
DEMO: CIRCE – A runtime scheduler for DAG-based dispersed
computing

Aleksandra Knezevic, Quynh Nguyen, Jason A. Tran, Pradipta Ghosh, Pranav Sakulkar, Bhaskar
Krishnamachari and Murali Annavaram

[aleksank,quynhngu,jasontra,pradiptg,sakulkar,bkrishna,annavara]@usc.edu
University of Southern California

Los Angeles, CA 90007, USA

ABSTRACT
CIRCE (CentralIzed Runtime sChedulEr) is a runtime scheduling
software tool for dispersed computing. It can deploy pipelined com-
putations described in the form of a Directed Acyclic Graph (DAG)
on multiple geographically dispersed compute nodes at the edge
and in the cloud. A key innovation in this scheduler compared
to prior work is the incorporation of a run-time network profiler
which accounts for the network performance among nodes when
scheduling. This demo will show an implementation of CIRCE de-
ployed on a testbed of tens of nodes, from both an edge computing
testbed and a geographically distributed cloud, with real-time eval-
uation of the task processing performance of different scheduling
algorithms.
ACM Reference format:
Aleksandra Knezevic, QuynhNguyen, JasonA. Tran, Pradipta Ghosh, Pranav
Sakulkar, Bhaskar Krishnamachari and Murali Annavaram. 2017. DEMO:
CIRCE – A runtime scheduler for DAG-based dispersed computing. In Pro-
ceedings of SEC ’17, San Jose / Silicon Valley, CA, USA, October 12–14, 2017,
2 pages.
DOI: 10.1145/3132211.3132451

1 INTRODUCTION
In recent years, there has been a rapid growth of computationally
intensive applications, such as image and voice recognition, on end
user devices like cellphones. In the internet of things (IoT) era, with
the boom of low cost microcomputers, there is growing interest
to perform a part or all of the required computations on the edge
devices rather than sending it to a central cloud, thereby avoiding
network overhead and delays. The field of dispersed computing is
focused on using all the available computing resources dispersed
throughout the path from edge devices to the cloud to perform
a more timely and optimized processing of data in terms of com-
putation cost and network overhead. To this end, our research is
focused on the development of a dispersed computing platform for
distributing the execution of networked applications that can be
described in the form of a Directed Acyclic Graph (DAG) based task
graph.

In this demo, we present our recently developed runtime sched-
uling software tool for dispersed computing, which we refer to as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SEC ’17, San Jose / Silicon Valley, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5087-7/17/10. . . $15.00
DOI: 10.1145/3132211.3132451

CentralIzed Runtime sChedulEr (CIRCE). CIRCE takes a task DAG
as an input and assigns each task to a node from a geographically
distributed cluster. Whenever a data to be processed is received, it is
dispatched by CIRCE to the corresponding input nodes of the DAG.
On the other hand, whenever the pipelined processing of the data
is complete, the last node of the task graph outputs the data to the
CIRCE node. CIRCE also implements a run-time network profiler
that monitors the pairwise traffic and the communication delay
performance between the worker nodes to incorporate a timely and
accurate estimation of network overhead cost into the scheduling.

2 DESCRIPTION OF CIRCE
CIRCE consists of several tools used for profiling, static scheduling,
and run-time scheduling. To use CIRCE, the set of computing nodes
need to include a master node and a set of worker nodes, and each
task of the input task DAG is assumed to be implemented in a
separate Python script as a function. CIRCE runs in several phases
as in Figure 1. Next, we explain different components of the CIRCE
and how they interconnect.

Run-time centralized
scheduler with task

profiler
HEFT

Quadratic regression
parameters

Task execution time

Output file size

Configuration
file

task-node
mapping

1. Schedules tasks on corresponding
nodes

2. Monitors and copies input/output
files from node to node

3. Measures online task execution
time & file size for feedback

One-time DAG
execution

profiler
(computation

costs)

Network profiler
(communication)

Figure 1: CIRCE System components

2.1 Profiling
In our proposed CIRCE architecture, each worker node of our dis-
persed computing testbed runs a network profiler and one time
DAG execution profiler of the target DAG before any task sched-
uling. Once the information is collected and reported back to the
master node, the scheduler leverages this information to schedule
each task to specific worker nodes.

