate a
biased learning model).

gesture-driven gaming applications, which parallelizes the
media processing by distributing the computations to nearby
servers with a focus on increasing the throughput while
minimizing the latency. Sprout concentrates on offloading
challenges in a static environment while our work concen-
trates on dynamic applications with evolving processing and
storage requirements.

Iida et al. [15] present GPUrpc, which is a remote
procedure call extension for offloading computation to pow-
erful Graphics Processing Units (GPU). GPUrpc is tested
on wired networks for data mining and image process-
ing application, whereas our approach is in the context
of wireless networks with severe resource constraints. Ra
et al. [16] introduce Odessa, a lightweight run-time for
mobile devices, which offloads computation-intensive tasks
to Internet-connected servers and parallelize the computation
tasks in multi-core processing platforms. Odessa continu-
ously monitors the resource availability of the platform,
and adaptively offload computations and parallelize com-
putations to improve accuracy and responsiveness. Saurez
et al. [17] contribute a programming infrastructure to effi-
ciently off-load computations using APIs while providing
support for dynamically adding or removing computation
platforms in the fog.
EC for IoT: Due to the resource-constrained nature of IoT
platforms, some solutions have been proposed to offload the
computation processes to an edge server [18]–[21]. An of-
floading approach is introduced for environmental monitor-
ing application, in which the computations are transformed
into a lightweight process and offloaded to an edge server
which is close to the data sources [18]. M. Satyanarayanan
et al. [19] highlight increasing use of video cameras in smart
spaces and contribute GigaSight for searching media data at
Internet-scale using cloudlets, which sits between the mobile
phones and cloud, for bandwidth optimization. Renart et
al. [20] propose an edge processing framework for the IoT
that schedules the tasks based on the location of the source
device and the availability of computation resources.
Crowdsourcing, Crowd Learning, and Crowd-based Learn-
ing: Crowdsourcing [22] is the practice of engaging a
“crowd” or group of people for performing a task (e.g.,
translating an article and labeling an image). Due to the
ubiquity of smartphones, crowdsourcing has been extended
to spatial crowdsourcing [23]–[25] which requires work-
ers to be physically present at the location of a task for
performing it (e.g., asking a journalist to record an event
occurring at a certain place). With the increasing commercial
adoption of both crowdsourcing (e.g., Amazon Mechanical
Turk [26]) and spatial crowdsourcing (e.g., TaskRabbit [27])
in the industry, researchers started investigating incentive-
based learning algorithms to maximize the total reward of
workers exploiting the historical activities. This problem is
known as crowd learning [28], [29]. In this paper, we focus
on integrating crowdsourcing, ML, and EC seamlessly. In



Figure 1: The Design of the Proposed Framework

particular, crowd-based learning refers to the mechanism of
evolving a supervised ML algorithm (e.g., a learning model
for classification or object detection) by exploiting the power
of crowdsourced data (i.e., data collected by a crowd) and
the crowd feedback.

III. PROPOSED FRAMEWORK

Figure 1 presents our proposed framework in two layers:
1) the devices at the edge (denoted as Edge Devices) and
2) the edge device server (denoted as ED-Server). The com-
munication between the edge server and the edge device is
realized through conventional technologies such as cellular,
WiFi, DSRC, and LPWAN.

A. Edge Devices

An edge device is capable of collecting media content
from a camera, pre-processing the data, performing local
inference using a ML model provided by the edge server,
extracting visual features vectors (VFVs) and metadata
based on the policy set by the edge server, labeling, and
transmitting the metadata and the VFVs to the ED-Server.
In the framework, an edge device joins the framework
and downloads a suitable model based on its resource
capacity and the accuracy goals from the edge server. The
central edge server maintains a list of models capable of
running on a wide variety of edge devices. Conventional
approaches use a pre-trained model and do not continuously
upgrade the model for accuracy and performance because
of the bandwidth and energy requirements associated with
the transmission of the entire media content to the edge

