Fast and Accurate Streaming CNN Inference via
Communication Compression on the Edge

Diyi Hu
University of Southern California
diyihuQusc.edu

Abstract—Recently, compact CNN models have been developed
to enable computer vision on the edge. While the small model
size reduces the storage overhead and the light-weight layer
operations alleviate the burden of the edge processors, it is still
challenging to sustain high inference performance due to limited
and varying inter-device bandwidth. We propose a streaming
inference framework to simultaneously improve throughput and
accuracy by communication compression. Specifically, we per-
form the following optimizations: 1) Partition: we split the CNN
layers such that the devices achieve computation load-balance;
2) Compression: we identify inter-device communication bot-
tlenecks and insert Auto-Encoders into the original CNN to
compress data traffic; 3) Scheduling: we adaptively select the
compression ratio when the variation of bandwidth is large. The
above optimizations improve inference throughput significantly
due to better communication performance. More importantly,
accuracy also increases since 1) fewer frames are dropped when
input images are streamed in at a high rate, and 2) the frames
successfully entering the pipeline are processed accurately since
the AE-based compression incurs negligible information loss. We
evaluate MobileNet-v2 on pipeline of Raspberry Pi 3B+. Our
compression techniques lead to up to 32% accuracy improvement,
when average Wi-Fi bandwidth varies from 3 to 9Mbps.

Index Terms—Edge computing, CNN, Data Compression

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are fundamental
models for Computer Vision. Conventionally, CNN inference
is performed on the cloud, while input data is collected on
the edge. Unfortunately, such cloud-centric paradigm requires
long distance data transmission, resulting in substantial upload
bandwidth consumption, high latency and privacy concerns
[1]. Thus, a recent trend is inference on the edge.

To close the natural gap between complex CNN models and
resource-constrained edge devices, researchers have designed
compact CNNs [2]-[6]. Keeping accuracy unaffected, these
models relieve the memory storage pressure of edge devices
with their small model sizes, and alleviate the burden on the
edge processors with their light-weight layer operations.

In applications such as vehicle detection and video ana-
lytics, streaming input data are collected by IoT sensors and
continuously generated at high rate. However, it is non-trivial
to optimize inference throughput for streaming data, due to:

This material is based upon work supported by Defense Advanced Research
Projects Agency (DARPA) under Contract No. HRO01117C0053. Any views,
opinions, and/or findings expressed are those of the author(s) and should not
be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

Bhaskar Krishnamachari
University of Southern California
bkrishna@usc.edu

a) Bandwidth scarcity: To improve throughput, a widely
used approach, model partitioning, splits the CNN into mul-
tiple groups of layers. We then deploy each group to an edge
device or edge server. However, limited network bandwidth
hinders performance of such deployment. The works of [7] [8]
replace the original CNN with a smaller one using early-exit
or distillation [9]. However, these techniques are not ideal for
2 reasons. First, emerging CNN models such as MobileNetV2
are already very compact and hard to compress. Second, both
techniques aim at shrinking the CNN model. The reduction to
the hidden layer output to be communicated is limited.

b) Bandwidth variation: Due to interference and varying
signal strength, the network channel bandwidth is varying over
time. Works in [7] [10] show that CNN inference performance
is highly sensitive to the change of bandwidth. It remains a
question how to dynamically adjust the inference framework
according to the bandwidth. For example, when bandwidth is
low, it is desirable to have less intermediate data transmission
to avoid throughput degradation. On the other hand, such
restriction on data transmission may lower inference accuracy.

We design a CNN inference framework on the local edge
device cluster. Following model partition, we assign grouped
layers of CNN to edge devices that form a pipeline. We
address the above two challenges by compressing intermediate
activations that are communicated between edge devices. We
use AutoEncoder (AE) to achieve high compression ratio.
End-to-end training is performed on the compressed CNN for
accuracy recovery. Our main contributions are as follows:

« We propose a composite metric effective accuracy, that
jointly evaluates throughput and accuracy quantitatively.

« We propose a fast CNN partitioning algorithm to achieve
optimal computation load-balance across edge devices.