2.1.1 Network profiler. This tool automatically schedules and
logs communication information of all links between nodes in

SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA A. Knezevic et al.

the network, which gives the quadratic regression parameters of
each link representing the corresponding communication cost. The
quadratic function represents how the file transfer time depends
on the file size (based on our empirical finding that a quadratic
function is a good fit). The quadratic regression parameters are sent
back to the master node and stored in the MongoDB server on the
master node, which is used by the HEFT algorithms described in
the next section.

2.1.2 One-time DAG execution profiler. This tool runs the whole
DAG on each worker node and measures the execution time of each
task and the size of the output data it passes to its child tasks. The
results are saved in a text file, which is sent back to the master
node. These files are later used by HEFT. For easier and modular
deployment of the One-time DAG execution profiler on every node
of our dispersed computing testbed setup, this profiler is set up to
run inside a Docker container on each node.

2.2 Scheduling Algorithm
Once the information about the DAG and its computational and
data requirements are determined, a centralized scheduling algo-
rithm is run to determine which task to run on which compute
node. As a starting point, we identified an open source implemen-
tation [2] of the classic Heterogeneous Earliest Finish Time (HEFT)
algorithm [1] for scheduling a DAG on distributed computers and
adapted it to work with CIRCE. HEFT uses the data obtained from
the Network profiler and the One-time DAG execution profiler to
produce a configuration file that describes the mapping of tasks
onto the available worker nodes. We are working to incorporate
other scheduling algorithms into the CIRCE framework. Other re-
searchers will be able to use the platform to evaluate their own
algorithms as well.

2.3 Run-time scheduler with task profiler
Once a configuration filewith task to node mapping is generated,
the run-time scheduler is executed centrally on the master node.
The tool then copies the task files to each of the corresponding
worker nodes and start the processes to monitor the input and
output folders. Input files are received on the master node, and
upon the detection, they are transmitted to the node executing the
first task. When the file is received on a worker node, the task is
executed, and the output file is sent to the nodes where worker
node’s child tasks are scheduled. Output files of the final task are
sent back to the master node. The built-in task profiler running
side by side with the centralized scheduler measures the online
execution time of each scheduled task and the size of the output
data passed to its child tasks. The results of the task profiler are
stored in text files, sent back to the master node, and stored in a
MongoDB database server on the master node.

3 OVERVIEW OF THE DEMO
The proposed demowill showhow aDAGbased application pipeline
can be scheduled and executed in a distributed manner on hetero-
geneous cloud and edge nodes.

The 9 task DAG, shown in Figure 2, is an example of a simple
application where each task reads a text file, does some process-
ing of the text and writes an output file. In our testing so far, we

Figure 2: An illustration of a task DAG

have evaluated CIRCE on a 10-node geographically dispersed cloud
network formed on DigitalOcean, with one acting as the master
node. Figure 2 also shows the node (near the task circle) where
the corresponding task is scheduled by HEFT. During the demo we
will show CIRCE working on a heterogeneous system consisting of
a raspberry pi based edge computing cluster as well as dispersed
cloud-based nodes.

The first step in running CIRCE is to run the scheduler script on
the master node. It copies required files to the worker nodes and
start monitoring the input folder. In our current implementation
it is assumed that processing begins when input files arrive to the
input folder on a master node. They will be detected and copied to
the worker node where the corresponding input processing task is
scheduled. The files will go through the nodes, as scheduled, and
the final output files appear in the output folder on the master node.

The demo will showcase a comparison between different sched-
uling algorithms such as a baseline scheduler, HEFT [1, 2], and
others, in terms of their task execution and data communication
latencies. We also plan to describe our ongoing work on developing
novel schedulers for optimized pipelined execution, on developing
run-time adaptation to handle network and node dynamics, and
incorporate state of the art container orchestration frameworks
such as Kubernetes and Apache Mesos.

ACKNOWLEDGMENTS
This material is based upon work supported by Defense Advanced
Research Projects Agency (DARPA) under Contract No. HR001117C0
053. The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S.
Government.

REFERENCES
[1] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing, IEEE Transactions on Parallel
and Distributed Systems, Vol. 13, No. 3, pp. 260 - 274, 2002.

[2] Ouyang Liduo, HEFT Implementation Original Source Code,
https://github.com/oyld/heft.

	Abstract
	1 Introduction
	2 Description of CIRCE
	2.1 Profiling
	2.2 Scheduling Algorithm
	2.3 Run-time scheduler with task profiler

	3 Overview of the Demo
	Acknowledgments
	References