server for enhancing the accuracy of the model. Example
applications in the context of smart cities we are currently
working with the City of Los Angeles include: the detection
of waste dumped objects [2], graffiti [8], road damages and
potholes [3], traffic flow [10], and natural disasters [30].
Users and devices participating in reporting the presence of
graffiti, potholes, and garbage on streets have been relying on
a static model provided by the edge server. To increase the
detection accuracy and the resource efficiency, we introduce
a feature detection algorithm on the edge devices, which
detects the key features relevant for the application and
sends it to the edge server for reinforcement learning to
continuously improve the accuracy of models. Note that the
devices reporting the presence of graffiti, pothole or garbage
currently do not send the entire media content due to the
bandwidth limitation and energy consumption, which means
the models are not dynamically trained using the real-world
data generated by the application. The core components of
an edge devices are discussed below:

1) Model download module: This module communicates
the device capability and user constraints with the edge
server and downloads an ML model that can operate within
the resource capacity of the device. Each device, when
running the crowd-based learning framework, maintains a
resource profile which is used to identify the suitable model
for the edge device. The user or the owner of the edge
device may configure the edge device to determine the
resource allocation for the crowd-based learning framework.
For example, the user constraints may include the maximum
memory space a model can consume, the maximum time to
run an inference, the energy budget per inference, etc.

2) Video frame extraction module: This module is re-
sponsible for capturing video content and convert it into a
series of keyframes [31]. Extracted frames can be fed into
the inference module to identify desired objects or classes.

3) Visual feature extraction module: During phase one of
the inference, the module resizes the raw image to the trained
input resolution and feeds the resized image to the trained
model which uses the layer just before the final output layer
(that actually does classification) to extract VFV values.

4) Inference module: During phase two of the inference,
the VFVs extracted in the previous step, are fed into the
inference module, which uses the last layer of the trained
model to identify the desired object or feature.

5) Inference quality control module: This module decides
whether to submit the inference results and the extracted
VFVs to the edge server. The decision is enforced by
the policy module which dictates when data need to be
transmitted to the server. For example, a quality control
policy can specify that only the inference results that are
above a certain threshold are reported to the edge server
and/or the feature vectors of the images captured in a
particular location or time can be uploaded. Such a policy
allows the edge device to preserve bandwidth and energy



consumption, while the server is able to control the quality
and semantic importance of the crowdsourced results.

6) Policy module: The policy module maintains the de-
sired policies set by the ED-Server based on the resource
capacity. This module ensures that the results generated
by edge devices are of high quality, as the reporting of
sub-optimal results may result in bandwidth wastage while
adding little or no value to the overall application. In
addition, the policies provide the flexibility to the server to
orchestrate the selection of quality, volume, and priority of
the extracted VFVs. For example, the policy can allow some
devices to prioritize sending their data based on image lo-
cation, time, utility (e.g., can retrain two classification tasks
with the same image) or semantic (e.g., underrepresented
labels). Besides, a policy can specify which features to send
based on their size: low, medium, high-resolution image or
size of the feature vectors.

B. ED-Server

The ED-server is a central repository consisting of a
set of ML models and an algorithm to create models.
Media content from various online sources can be used to
generate a (static) model for the edge devices. Typically,
the edge server maintains a generic model for processing
media content. In our framework, we introduce a closed
loop training system to fine-tune the models using real-
world data on the edge server for a wide class of edge
devices. An edge device that joins the application network
requests the edge server to provide a model for a particular
application by announcing its location and the resource
capacity. Based on the information received from the edge
device, the server dispatches a suitable model. Whenever
the edge device captures media content, a feature extraction
algorithm is executed to collect relevant features. Instead
of transmitting the entire media content over a resource-
constrained network, our framework extracts the key features
necessary to improve the accuracy of the model and send
it to the edge server only when they satisfy the rule set
by the edge server’s policy configuration module. Through
continuous feedback, our edge server maintains a set of
models with different resource requirements and accuracy
levels to support a wide array of edge devices with varying
resource capacities and inference quality.

1) Model distribution module: This module processes
the metadata provided by an edge device when it joins
the crowd-based learning framework. Based on the resource
capacities and the additional constraints enforced by the user,
the model distribution module dispatches a suitable model
and associated policy configuration to the edge device.