« We propose data compressors based on the Auto-Encoder
architecture to address the communication bottleneck.
The compressor is flexible in terms of compression rates,
and preserves accuracy with negligible overhead.

e We propose a runtime scheduler that dynamically selects
pre-trained compressors per available network bandwidth
to optimize inference throughput and effective accuracy.

« We evaluate MobileNet-v2 and on processing pipelines
consisting of Raspberry Pi 3B+. Our framework consis-
tently achieves significant accuracy improvement under a
wide range of Wi-Fi network bandwidth.

II. BACKGROUND AND RELATED WORK
A. Compact CNN Models on the Edge

Input (e.g. image stream) to CV applications are collected
by cameras on edge devices. Many applications such as smart
city, smart grid and Virtual Reality expect data to be ana-
lyzed locally on the resource-constrained edge devices [10].
Thus, compact CNNs have been designed for edge inference.
SqueezeNet [2] downsamples data using 1 x 1 convolution
filters. It achieves the same accuracy as AlexNet [11] with
50x fewer parameters and only 0.5MB model size. Using
customized architecture, YOLO [3] performs accurate real-
time object detection with only % operations of VGG16 [12].

MobileNet [4]-[6] is one of the state-of-the-art CNN models
recently proposed for edge device execution. The core build-
ing block is “inverted residual block”, which decomposes a
regular convolution layer into 3 operations: 1 x 1 pointwise
2D convolution to expand the number of input channels with
ratio ¢, 3 x 3 depthwise separable 2D convolution with non-
linearity, and 1 x 1 pointwise 2D convolution to project
back the activation to low-dimension. The depthwise separable
convolution layer applies a single convolutional filter per input
channel. A conventional k x k conv2d layer with ¢;, input and
Cout OUtpUt channels needs c,y filters of size k x k X ¢y, while
depthwise separable conv2d only needs c;, - ¢t kernels of size
k x k x 1. The number of operations is reduced by 1/k2.

Compared with traditional CNN models (e.g. [11], [12]),
MobileNet significantly reduces computation complexity with-
out accuracy loss. For example, for the ImageNet [13] dataset
consisting of 224 x 224 x 3 images, MobileNetV2 [5] achieves
71.8% classification accuracy in 3.47M model size with only
600M FLOPs. The inference time on a Google Pixel 1 smart-
phone is only 73.8ms. We will utilize the “inverted residual
block” in our compressors (Section IV-C).

B. Related Work

a) CNN compression: Compression reduces CNN model
size and computation workload. The compressed model better
fits edge devices with limited processing power and memory
storage. Works in [14] [15] [8] [16] [17] have accelerated edge
inference by model compression. [16] employs networking
pruning to trim connections having little influence on the
inference accuracy. It then uses data quantization to reduce
the number of bits to represent each model weight value. [8]
partitions the CNN model into “head” and “tail”. Then the
authors use knowledge distillation [9] to compress the “head”
on edge device, i.e., training a compact “student model” that
imitates the behavior of the original “head” (“teacher model”).

The above have their limitations. First, emerging models
such as MobileNetV2 are already very compact and hard to
compress significantly. More importantly, model compression
does not directly address the communication bottleneck since
the size of the hidden layer outputs is not necessarily reduced.

b) Dynamic schedule: Another direction is to dynam-
ically schedule the inference computation given varying re-
sources. DeepThings [18] partitions a convolution layer into

tiles that are distributed among edge devices. Its scheduler
performs work-stealing for runtime workload-balance. Edgent
[7] trains models with multiple exit points in the later stages.
Based on observed bandwidth, they greedily search the best
model partition point and exit point. Our work differs from
the above. Compared with [18], in addition to load balance,
we also consider the dynamics in bandwidth, and adaptively
compress the intermediate layer activation transmitted among
edge devices. Compared with [7], our approach compresses
the communication data, and works well for models with large
activation size in early stages, which is the general case [8].

III. PROBLEM DEFINITION

Given an edge device pipeline executing a CNN model,
we aim at improving the inference throughput and effective
accuracy when input images are generated at a steady rate.

