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Abstract—From a theoretical standpoint, backpressure-based
techniques present elegant cross-layer rate control solutions that
use only local queue information. It is only recently that attempts
are being made to design real world wireless protocols using these
techniques. To aid this effort, we undertake a comprehensive
experimental evaluation of backpressure mechanisms for multi-
hop wireless networks, in particular the first such study in
the context of wireless sensor networks. Our evaluation yields
two key insights into the design of such protocols. First, for
wireless sensor networks, we show that a simple backpressure
scheduling policy which allows nodes to transmit so long as they
have a positive queue differential (irrespective of its size) gives
performance comparable to more sophisticated heuristics. This
result implies that, contrary to previous proposals, backpressure
protocols can be implemented for wireless sensor networks
without modifying the underlying CSMA MAC. Second, we
show that the performance of backpressure based protocols is
highly sensitive to a parameter setting that depends upon current
traffic conditions. Therefore, practical backpressure protocols
must provide for automatic parameter adaptation.

I. I NTRODUCTION

The use of stochastic optimization techniques have resulted
in backpressure based rate control mechanisms for wireless
networks that show great promise ([14], [19], [22], [24]).
At the core of these backpressure based algorithms is the
scheduling policy proposed by Tassiulas [21] that resolves
contention between nodes by scheduling the node with largest
product of queue differential (between a node and its parent)
and transmission rate. For a TDMA system, this scheduling
policy is known to be throughput optimal [21]. As a result of
this scheduling policy, the queues at a node are an indication
of the congestion caused by flows originating at that node, as
well as the path quality to the destination.

The techniques for designing rate control mechanisms over
a backpressure scheduling policy were first introduced by
Stolyar [20] and Neelyet al [11], under the assumption of
a TDMA system. Using these analytical techniques, it is
possible to design flow controllers and routing modules that
determine achievable flow rates and make next hop forwarding
decisions. These modules use local queue sizes and one-
hop queue differentials to optimize a specific concave rate
based utility function. Cross layer solutions presented bythese
techniques had been restricted to the realm of theory because
the backpressure scheduling policy is NP-hard. It is only
recently that attempts ([14], [22]) have been made to use

these techniques to design backpressure based protocols for
widely prevalent CSMA-based wireless networks, employing
sub-optimal heuristics.

Although existing proposals ([14], [22]) highlight the poten-
tial of using backpressure based techniques, we believe there
are two key questions that are not addressed by these propos-
als. First, the optimality of the backpressure scheduling policy,
proposed by Tassiulas [21], was proven under the assumption
of a maximummatch schedule. Since CSMA attempts to
achieve amaximalmatch schedule, the value of complicated
heuristics that approximate optimal backpressure scheduling
over CSMA is unclear. Second, backpressure protocols rely on
a single parameter to present a tradeoff between queue size and
performance [22]. For these protocols, performance improves
lograthimically with increase in queue size [11]. Given finite
queues, and drastic reduction in per flow rate with increase in
number of flows, it remains unclear whether good performance
can be achieved under fixed parameter settings for dynamic
traffic scenarios.

We present in this work a comprehensive experimental
evaluation of backpressure based rate control protocols, the
first-ever for wireless sensor networks. Our contributionsin
this work are two-fold: first, by performing a comparative
evaluation of different heuristics for backpressure scheduling
over a CSMA MAC, we show that in a sensor network setting
a simple scheduling policy that allows node transmissions,
when nodes have positive differential, performs as well as
some of the proposed heuristics ([22], [24]) that prioritize
node transmissions by modifying window sizes based on
queue differentials. The key implication of this finding is
that, in sensor networks, no modifications to the MAC are
required in order to implement backpressure based protocols.
Second, through a comparative evaluation of backpressure
protocols against protocols optimized for wireless networks,
we demonstrate that there exists no single parameter value
that can guarantee optimal performance to backpressure based
rate control protocols for a given topology. Further, we show
that the optimal parameter setting is a function of the number
of flows active in the network, and automatic parameter adap-
tation is therefore required for backpressure based protocols
to perform well in a dynamic flow scenario.