2) Training module: This module is responsible for cre-
ating models by using existing datasets. A set of labeled
images or video frames are fed to one of the convolutional
neural network (CNN) architectures (e.g., Caffe [32], Ten-
sorFlow [33]), to train an initial model. Our implementation

used TensorFlow for the extraction of VFVs and training.
3) Database: The ED-Server maintains a database as the

storage layer for trained models, model metadata, classes
of edge devices, VFVs, inference results and other ED and
model metadata.

4) Retrain module: This module determines when to
initiate retraining. The VFVs collected from edge devices
are fed to the retrain module to determine the uniqueness
of the data. When the newly submitted VFV is unique, it is
added to the dataset for retraining. This module ensures that
the models maintained for each type of edge devices are of
high quality by continuously upgrading the models through
the labeled data submitted by edge devices.

5) Model metadata: Along with a trained model, its
model metadata is exported and stored. Model metadata
contains valuable information that is used to distribute or
retrain the model. For example, a spatial − coverage field
is used to prioritize VFV collection from under-represented
locations (more details in Section IV-B), a labels’ counts
field to collect under-represented classes, the FLOPS field
can provide insight about the model complexity and a rough
estimate of an inference time.

IV. CROWD-BASED LEARNING

Our framework uses an available set of images (referenced
as Di) for training an initial model (referenced as M)
to be distributed to all edge devices. Subsequently, edge
devices perform two tasks: collecting new images (a.k.a.
crowdsourced images) (referenced as Dc) and analyzing the
content of each image (i.e., d ∈ Dc) using the equipped
modelM to predict a label describing the image. Over time,
the edge devices can aggregate a large amount of images
(Dc) that can be used to evolve M and create a better
model (referenced as M′). One straightforward approach is
to use all of the new images Dc for obtainingM′. However,
this approach may suffer from multiple challenges: 1) high
network bandwidth requirement to transmit the whole Dc,
2) potential degradation of model accuracy (e.g., due to
including bad quality images), and 3) long computational
processing time required for creating M′ using Di + Dc

at the edge server. Subsequently, our framework aims at
selecting a subset of Dc (referenced as D′c) (i.e., D′c ⊆ Dc)
that can be used to evolve M to an efficient M′. Towards
this, there are two paradigms: centralized (i.e., the selection
process is performed on the edge server) and decentralized
(i.e., the selection process is performed on the edge devices).
We focus on the decentralized paradigm which utilizes the
model metadata for selecting appropriate images which can
potentially enhance the model. In what follows, we investi-
gate several metrics that affect the selection procedure.

A. Image Quality

Since the framework includes heterogeneous types of edge
devices (i.e., equipped with various types of cameras), the



quality of the captured images vary. The quality of an image
can be characterized by different specifications including
illumination and image resolution. In particular, an extreme
illumination potentially affects the model negatively. On the
one hand, a very high illumination on an image blurs the
image, while a very low illumination makes the image vague
and black. Thus, both cases make the image content unclear
and harden visual perception. Hence, edge devices can
discard the images with such very high or low illumination.
On the other hand, image resolution also potentially affects
the model efficiency. Since the model metadata contains the
image resolution of Di, each image available at an edge
devise needs to be processed to get a resolution similar to
the one in the model metadata.

B. Image Metadata

Edge devices typically contain GPS receiver and digital
compass to estimate the geospatial location of a captured
image. Therefore, the images are automatically tagged with
spatiotemporal metadata (i.e., location, viewing direction,
and time). Such metadata effectively enable the framework
to select a subset of images to expand the spatial and
temporal coverage of Di. Since the model metadata include
information about both the spatial and temporal coverage of
Di, the edge devices can identify the images of Dc that are
tagged with locations or timestamps not covered by Di.

At the edge server, the spatial coverage of Di can be
calculated using the Grid index structure. In particular, the
global area of Di can be divided into grid cells. Thereafter,
the coverage of each cell is represented either by a Boolean
or percentage value. The Boolean value indicates whether
the cell contains at least one image while the percentage
represents how much area is visually covered by the images
contained in that cell2. Similarly, the edge server can also
measure the temporal coverage of Di. Thereafter, the server
augments both the temporal and spatial coverage in the
model metadata. Subsequently, the edges use the spatial and
temporal coverage of Di to prioritize the images that are
excluded by the temporal and spatial coverage of Di.