Optimization goal Suppose the CNN is used for classifica-
tion, where the image generation rate T, is a constant and
the CNN pre-trained accuracy is v. Throughput, T, is defined
as number of classified images per unit time, where T' < Tep,.
Effective accuracy, Ve = %, is defined as the ratio of
number of correctly classified images over total number of
generated images, in unit time. For real-time inference, a
dropped frame is equivalent to the image being classified
incorrectly. We observe from the v definition a tradeoff
between throughput and pre-trained accuracy v. To improve
Vetr, we may compress a CNN such that the decreased v is
compensated by the increased throughput 7'. This motivates
the adaptive compression scheme in Section IV.

The system consists of a linear pipeline of heterogeneous
edge devices. Denote C; as the computation speed of the i
device, and B; as the bandwidth to transfer data from the i
to the (i + 1)[h device. Since each device is mostly executing
the same type of convolution operation, we assume C; remains
fixed during inference. However, we may have C; # C;
for i # j. Regarding bandwidth, we assume the devices
communicate over wireless channels and the environment co-
herence time is large. So B; changes slowly over time, yet its
variance may be significant. Mathematically, we model B; as
independent random variables, each following distribution B;.
Define C ={C; |1 <i<n}and B={B; |1<j<n—-1}.
Remark on notation For a random variable, we use lower
case letter (e.g., b, 7) to denote its value and the Sans Serif
font (e.g., B) to denote the probability distribution. Subscript
i denotes parameters of device ¢, or between devices i, i + 1.

IV. OPTIMIZED PIPELINE EXECUTION

A natural way to pipeline CNN inference is to split the
layers onto the edge devices. Let n and m be the total number
of edge devices and CNN layers. Suppose we split the m
layers into n parts and the layer indices at the split points are
S ={s1,...,8,-1}. For ease of notation, we set s = 0 and
sn = m. Thus, device i executes layer s;_1 + 1 to layer s;.

The pipeline under the above configuration consists of n
computation stages corresponding to the n devices, and n — 1
communication stages to transfer layer activation between

adjacent devices. To improve the overall throughput, we have
to reduce execution time of the bottleneck pipeline stage.
Irrespective of the communication stage performance, the
overall throughput is bounded by:

> G

C; < 1<i<n

opsy () [T 20 opsa())
<jsm
6]

where ops 4 (¢) returns the number of computation operations
of layer 7. The first inequality is achieved if the n—1 communi-
cation stages are not the bottleneck, and the second inequality
is achieved if = <) = = Cle . For
sj—1+1<i<s; Sp_1+1<e<sy

given CNN and edge devices, the bound of T is a constant.
Thus, to maximize throughput, we need to 1) balance the load
of the computation stages (Section IV-A), and 2) reduce the

load of the communication stages (Section IV-C).

T < min

~ 1<i<n >

si—1+1<j<s;

opsy (£)

A. Load-Balance of the Computation Stages

The optimal split points S can be identified by dynamic
programming. Define splity . (p,q) as optimally splitting
the last p CNN layers (i.e., layer m—p+1 to layer m) onto the
last g devices of the pipeline (i.e., device n — g + 1 to device
n). Assume communication stages are not the bottleneck, and
let splity ¢ (p, q) return the computation throughput of the
g-device pipeline after splitting. We solve splity (m,n) by:

. C1n—q+ 1
min S ,

splity ¢ (p,¢) = max
e > opsy (K)
k=m—p+1
splity ¢ (m—s,9—1) } (2)
with the initial condition split, . (i,1) = —
' . > . ops (k)

Clearly, we obtain splity . (m,n) by filling a m xn table.
In summary, load-balance of the computation stages can be
achieved by the splitting algorithm of complexity O (m?n).

We use T}, to denote the throughput of the bottleneck com-
putation stage after the splitting. i.e., T, = splity . (m,n).