Although we believe these questions are relevant in the con-
text of any multi-hop CSMA based wireless network, our work
is carried out in a low rate wireless sensor network setting.Our
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motivations for choosing sensor networks as a platform are as
follows. The heuristics rely on modifying CSMA window sizes
in an attempt to approximate backpressure scheduling over a
CSMA MAC. In sensor networks since packet sizes are quite
small (∼ 40 bytes), the transmission time is usually smaller
than the contention window size (e.g., for TinyOS-2.x CSMA
the packet transmission time for 40 byte packet over 250
kbps radio is 1.5 ms, while the contention window is usually
2.5 ms). Since multiple transmissions can take place withina
single window size, increasing window size (as these heuristics
do) might result in unnecessary loss of throughput, making
the first question particularly relevant in this setting. Further,
since sensor networks have allowed for clean slate design of
protocols, there already exist rate control protocols in WSN
that have been optimized for a multi-hop wireless network
(IFRC [15]). The WSN setting therefore presents us with a
good evaluation benchmark for answering questions regarding
parametric dependence of backpressure protocol performance.

The paper is organized as follows; in section II, we present
our related work. In section III, we present a software ar-
chitecture that captures the general design of a backpressure
based rate control stack. In section IV, we present the im-
plementation details of heuristics that have been proposedfor
implementing backpressure scheduling over a CSMA stack.
In section V, we present a comparative empirical evaluation,
of the different heuristics that can be used for implementing
backpressure scheduling in a CSMA based wireless network.
In section VI, we present an evaluation of the backpressure
based rate control protocols against IFRC [15] in order to un-
derstand the parameter dependence of backpressure protocols.
In section VII, we present a summary of our results and future
directions for this work.

II. RELATED WORK

Tassiulaset al. [21] used Lyapunov Drift techniques to
demonstrate the existence of a backpressure scheduling pol-
icy whose network capacity region is a superset of the
capacity region for all alternative scheduling policies. Their
work assumes TDMA synchronized operation, with a cen-
tralized scheduler. Two independent branches of analysis
have emerged, which have justified and extended backpres-
sure algorithms, since the work presented by Tassiulaset
al [21]. Neely et al ([9], [10], [11]) built on the Lyapunov
Drift framework and extended it to support joint utility and
throughput optimization. These works introduceV , a constant
which prioritizes the utility optimization over queue backlog
minimization. The resulting algorithm approaches the optimal
utility logarithmically with increasingV , while the bound on
system queue backlog grows linearly with increasingV .

A second analytical approach has been developed by
Alexander Stolyar [20]. He leveraged the primal-dual gradient
descent techniques in defining the Greedy Primal-Dual Al-
gorithm (GPD). Interests in primal-dual algorithms for con-
gestion control and flow scheduling were initially sparked by
Kelly, Maulloo and Tan [7]. Within the analytical framework
proposed by Stolyar,β > 0 is a small constant parameter
which tunes the utility optimization. Asβ → 0 the system
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Fig. 1. The software architecture for a backpressure based rate control stack.

performs arbitrarily close to utility optimal, at a cost of
increased queue sizes.

In an attempt to implement backpressure scheduling on
CSMA wireless networks, Warrieret al [24] and Umut et
al. [22] propose schemes which try to achieve probabilistic pri-
oritization of the node transmissions by modulating the MAC
contention window size based on a nodes’ queue differential
with its parent. Umutet al. [22] also proposes design of flow
controllers on top of these schedulers based on the technique
proposed by Stolyar [20]. The work by Bozidaret al [14]
develops a multipath routing and rate control protocol, that
can be integrated with TCP over 802.11, using backpressure
techniques. They use a naive backpressure scheduler that allow
transmissions as long as the queue differential is greater than
a threshold. A drawback of all these proposals is that it is
unclear which backpressure scheduler heuristic should be used
to give the best performance in a given setting. Further, since
these works target 802.11 networks, their comparison is with
TCP which is known to perform poorly over wireless [2]. We
believe this lack of evaluation with protocols that have been
optimized over wireless, hides the parametric dependence of
backpressure protocol performance.

In the context of wireless sensor networks, Sridharanet
al [19] have designed flow controllers for a CSMA based
sensor network, using the framework proposed by Neelyet
al. [11]. In terms of rate control, there have been several
proposals in wireless sensor networks ([4], [6], [12], [15], [17],
[18], [23], [25]). Most of these protocols have assumed a clean
slate design and follow a router centric, explicit congestion
notification approach. Of these protocols, IFRC [15] and
WRCP [18] are distributed protocols that attempt to achieve
lexicographic max-min fairness in conjunction with congestion
control. We choose IFRC [15] as a benchmark to demonstrate
that backpressure protocol performance is dependant on pa-
rameter settings.