C. Image Label

Using M, an edge device can predict a label to describe
the content of each image d ∈ Dc. The label is also
associated with a confidence score indicating the prediction
certainty by the model. The user can provide a feedback on
the predicted label and in such cases, the user’s feedback
will be used alternatively if the edge devices are operated
by human (e.g., smartphones). The image label feedback
is used in selecting D′c to enhance M. Since the model
metadata, which is stored at each edge, includes the image

2The spatial coverage of a cell for Di can be measured using a spatial
coverage model [34] that utilizes various image metadata such as geo-
location, viewing direction, and spatial extent (referred to as image field of
view [35] or scene location [36]).

distribution of Di among the various labels, the edge can
select a subset of Dc that is associated with labels that are
less-available in Di. Furthermore, the edge may choose only
“certainly labeled” images (i.e., minimizing the noise in the
newly created model) by discarding the images associate
with low-confidence scores.

Edge devices may contain multiple trained models for
various smart-city applications. In this case, after evaluating
the above metrics for Dc, the image subset which is qualified
is prioritized based on the metrics of multiple models.

V. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness of our proposed frame-
work we used a real-world dataset: a labeled collection
of Los Angeles County street images. We investigated an
approach for the automation of street scene classification
based on their cleanliness level using real geo-tagged images
from the Los Angeles Sanitation Department (LASAN).
Each image has geotagged metadata, i.e., the location where
the image was taken is known. The dataset contains 42,331
images with five distinct labels: 14,495 bulky items, 7,120
illegal dumping, 7,007 encampment, 6,982 overgrown veg-
etation, and 6,727 clean3. We denote the Street Cleanliness
dataset as DSC , which represents an unbalanced real-world
data in our experiments. Note that the unbalanced dataset
may generate a biased learning model.

In addition, we included the Caltech 256 [37] dataset,
denoted as DCAL256, which contains 256 labels, 30,608
images in total, with a minimum of 80 images per label and
119 on average. DCAL256 represents a well-defined dataset
for retraining in our experiments.

In our experiments, we trained models to classify prede-
fined objects/classes in images. To save computing power
in terms of GPU-hours, instead of training new models
from scratch, we used transfer learning. More specifically,
we extract the VFVs from powerful models pre-trained on
ImageNet dataset and train a softmax layer on top. We used
three pre-trained models to compare our results: Inception
V3 [38], MobileNet V1 [39], and V2 [40]. Although Incep-
tion V3 is not designed for mobile and embedded devices,
we include it in our experiments for comparison.

B. Model Retraining

Nowadays, a large amount of imagery information is cap-
tured in a continuous and streaming fashion. Once a model
is trained, it must be adapted to capture changes over time.
To better illustrate the importance of retraining consider
the following example: Smart city deployments starting to
use video streams captured by sanitary trucks [41] to train
models in order to automate the prioritization of street

3The Dataset and Classification for Identifying the Level of Street
Cleanliness is adopted from [2].



Figure 2: Accuracy for DSC and DCAL256 Dataset for Various Models

cleaning based on the cleanliness level of the streets. The
model predicts five classes: clean, bulky items, encampment,
overgrown vegetation, and illegal dumping [2]. The city
plans to release the model as part of a mobile application to
the public to collect more data for improving the efficiency of
their cleaning process. Sanitary trucks are typically driven
around the city during specific working hours of the day.
In addition, parts of the city may not be covered because
some trucks lack video cameras. In such a scenario, if the
model is fed with new data obtained by the public, that
differs significantly from the data used for training, (e.g.,
obtained by different viewing angle, during different hours
of the day, etc.), the model could be made more robust
through retraining. In the following experiments, we retrain
our models from scratch. Unless otherwise noted, we use
the initial training dataset Di along with the new dataset
obtained by edge devices D′c, as the new training dataset
(i.e., D = Di

⋃
D′c).