B. Inter-device Communication Bottleneck

After layer splitting to achieve the optimal computation
load-balance, limited bandwidth often makes the inter-device
communication the bottleneck. Figure 1 visualizes the time
taken by each pipeline stage under various configuration.
We execute MobileNet-v2 on pipelines of Raspberry Pi and
VGG16 on pipelines of NVIDIA Jetson, where inputs are
32 x 32 R.G.B. images. Here we simplify the problem by
ignoring heterogeneity and assuming Wi-Fi environment with
constant bandwidth (i.e., C; = C}, B; = B, and B; is a Dirac
delta function). We setup pipelines of two lengths (4 and 8),
and split the CNN based on Section IV-A. The odd and even
indices correspond to computation and communication stages.
We observe: 1) communication of the early stages (i.e., early

MobileNet-v2, Raspberry Pi VGG16, NVIDIA Jetson

0.1 5

o
~

0.05

e
o
T
|

0 5 10 15 0 5 10 15
Pipeline stage index

Execution time (sec)

Pipeline stage index

- Comp. n =4 -©- Comm. n = 4 - Comp. n = 8 -& Comm. n = 8§

Fig. 1: Computation and communication time per stage

CNN layers) may bottleneck the overall pipeline throughput;
2) communication time of later stages decrease very sharply.
Observation 1 motivates data compression (Section IV-C).
Observation 2 implies that later stages are unlikely to become
the performance bottleneck, even when we increase n or
the variance of bandwidth B;. Based on the observation, we
simplify our design (Section IV-D) and analysis (Section V).

C. Load-Reduction for the Communication Stages

To improve throughput of the bottleneck communication
stage, we compress the inter-device data by inserting suitable
compressors into the pipeline. Compression of device i to i+ 1
communication should consist of the below steps:

o At device i: Compress layer-s; output to a tensor M.

« Between device i, ¢ 4 1: Transfer compressed data M.

o At device i 4+ 1: Decompress M to a tensor as close to
the original layer-s; activation as possible.

The compressor should satisfy the following requirements:

o Low overhead: Compression and decompression should
be light-weight to maintain computation load-balance.

o High accuracy: Offline re-training should ensure high
accuracy of the compressor-inserted CNN. The improved
throughput after compression should lead to higher veg.

o Flexibility: The compressor should be able to signifi-
cantly reduce the data size and be easily configurable
to various compression ratio when the bandwidth varies.

Define the compression ratio vy; := :;‘;:7%, where size (-)
returns the size of the tensor, and datag E) returns the output

activation size of the specified layer. We interpret M; as the
low-dimensional embedding of the original layer-s; activation.
Then the compression-decompression steps can be viewed as
an encoding-decoding procedure. In other words, M is not
necessarily similar to the original activation, as long as the
decoder at device ¢ + 1 finds a good way to reconstruct the
original activation. Such interpretation enables us to think
beyond classic image compression algorithms such as JPEG
[19], where visual features have to be preserved.

We propose to build our compressor upon the architecture
of Auto Encoder (AE), a powerful deep learning model for
data generation or reconstruction. The input tensor Xj, goes
through an encoding neural network and is transformed to

Algorithm 1 Pre-processing

Input: System specification B = {B; |1 <j <n—1} and
C={C;|1<i<n}; CNN architecture A

Output: Split point indices S = {s; | 1 <i < n — 1}; Set of

compressed CNNs and their accuracy A, N/

> Find split points

W {W,=ops, (1) |1 <i<m}

sg + 0; Sp — Mm;

Identify S = {s;} by solving Equation 2

> Determine compression ratio at each split point

D+ {D; =datas (s;) |1 <j<n-—1}

for j=1ton—1 do

R Dj]Tp

B, > Bound on compression ratio
R; + Set of potential compression ratio less than r;
10: RCNN%{Rj‘lngTL—l}
11: Agpr {AVX ‘ v e Uj Rj}
122 A<+ {fuse (A,A%X, . ,A\%_lx) | v; € Rj}
13: for A, € A do
14: Train A} to obtain accuracy vy; Add vy to a set N/

15: return S, A, N

R U o e

the embedding tensor X’. The embedding goes through a
decoding neural network to become X,,. By proper archi-
tecture design and training configuration, Xj, ~ X, and
size (X') < size (Xj,) = size (Xou). In our design, Xj,
is the layer-s; output activation at device ¢; X, is the layer-
s; + 1 input activation at device 7 + 1; X' = M.