III. B ACKPRESSURE BASED RATE CONTROL STACK

We start our investigation by presenting a software architec-
ture, shown in figure 1, that captures the design of a generic
backpressure based rate control stack. For tractability, we
restrict our investigation specifically to a fixed collection tree,
implying that there exists a single destination in the network to
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which all sources are routing their data. Although the results
presented here are specific to a collection tree, we present
logical arguments in section VII to show that they apply to a
general setting.

A backpressure based rate control algorithm has two parts:
a flow controller and a backpressure based scheduler. The
functionality of the flow controller is implemented as part
of the “Leaky Bucket” and “Flow Controller” blocks in
figure 1. The flow controller needs to determine the allowed
instantaneous rate of admission as a function of the forwarding
queue size. The “Flow Controller” block in figure 1 interacts
with the forwarding engine to learn the instantaneous queue
size, and sets an allowed admission rate in the leaky bucket.
The leaky bucket in turn uses the admission rate to control
the rate at which tokens are generated. When a packet arrives
from the application at the flow controller, it is injected into
the forwarding engine only if a token is available from the
leaky bucket.

The functionality of the backpressure based scheduler is to
determine when to allow a node to transmit. This decision
is based on its current queue differential with its parent.
In figure 1, the backpressure scheduler is implemented as
part of the “Forwarding Engine” and “Communication stack”
blocks. The forwarding engine calculates the current queue
differential, using information about parent queue size (learned
through periodic broadcasts) and its own queue size. Based
on the current queue differential, the forwarding engine de-
cides wether or not to transfer a packet to the MAC layer
(represented by the communication stack in figure 1). If the
scheduler wants to implement differential queue prioritization,
the forwarding engine can use interfaces provided by the
underlying MAC to modify the MAC backoff window sizes
before injecting the packet.

We now describe the implementation of the flow controller
and backpressure scheduler in further detail.

A. Flow controller design

The objective of the flow controller is to maximize
∑

∀i

g(ri),

whereri is the time average source rate andg(ri) is a concave
utility function. In order to design such flow controllers wecan
use one of two techniques presented by Stolyar [20] and Neely
et al. [11].

In the proposal presented by Sridharanet al. [19], the flow
controller is designed using a technique proposed by Neelyet
al. [11]. In this design, at every time stept, the instantaneous
rate Ri(t) at which packets are admitted into the system is
that which maximizes the following equation:

max

[

V

2
· g(Ri(t)) − Ui(t) · Ri(t)

]

(1)

This results in a simple solution. SetRi(t) to a value that
satisfies the following equation:

V

2
· g′(Ri(t)) = Ui(t) (2)

HereV is a constant that acts as a tuning parameter to effect
a tradeoff between the forwarding queue sizeUi and value of

Fig. 2. Understanding maximum differential queue schedulingover a CSMA
based wireless network.

g(ri). A large value ofV will imply large value ofUi, and
largeg(ri). Whereas a small value ofV will imply small value
of Ui, and smallg(ri).

It should be noted that flow controllers designed using
the technique proposed by Stolyar [20] are very similar in
structure to the one shown in equation 2. This is highlighted
by the proposal from Umutet al. [22]. The only difference
between the two designs is the parameterβ, which has an
inverse effect as compared toV . A small β implies better
optimality and larger queues. A largeβ implies smaller queues
but lower utility. We therefore chose a flow controller, based
on equation 2, without affecting the generality of the results.
We make this choice primarily due to our familiarity with the
technique proposed by Neely [11], and code availability for
the flow controller, based on equation 2, for a sensor network
setting [19].

B. Scheduler design

Next we explain the optimal backpressure scheduling policy
proposed by Tassiulaset al. [21]. Figure 2 shows a fully
connected single hop wireless network. Nodes 2, 3, and 4 are
sources, and node 1 is the sink. The queue differential between
a sourcei and node 1, at timet, is given byUi(t) − U1(t).
In the optimal backpressure based scheduler, if nodes are
contending to transmit to the sink and link rate for all sources
is assumed equal, the backpressure based scheduler will select
the node with the largest queue differential. The optimal
backpressure scheduler assumes that a TDMA MAC exists
which will present it with a maximum match schedule.