1) Width Multiplier and Resolution vs. Accuracy: Mo-
bileNets allow tuning width multiplier α and input resolution
ρ hyper parameters which in turn control the model size
and complexity. Here, the role of width multiplier is to
thin the network connectivity uniformly at each layer in the
underlying neural network. Specifically, the input channels
M and output channels N at a given layer, become αM
and αN , respectively. This, in effect, reduces the number
of parameters and computational cost by roughly α2. The
input resolution hyper parameter ρ is applied to the input
image of the CNN and the internal representation at each
layer, reducing computational cost by roughly ρ2 [39]. For
Mobilenet V1, we varied the width multiplier α ∈ (100%,
75%, 50%, 25%) and input resolution ρ ∈ (224, 192, 160,
128). Similarly, for Mobilenet V2, we varied the width
multiplier α ∈ (140%, 130%, 100%, 75%, 50%, 35%) and

Figure 3: Model Size vs. Accuracy for DSC and DCAL256

Datasets for Various Models

input resolution ρ ∈ (224, 192, 160, 128, 96). Inception V3
has a fixed input resolution of 299.

Figure 2 plots the test accuracy (y-axis) for DSC and
DCAL256 datasets on 10% of stratified images, after training
using 5-fold cross validation on the different models (x-
axis). The results showed that the accuracy highly depends
on width multiplier α and input resolution ρ. A given model
flavor may not be suitable for an arbitrary edge device as
some models may require more resources for inferencing,
demonstrating a clear trade-off between model complexity,
accuracy, and the resource capacity of the edge devices.
For example, the DSC had the best accuracy of 77.08%
when trained on MobileNet V2, α = 1.4, ρ = 224, and
the worst accuracy of 65.32% when trained on MobileNet
V1, α = 0.25, ρ = 128. Although most users strive for the
most accurate model, the resource constraints of an edge
device might render them impracticable. In such cases, an
alternative model such as MobileNet V1, α = 0.5, ρ = 128,
can be chosen, which is less accurate (70.07%) but less
computationally demanding. In addition, each model config-
uration affects the DCAL256 and DSC datasets differently.
For example, MobileNet V1, α = 0.5, the DCAL256 dataset
degraded the accuracy significantly compared to its best case
(i.e., a 37% decrease on average), whereas the DSC dataset
was less affected for the same configuration (i.e., a 12.5%
decrease on average).

2) Model Size vs. Accuracy: Figure 3 plots the accuracy
compared to the model disk size4 (storage space on device).
A more complex model (with a higher width multiplier)
resulted in a larger model size and a higher inference
accuracy. Although disk space might not be a concern (most
devices have plenty of available disk capacity), large neural
network models have larger memory footprint, require more
time to persist in and out of an edge device’s memory and
demand more bandwidth for model distribution. Hence, it
is often desirable to keep the model as small as possible,
while not sacrificing much accuracy. As shown in Figure 3,
the DSC trained on MobileNet V1, α = 1 achieved 76.5%
accuracy with a model that requires 13MB disk space.
MobileNet V1, α = 0.25 achieved the accuracy of 69.14%

4The input resolution α does not affect the model disk space. Hence we
omit it from the graph for brevity. Here, the accuracy corresponds to the
highest image resolution (i.e., 224 for MobileNets and 299 for Inception
V3).



Figure 4: Inference Time vs. Model for DSC Dataset

with 860KB, a 9.6% accuracy loss for 93% disk space
reduction. Also in some cases, the size does not increase the
accuracy. For example, despite that Inception V3 generated
the largest models of 89MB and 87MB for DCAL256 and
DSC , respectively, their accuracy is lower than the best
of MobileNets. Hence, a model distribution middleware is
particularly important to dispatch the right model based on
the resource capacity of the devices.