There are various advantages to compress data using AE.
First, the compressor can be seamlessly integrated into the
original CNN, since they both are neural networks built upon
convolutional layers. Secondly, the expressive power of multi-
layer structure [20] of AE helps accuracy recovery. Lastly, by
setting the layer parameters such as number of channels and
stride, we can easily achieve arbitrary compression ratio.

a) Design of encoder/decoder architecture: We build
encoder/decoder by stacking convolutional layers. To reduce
computation overhead, we use the “inverted-residual” layers
as the building block. For encoder, an inverted-residual layer
contains depthwise separable convolution. For decoder, an
inverted-residual layer contains depthwise separable trans-
posed convolution. A stride larger than 1 shrinks the spatial
dimension in the encoder, while expands the spatial dimension
in the decoder. Denote A, as the AE with compression ratio
«. Table I summarizes A, used in our experiments.

b) Computation overhead: Observe from Table I that,
even for compression ratio as high as 8, two layers in the
encoder or decoder are sufficient. Since the original CNN
contains tens to hundreds of convolutional layers, the overhead
to compute A, (see Section VI-A) is negligible.

¢) Training: Let A’ be the CNN after inserting A, into
A (Denote as: A’ = fuse (A, A,)). We perform end-to-end
training of A, without factoring out the reconstruction step of
A, . The loss function is the cross entropy loss, measuring the
difference between the ground-truth and the labels predicted

by A’. Such training allows fine-tuning of the weights in the
original layers of A to compensate the reconstruction noise.

Summary of pre-processing The two main optimizations,
splitting and compression are both offline before the pipeline
deployment (Algorithm 1). Note from lines 8 to 12 that, at each
split point, we identify a set of potential compression ratio and
the corresponding compressors. In the next section, we show
how to adaptively select the appropriate compression ratio in
runtime, based on the real-time bandwidth measurement.

D. Adaptive Communication Compression

The insertion of compressor A., into the original A
addresses the issue of low bandwidth. Further performance
improvement can be achieved by considering the large varia-
tion of the bandwidth. Recall that we model B; as a random
variable following distribution B;. If within the time window,
we measure a low value of B;, then the effective accuracy
Verr may decrease due to increased number of frames being
dropped. The best strategy then would be to insert a compres-
sor with higher . On the other hand, if we measure a high
value of B;, then bandwidth at the split point ¢ may not be the
bottleneck. So we may replace the compressor with a lower «y
so that v.g improves due to higher pre-trained accuracy v.

Distribution B = N (u, o)

Stage throughput

1
“Ymed1 Viow

Throughput

0, H 0

Fig. 2: Using various compressors based on threshold 6

The above intuition motivates us to develop an adaptive
communication compression strategy. Algorithm 2 outlines the
real-time inference procedure. At each split point, we calculate
a set of threshold parameters O;. The thresholds “divide”
the bandwidth into multiple regions, each region associated
with a compression ratio v. In Figure 2, the two thresholds
©; = {61,602} divide the bandwidth into three regions. If the
measurement b falls between 67 and 65, then at the split point,
we use a compressor with vpeq. If b falls in other regions, other
~ should be used. In our problem definition, the bandwidth
changes slowly. So the reload of A’ happens infrequently.

We make the following simplification to compute 6:

1) Only one communication stage can become bottleneck.

2) The input generation rate is larger than the throughput of
the bottleneck computation stage (i.e., Tgen > Tp).
Point 1 is reasonable by the observation of Section IV-B. Point
2 is valid since T}, is known before inference.

Let Yieft, Yright be the compression ratio at the two sides of
6. Let A, Avight> Vieft> Vright be the CNN architecture and pre-
trained accuracy (Vieft > Vright> Yeft < Viight). For discussion,
we further assume Yiefp = 2%ighe and 0.5 - Vight < Vieft < Vhight-

TABLE I: Architecture of A . Note, 1) Number of output channels depends on the number of channels in Xj,. E.g., Xj,
has 24 channels, the encoder with output channels of “2x — 2X” contains two layers, both of 48 output channels; 2) Stride-2
shrinks (expands) spatial dimension in the encoder (decoder); 3) “Expansion ratio” is defined in Section II-A).