The challenge in implementing such a scheduling policy in
a CSMA based system is that a CSMA MAC makes purely
distributed decisions, with the only mechanism of controlling
when a node accesses the channel being the size of the
contention window. Proposals ([22], [24]) therefore try to
achieve prioritization of node transmission by changing the
CSMA window size based on the current queue differential.
We refer to these heuristics asqueue differential prioritization
techniques. Umutet al. [22] achieves queue differential prior-
itization by making nodes choose one of two window sizes.
Nodes having the highest weight in a neighborhood choose
the larger window size, and all other nodes choose a smaller
window size. The weight of a node is the product of its queue
differential and its current link rate. For calculating weight
nodes need to transmit their queue differential explicitly.
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Warrier et al. [24] achieves queue prioritization by having
queue differential thresholds mapped to corresponding window
sizes. When a nodes queue differential falls between two
thresholds it chooses the corresponding window size. In this
scheme, the larger thresholds are mapped to smaller window
sizes and smaller thresholds to larger window sizes.

Given that the optimality of backpressure scheduling is
proved for a maximum match schedule [21], and the heuris-
tics presented above result in a maximal match schedule,
the heuristics will be sub-optimal. A simpler sub-optimal
approach, that results in a backpressure signal to the source,
could be to allow the forwarding engine to transfer packets to
the MAC only if a node has a positive queue differential with
its parent, irrespective of the size of the differential. Werefer
to this scheme as apure backpressurescheme. This scheme
is similar to the one used by Bozidaret al in [14].

Since our goal is to ascertain the necessity of queue differen-
tial prioritization techniques, in the next section we present the
implementation details of both these schemes over an existing
CSMA MAC.

IV. I MPLEMENTING BACKPRESSURE SCHEDULING OVER A

CSMA BASED WSN

The target platform for presenting our evaluation of back-
pressure based protocols in WSN is the Tmote sky device [1].
The Tmote sky platforms communicate using IEEE 802.15.4
compatible CC2420 radios, and can run TinyOS-2.x. This OS
has a CSMA MAC for the CC2420 radios.

In this section we present the implementation details of
the differential queue prioritization heuristic proposedin [22],
and the pure backpressure scheme over the CC2420 CSMA
MAC. In order to test differential queue prioritization, we
chose to implement the scheme proposed by [22] and the not
the scheme proposed by Warrieret al [24]. This is because
the scheme proposed by Warrioret al requires a mapping
between the queue differential and window sizes which itself is
a heuristic. Given that the performance of the scheme proposed
by [24] depends heavily on the choice of the mapping, it adds
another dimension to the comparison which is hard to quantify.
We first present a description of the CC2420 CSMA MAC over
which the schemes will be implemented.

A. The CC2420 CSMA MAC

The CSMA-CA algorithm in CC2420 CSMA MAC operates
on only two types of backoff windows, the initial backoff
window Wi, and a congestion backoff windowWc. When a
node injects a packet into the MAC layer, the MAC layer
performs a random backoff between[0,Wi]. At the end of
the initial backoff phase the MAC performs a carrier sense to
determine if the channel is free. On finding the channel free
it transmits the packet. However, if the channel is busy, the
MAC enters a congestion backoff stage performing a random
backoff between[0,Wc]. When the congestion timer expires,
the MAC repeats the carrier sense process. Retransmissions
are implemented as part of the MAC to provide link layer
reliability. The default value forWi = 320, and default value
for Wc = 80. The backoff slot duration is 32.25 microsecond

resulting in a10 ms (320×32.25) initial backoff window, and
2.58 ms (80 × 32.25) congestion backoff window.

B. Implementing differential queue prioritization: the MDQ
MAC

The maximum differential queue prioritization technique
(MDQ), proposed by Umutet al. [22], and described in
section III-B, was implemented over the CC2420 CSMA as
follows. Two fields were added to the CSMA header: a field to
contain the current queue size of the node and a field to contain
the current weight of the node. If nodei is nodej’s parent, then
the weight of nodej, wj , is given bywj = (Uj(t)−Ui(t))·rji,
whererji is the transmission rate from nodej to nodei. The
transmission raterji is the inverse of the time taken to transmit
a packet successfully fromj to i. Hence it is dependent on the
transmission power of nodej, and the interference between
node j and nodei. The transmission raterji is maintained
as an exponential weighted moving average which is updated
every time a packet is transmitted fromj to i.