3) Inference Time vs. Model: After generating models for
DSC and DCAL256 datasets, we measured the average time
to perform an inference on various edge devices which have
different resource capacities. The results for DSC5 are shown
in Figure 4. We ran each model on 50 random inputs and
plotted the mean inference time in milliseconds and loga-
rithmic scale, required to perform each prediction. Raspberry
Pi had limited resources compared to desktop class devices,
requiring thousands of milliseconds inference time, and on
average it was 1.5x order of magnitude slower compared
to desktop class devices. The desktop class devices were
capable of processing the VFVs faster (tens of milliseconds
in most cases) for models with various complexities and
image sizes. Our framework dispatches the suitable model,
with prior knowledge of resource capacities of edge devices
and their performance capabilities, which not only accounts
for the resource consumption but also aims to achieve the
best result possible within the available resource budget.

4) Feature Size vs. Accuracy: A large number of edge
devices run on battery and extending their lifetime is crucial
to ensure longevity and to reduce maintenance cost. In our
framework, we categorize power consumption in two main
categories: 1) CPU/GPU processing and 2) data transmis-
sion. The former includes the power consumed, for example,
to capture an image, load a model, extract VFVs and infer
the class of the images, whereas the latter includes the power
consumed to download the model, send the raw image or
VFVs and inference results to the ED-Server through a
communication channel (WiFi, Bluetooth, etc).

Uploading only VFVs instead of raw images from edge
devices to the server is crucial in saving bandwidth and
battery power. Besides, a crowd-based learning mechanism
to submit VFVs is an essential part of the model retraining
module. Figure 5 plots the average size in KB (left y-axis),

5Similar trends were observed for DCAL256 dataset so it was omitted.

Figure 5: Average Feature Size vs. Accuracy for DSC

of the extracted VFVs and their corresponding accuracy
(right y-axis). For example, the average size of the VFV for
MobileNet V1, α = 1, ρ = 224 was around 10KB. Usually,
the larger the size of the VFVs, the higher the accuracy,
because they carry a more detailed summary of the image.

To make our analysis simpler and widely applicable,
instead of limiting the power consumption which is device-
specific, we impose limitations on the total consumed band-
width capacity which is more generic, and investigate how
the bandwidth limitation affects the accuracy of the model.

Figures 6a and 6b depict the trade-off between band-
width and accuracy for four different models. For each
dataset DCAL256 and DSC , we first split each to 10% test
(DCAL256test and DSCtest , respectively) and 10% train strat-
ified subsets (DCAL256

i and DSC
i , respectively). Then, ac-

cording to the total bandwidth limitation, the train dataset are
augmented to include labeled VFVs uploaded from edge de-
vices (i.e., DCAL256

i

⋃
DCAL256′

c and DSC
i

⋃
DSC′

c , respec-
tively). For a given available upload size, the device can send
more or less VFVs for a given model, depending on their
size. For example, with 0MB available bandwidth capacity,
no VFVs are sent and all models are trained on the 10%
initial training dataset. For 5MB, the training dataset for the
models mobilenet v1 100 128, mobilenet v1 100 160,
mobilenet v1 100 192, mobilenet v1 100 224 are aug-
mented with 588, 550, 524, 505 new VFVs respectively, for
25MB, they are augmented with 2939, 2756, 2626, 2529 new
VFVs and so on. We ensure that at the maximum bandwidth
capacity, all models receive the 100% of dataset’s VFVs, that
is DCAL256′

c = DCAL256
c and DSC′

c = DSC
c .

Figure 6a and 6b shows how the accuracy is affected by
different bandwidth capacities. The accuracy of the model
improved with the increase in VFV set, but it came at the
cost of high bandwidth. Figure 6a and 6b shows that the
devices with the higher bandwidth can send more VFVs to
the edge devices for retraining the model to enhance accu-
racy. This is more apparent for the DCAL256 dataset which
includes 256 labels and requires more VFVs to classify the
test images correctly. Interestingly, at 125MB, the accuracy
of less complex models is higher. This is because the server
can receive a larger number of VFVs, which although they
contain a more compact summary, can help to distinguish the
labels more accurately. The accuracy of the model settled at
bandwidth above 25MB to a steady state since the size of the



(a) Bandwidth vs. Accuracy on
DCAL256 Dataset

(b) Bandwidth vs. Accuracy on
DSC Dataset

Figure 6: Bandwidth vs. Accuracy

VFV set did not influence the accuracy when the edge device
sent 125MB worth of VFVs for retraining. Consequently,
the retraining and model dispatching channel decisions for
the edge devices should be taken based on the bandwidth
capacity and the number of labels in the dataset. In summary,
our server maintains a set of models which are suitable for
devices with various bandwidth capacities. When the edge
device operating in a given bandwidth capacity submits a
VFV to the server, the server uses the received VFV set to
enhance the model by initiating the retraining sequence.
Our approach is therefore capable of not only performing
inference on resource-constrained devices such as Raspberry
Pi and medium-end smartphones but also provides the ability
to enhance the models for devices with limited bandwidth.
In some cases, an edge device may have processing capacity
but limited bandwidth. Such scenarios require models that
are targeted for bandwidth-constrained devices rather then
processing-constrained devices.

5) Location based retraining: ML models deployed on
edge devices for Smart City applications should have the
flexibility to evolve and adapt the model to account for newly
fed data. Due to the dynamic nature of the environment,
and the vast amount of images and videos captured by edge
devices, a VFV selection mechanism should be deployed
which will orchestrate the feature acquisition process. One
such feature selection mechanism is based on the location
where the visual data were captured. The policies enforced
by the ED-Server orchestrator on the edge devices prioritize
the collection of VFVs at under-represented locations to
capture unique information. Intuitively, the infrastructure
and landscape vary significantly in different parts of the
city, resulting in images with different backgrounds, unique
architectural styles, and VFVs.

In our experiment, we used the DSC dataset to highlight
the importance of location-based retraining. We analyzed the
location metadata of DSC and removed all images the fall
within the Downtown Los Angeles (DTLA) area (referred
as DSC

DTLA). The architecture of DTLA is significantly
different compared to other locations in Los Angeles. The
dataset DSC

DTLA is then split to 50%-50% stratified train
DSCtrain

DTLA and test DSCtest

DTLA datasets. Subsequently, we trained
two models: a model M1 on the dataset which does not
include images from DTLA at all, i.e., DSC \DSC

DTLA and a
model M2 that includes the train dataset from DTLA, i.e.,
DSC \ DSCtest

DTLA. After training, both models were tested on

Figure 7: Location-based Feature Selection (M1 is trained
on DSC \DSC

DTLA, while M2 is trained on DSC \DSCtest

DTLA)

the unseen dataset SCtest
DTLA. Our results depicted in Fig-

ure 7 show that under-represented regions (such as DTLA)
significantly affect the accuracy for all variations of M1;
sometimes there is more than 15% drop in accuracy, while
M2 is more robust, with no significant drop. Although we
do not include experiments for time-based image selection,
we expect that the temporal information of collected images
is symmetrically important. Hence, smart city crowd-based
learning applications should not only collect image data,
but also enrich the collected datasets with location and time
information, to enable spatiotemporal VFV selection.

VI. CONCLUSION

This paper presented a crowd-based learning framework,
which combines the principles of EC with ML to enable het-
erogeneous edge devices to participate in and contribute to
smart city applications. The proposed framework dispatches
the ML model to the edge device based on its resource
capacity. Furthermore, the proposed intelligent retraining
algorithm enables the edge device to share new information
back to the edge server to enhance the model by assessing
the novelty of the data, by assessing the uniqueness of the
geospatial and temporal information at the edge device. To
the best of our knowledge, the crowd-based learning frame-
work presented in this paper is the first with built-in support
for heterogeneous edge devices and model retraining based
on uniqueness. Results show the trade-off between inference
accuracy and the resource constraints of the edge devices.
By reducing the model complexity, the inference accuracy
and performance varies, which shows that the models can
be tuned to support wide classes of edge devices. As part
of future work, we plan to focus on a) testing the proposed
crowd-based learning framework in real-world application
scenarios in the City of Los Angeles, b) expanding the model
repository with support for more classes of edge devices,
and c) integrating this solution in our visionary framework
(Translational Visual Data Platform, TVDP [42]) for smart
cities.
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