The MDQ implementation can be performed in multiple
ways. First, the maximum weight can be calculated in a 1-hop
neighborhood or a 2-hop neighborhood. The MDQ proposed
in [22] chooses to perform maximum weight calculation in a
2-hop neighborhood. We feel this might be too conservative a
design choice. Second, if a node does not have the maximum
weight in a neighborhood, it can modify both the initial
backoff window (Wi) and the congestion backoff window
(Wc), or just the congestion backoff window (Wc). The cost
imposed on a node, when it does not have maximum weight in
a neighborhood, is higher ifWi andWc are both increased, as
compared to increasing onlyWc. Intuitively it seems changing
Wi andWc simultaneously is a conservative approach, since
node transmissions should be prioritized only if contention
happens. To verify this intuition, the performance when both
initial and congestion backoff windows are modified is com-
pared to an implementation that modifies only the congestion
window.

To cater for the various combination of the above design
choices, we have implement multiple version of the MDQ
MAC, each MAC is titled MDQn-INITm or MDQn-CWm.
The variablen represents wether the calculation is performed
in a 1-hop neighborhood or a 2-hop neighborhood (hence
n = {1, 2}). For MDQn-INITm, the max weight is calcu-
lated in a neighborhood of sizen and if a node is not the
maximum weight its initial and congestion backoff windows
are increased bym ·Wi andm ·Wc respectively. For MDQn-
CWm if a node is not the maximum weight only its congestion
backoff window is increased bym · Wc. We choosem to be
either2 or 4.

MDQ1-INITm and MDQ1-CWm calculates the maximum
weight in a 1-hop neighborhood by maintaining a list of
weights of its neighbors, and calculating the max between
its own weight and this list. A node informs its neighbors
of its weight and its current queue size using the extra
fields in the CSMA header, periodically broadcasting data
packets instead of uni-casting them. MDQ2 uses the algorithm
presented in [22] to calculate the maximum weight in a 2-hop
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Fig. 3. The 4 node fully connected topology with linear routing.

neighborhood. For MDQ2-INITm and MDQ2-CWm, nodes
transmit their 1-hop neighborhood max along with their own
weights (this requires an extra field to be added to the MAC
header). The 1-hop neighborhood maximum is calculated
as described above, the 2-hop neighborhood maximum at a
node is the maximum amongst the 1-hop neighborhood max,
overheard from all neighboring nodes.

C. Implementing pure backpressure: the PB MAC

The pure backpressure scheme is trivial to implement. In
the pure backpressure (PB) MAC a node is allowed to inject a
packet from its forwarding engine to the MAC if and only if its
queue differential is positive. The pure backpressure scheme
thus does not perform any prioritization of node transmissions,
and hence does not require to modify the MAC window sizes.

V. EVALUATING DIFFERENTIAL QUEUE PRIORITIZATION IN

A CSMA BASED WSN

In order to evaluate the performance of various MDQ MAC
schemes presented in section IV against the PB MAC, we
implement a backpressure based rate control stack with a log
utility flow controller. The flow controller is run on top of dif-
ferent MAC schemes to present a comparative evaluation. The
different version of the MDQ MAC, labeled either MDQn-
INITm or MDQn-CWm, have been described in section IV.

We run each of these stacks on the 3 different topologies
shown in figures 3, 4, and 5. The 4 node topology of figure 3
is a fully connected topology on which a linear routing
tree has been imposed. The 20 and 40 node topologies in
figures 4 and 5 are multi-hop topologies where nodes are
not fully connected. They are formed using the USC Tutornet
testbed [8], a 100 node WSN research testbed that spans two
floors. Figure 6 indicates the connectivity levels for both 20
and 40 node topologies under transmit power levels{5, 10}.
The metrics used to compare the different stacks are the total
log utility and average total queue size. We test each topology
over varying power levels. We first present the implementation
details of the log utility flow controller. where

A. Log utility flow controller

Design of the log utility flow controller follows the descrip-
tion presented in section III-A. The log utility flow controller
tries to maximize the global utility function

∑

∀ i

g(ri), where

g(ri) = log(ri). Therefore, by equation 2, the instantaneous
rateRi(t) is:

Ri(t) =
V

2Ui(t)
(3)

WhereV is a constant parameter. We show how this parameter
is chosen in the next section. Our choice of the log utility flow
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controller for performing this evaluation is motivated by the
fact that in wired networks, maximizing the total log utility
amounts to achieving proportional fairness [7]. Further, in a
wireless setting [16] shows that log utility presents the best
trade-off between fairness and efficiency.

B. Parameter selection

As described in section III, the fixed parameterV presents a
trade-off between the utility achieved and the average system
queue size. In order to tuneV optimally for the PB MAC
stack, we plotted the total log utility and average total queue
size for the three different topologies shown in figure 7.
For each topology, the system utility increases withV and
saturates beyond a certain value ofV . The queue size also
increases withV . For the 20 node and 40 node topologies
it is important to note that the system utility drops beyond a
particular value ofV . This is due to the fact that the maximum
buffer size in these systems is finite (maximum of 70 packets,
10 byte payload each), and hence beyond a certain value ofV

the required queue sizes cannot be supported. This results in
packet drops, lowering total utility. Using figure 7 we select a
value ofV = 1500 for the 4 node topology,V = 150 for the
20 node topology, andV = 60 for the 40 node topology.

Although the plots in figure 7 were obtained using the
PB stack, we use the same value for all the other stacks as
well. We believe this is a valid choice, as the log utility and
average queue size of backpressure protocols will increase
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Fig. 6. Connectivity for the 20 and 40 node topologies. Connected nodes indicate PRR of at least80%.
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Fig. 7. Selection of the parameter V for different topologies.

monotonically withV [5] in the absence of buffer overflows.
When comparing stacks with identicalV , the stack that
outperforms will have an equal or better utility for an equal
or smaller queue size. If a stack has both lower utility and
smaller queue size, we will need to increaseV for that stack
in order to fairly compare performance.

C. Comparing PB with MDQ MAC

Figures 8 and 9 present the total log utility and the average
total queue size for the different stacks. The packet size
in the experiments was40 bytes, and the experiments were
performed at two different power levels on each of the three
topologies. The CC2420 radio allows31 different power
levels,0 being the lowest and31 being the highest. We choose
a power level of5 to represent a low interference scenario and
a power level of10 to represent a high interference scenario.
For the 4 node topology we perform experiments only at single
power level since the nodes are in close proximity. Even at this
low power level they are fully connected.

The log utility performance in figure 8 shows interesting
behavior across topologies. The total log utility increases from
the 4 node to the 20 node topology, and decreases from the 20
node to the 40 node topology. Additionally, for 40 nodes, log
utility decreases when the power level is increased. The reason
for the increase in log utility for 20 nodes is that the rates for
all sources remain greater than 1, and because the number of
flows increases the sum log utility increases as compared to the
4 node topology. For 40 nodes, due to reduction of available
per flow capacity, a subset of sources get rate less than 1,
leading to negative utility. The sum log utility for 40 nodesis
thus less than that for 20 nodes. For 40 nodes, the reduction
of log utility due to increase in power level results from the
increase of interference, visible in figure 6. This results in
reduced available capacity and hence leads to smaller total
log utility.

For the 4 node topology, Figure 8(a) indicates that the log
utility performance of all stacks are equivalent. In terms of the
average queue sizes, the MDQ1-CW2 stack out performs the
PB stack by only2%.

In the 20 node topology, the PB stack performs similar to
the MDQ1-CW2 MAC and outperform all the other stacks,
in terms of total log utility as well average total queue size.
This is true for both power levels. For the 40 node topology,
however, the MDQ1-CW2 MAC and the MDQ2-CW2 MAC
outperform the PB MAC by a small margin. In terms of log
utility the MDQ1-CW2 MAC and MDQ2-CW2 outperform
the PB MAC by∼ 0.5 and total queue sizes are reduced by
∼ 10 packets. Note that

∑

log(ri) = log(
∏

ri). Therefore
if the performance gap of the log utilities is0.5 this implies
QMDQ1−CW2 ri

Q

P B ri
= e0.5 ∼= 1.5. If all of this rate gain were

allocated to one of the 39 sources, that source will have rate
1.5 times greater. Given that the rates in these networks is to
the order of∼ 1 − 2 packets/sec (for a 40 node topology),
a factor of1.5 for a single source will not significantly alter
the rate distribution in the network. In terms of queue sizes,
the difference in average per node queue size amounts to an
increase of10

40
= 0.25 packets under PB MAC, as compared

to the MDQ1-CW2 MAC.
Apart from a comparative evaluation of PB against MDQ

MAC, another insight that can be learned from these results
is that across all topologies and across all power levels, the
MDQn-CWm always outperforms the MDQn-INITm MAC.
This implies that our arguments against modification of the
initial backoff window, in this specific setting of small packet
sizes, is valid. Further, the MDQ1-CWm outperforms the
MDQ2-CWm, implying that performing maximum weight
calculations in a 2-hop neighborhood is unnecessary.

The key implication of the results presented in figures 8
and 9 is that the pure backpressure scheme performs compa-
rable to the various MDQ MAC scheme across different size
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Fig. 8. Log utility performance of different MAC protocols across different topology sizes and different power levels.

topologies, and for different power levels. From the descrip-
tion presented in section IV, it is clear that the complexity
introduced by the MDQ mechanism is not comparable to the
gains presented by these modifications. In a sensor network
setting where packet transmission times are much smaller then
the backoff windows, backpressure based protocols can be
implemented with similar performance over existing CSMA
MAC by simply implementing pure backpressure on top of
them.

VI. U NDERSTANDING BACKPRESSURE PROTOCOL

PERFORMANCE IN DYNAMIC FLOW SCENARIO

Our second goal is to understand the relationship between
backpressure protocol performance and its fixed parameter
setting, specifically in a dynamic flow scenario. For the
backpressure rate control stack, we choose two versions: one
running the PB MAC and one running the MDQ1-INIT4 stack.
We choose these two MAC implementation because they are
two extremes of the variants that we evaluated in section V. As
was seen in section III-A, the only parameter that the protocol
performance depends on isV . In order to gage the resilience
of this fixed parameter, we compare the backpressure rate
control stack against the state of the art rate control protocol
in wireless sensor networks, namely the Interference Aware
Rate Control Protocol (IFRC [15]).

IFRC [15] is an additive increase multiplicative decrease
protocol that attempts to achieve lexicographic max-min fair-
ness [3] over a collection tree. IFRC uses a preset queue
threshold to detect congestion and send explicit congestion
notification.

We use the 20 and 40 node topologies in order to perform a
comparative evaluation between the backpressure rate control
stack and IFRC. We consider two scenarios of traffic flow on
these topologies. All nodes except the root (node 12 in 20 node
topology and node 29 in 40 node topology) are considered to
be sources. We define a static scenario as one in which all
flow are active for the entire duration of the experiment. We
consider a dynamic flow scenario as one in which only a subset
of flows are active for the entire duration while remaining
flows join the network at pre-specified intervals.

As IFRC aims to achieve lexicographic max-min fairness,
a valid comparison cannot be achieved using the log utility
flow controller described in section V. Instead we design
a new flow controller using the notion ofα-fairness. We

describe the design of theα-fair controller before presenting
our comparative results.

A. α-fair controller

The utility function forα-fairness is given byg(ri) =
r
1−α
i

1−α
.

The total utility is therefore:

∑

∀i

r1−α
i

1 − α
(4)

Here,α is a constant greater than1. Theoretically, it has been
shown that whenα → ∞, α-fairness approaches lexicographic
max-min fairness [13].

Given that theα-fair objective is defined by equation 4,
substitution into equation 2 results in a flow controller that will
set its instantaneous rates based on the following equation:

Ri(t) = α

√

V

Ui(t)
(5)

In order to achieve lexicographic max-min fairness we want
α to be large. We are able to achieve results comparable to
IFRC for our specific sensor network setting withα = 8 .

B. Comparing backpressure and IFRC

The queue threshold we use for IFRC is 20 packets. The
parameters for backpressure stack were chosen by doing
multiple static flow runs over the 20 and 40 node topologies
while varying V. The fixed parameter value that provided
goodput comparable to IFRC was a setting ofV = 30000
for the 20 node scenario andV = 10 for 40 nodes. This
resulted in an average per-node queue size of approximately
20 packets under the backpressure stacks.

Figures 11(a) and 11(b) show the static flow goodput per-
formance of the PB stack, MDQ1-INIT4 stack, and IFRC over
the 20 and 40 node topologies. We present the results for the
static scenario to justify our flow controller implementation.
As can be seen in figure 11(a) and figure 11(b) the rate vec-
tor presented by the backpressure stacks is lexicographically
greater [3] than the rate vector presented by IFRC. Thus, for
the static scenario the backpressure stack is able to present
better max-min fairness than IFRC.

We now evaluate the dynamic flow setting. To generate a
dynamic scenario on the 20 and 40 node topologies we use the
following flow activation strategies. In the 20 node topology,
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Fig. 9. Average total queue length for different MAC protocols across different topology sizes and different power.
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Fig. 10. Behavior of PB and IFRC under dynamic flow scenario for20 and 40 node topologies.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  3  4  5  6  7  8  9  10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

T
hr

ou
gh

pu
t (

Pk
ts

/s
ec

)

Node ID

Sink

Backpressure with PB
Backpressure with MDQ1-INIT4

IFRC

(a) 20 node (static)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4  5  6  7  8  9  10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

T
hr

ou
gh

pu
t (

Pk
ts

/s
ec

)

Node ID

Sink

Backpressure with PB
Backpressure with MDQ1-INIT4

IFRC

(b) 40 node (static)

Fig. 11. Comparing goodput performance of IFRC and backpressure based
stack with PB and MDQ MAC on 20 and 40 node topologies, under a static
flow scenario.

nodes{1, 7, 13, 11} are active for the complete duration of the
experiment while all other nodes are activated at1200 seconds
into the experiment. For the 40 node topology, nodes{20, 21}
are active for the entire duration of the experiment while all
other flows are activated at800 seconds into the experiment.

Figure 10 shows the behavior of the PB stack and IFRC in
a dynamic setting. Note that the y-axis in each of these graphs

is in log scale. For both topologies, it can be seen that when a
few flows are operational in the network, the goodput given to
these flows is much higher in the case of IFRC as compared
to the PB stack. This can be seen between0 − 1200 seconds
for the 20 node topology, and0−600 seconds for the 40 node
topology. When all flows become active (at1200 seconds for
20 node, and600 seconds for 40 nodes) the scenario becomes
the same as the static case, and as seen before PB outperforms
IFRC. Due to space constraints, MDQ1-INIT4 graphs are not
presented. But as seen from the goodput in figure 12, the
performance of MDQ1-INIT4 is similar to PB.

The above behavior can be explained by our fixed V
selection. For the 20 node topologyV = 30000. A node’s
transmission rate is maximized when the local queue is empty,
as per Equation 5. The maximum rate a node can achieve in
the 20 node topology is therefore8

√
30000 = 3.6277 pkts/sec.

However, as can be seen from figure 10(b), when only4 flows
are active they can potentially achieve20 packets/sec. Thus the
fixed setting ofV forces the flows to under perform. We cannot
enlargeV here because this will result in queues overflowing
once all traffic in the network is active (recall that thisV
resulted in average per node queue sizes of 20 packets under
our static flow tests). A constant setting ofV therefore has to
cater to the worst case scenario. The same arguments apply
for the 40 node scenario.

The experiments presented in this section clearly show the
underperformance of backpressure protocols under constant
parameter settings. Our motivation for presenting these results
was to highlight an explicit need for design of automatic
parameter adaption in backpressure protocols for wireless
networks. Though these results are specific to a sensor network
setting, the variation in available capacity and restrictions on
V due to finite queue sizes are realities that will be common
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Fig. 12. Comparing goodput performance of IFRC and backpressure based
stack with PB and MDQ MAC on 20 and 40 node topologies, under a dynamic
flow scenario.

across all wireless networks.

VII. C ONCLUSION AND FUTURE WORK

We undertook the first exhaustive empirical evaluation of
backpressure based protocols in wireless sensor networks.We
have shown that in this setting, a pure backpressure approach
performs comparably to schemes that attempt differential
queue prioritization as a means for approximating optimal
backpressure scheduling. This implies that backpressure pro-
tocols can be developed on existing CSMA MAC without
modifications. We also show that automatic parameterization
is necessary for backpressure protocols to perform well in
dynamic flow scenarios.

Although the empirical results were presented for a col-
lection tree, we believe they hold for a general any-to-any
backpressure implementation. As shown by Umutet al. [22],
support for any-to-any traffic is possible through the addition
of per destination queues. For the single destination case,we
reason that PB is performing as well as MDQ MAC due to the
small packet sizes that exist in wireless sensor networks. Thus,
even with addition of per destination queues, the comparative
results we are observing should hold. Further, by increasing the
number of supported destinations, the queue behavior withV

will remain the same, and hence our results on the requirement
of automatic parameterization in a dynamic flow setting still
hold.

The focus of our future work will be to develop algorithms
that can achieve automatic parametrization for backpressure
protocols, in a dynamic flow setting.
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