Encoder Decoder
Kernel size ~ Output channels Expansion ratio Stride Kernel size ~ Output channels Expansion ratio Stride
=2 3 2X 1 3 1x 0.5 2
v=4 3—3 1x = 1x 1—1 1—2 3—3 1x = 1x 1—1 2—-1
vy=38 3—+3 2X — 2% 1—1 22 3—+3 Ix — 1x 05—1 22

Algorithm 2 Real-time inference

Input: Split points S; Set of compressed CNNs A; Bandwidth
threshold parameters {©; | 1 <i <n —1}
Output: Inference pipeline executed on edge devices
1: for every reload time period do
for each edge device i =1 to n do
Measure current bandwidth b;
Determine A.,« based on b; and thresholds ©;

2
3
4
5: A’ + Desired compressed CNN
6
7
8

> in parallel

for each edge device i = 1 to n do
Load layers of A’ based on s;_1, s;

> in parallel

Continue pipelined inference

The optimal 6* should be such that effective accuracy of
Ajere at b = 0% equals effective accuracy of Aygy at b = 0%,
Now, to compute v,g, we visualize in Figure 2.B the change
of pipeline stage throughput with respect to bandwidth b,
under various scenarios. The horizontal dashed line (A) is
the throughput bound 7}, of computation stages. The two red
dashed lines (B,C) represent the communication throughput
under two compression ratio. Due to the assumption on the
relative values of 7. and v. presented above, 6* must fall
between the intersection of A,B and the intersection of B,C:

right * 0*

Tp * Veeft = D * Vright 3)

where D is the amount of data traffic at the communication
stage. The solid line in Figure 2.B shows the throughput of
the overall pipeline with respect to b. At the transition point
0%, the dropped throughput due to a less compressed CNN is
compensated by the increased pre-trained accuracy.

V. PERFORMANCE ANALYSIS

The pipeline can be bottlenecked by either computation
or communication. We derive the expectation of inference
throughput for each case. p;(-) and P;(-) denote probability
density function and cumulative distribution function of B;.

a) Computation bottleneck: Let throughput of the slow-
est computation stage be T,. According to our setup, 7T}, is
fixed since C; € C are fixed. Let IP; be the probability of T,
becoming the bottleneck (i.e., all communication stages have
larger throughput than 7}). Hence, Py can be calculated by

pl_H]P’<§i>Tp> ~Tla-rw 1) @

%

b) Communication bottleneck: The communication stage
7 with throughput 7 becomes the bottleneck if and only if:
1) T, > 7; 2) Stage j has the smallest throughput among all
communication stages. The probability of stage j becoming
the bottleneck is ;. P (% > T) : <]P’ (% = 7')) The
expected throughput in such case is

T,
E(T, j) :/ [1G = Pi(D;-7))-p; (D; - 7) Dj-rdr (5)
T0u#)
c) Expected throughput: The expected inference
throughput can be calculated by combining the cases above:

E[T) =Pi- T, +) E(T.j) (©)
J

d) Case study: According to the empirical measurement
in [21], [22], B; approximately follows Gaussian distribution.
In the following, we analyze a system with 2 split points (n =
3), where By and By are i.i.d. random variables and B; ~
N (u, o) for i = 1,2. The more general case with any n can
be analyzed by following the same roadmap. By Equations 4,
5, 6, we have the expected throughput of the pipeline:

E(T) = (1 - ®(ay1)) (1 — ®(a2)) T}
D (e ()) (R
27 (1 (B o (B

where a; = w, 1 = 1,2. We can derive the closed-
form expression of the integral in Equation 7 with the help of
bivariate normal cumulative (i.e., BuN[]).

e) Expected accuracy: By definition of expected accu-
racy, Ve = %, we have Efveg] o< E[T - v].

) Analysis with adaptive compression: E[T] and E[ves]
are functions of D;, and thus functions of ~;. We compute
effective throughput and accuracy with minor modification of
Equation 7. Now that the bandwidth probability distribution is
“partitioned” by 6, the integration above becomes piece-wise.

VI. EXPERIMENTS

We evaluate using MobileNet-v2 and two image classifica-
tion datasets: CIFAR10, CIFAR100. We build the pipeline of
Raspberry Pi 3B+. MobileNet-v2 consists of 19 convolutional

o =2, CIFARI10 o = 2, CIFAR100
I I
—. 80 60
g
= 60 40
40 | 2l | | 20 | d | | |
0 2 4 6 8 10 0 2 4 6 8 10

Mean value g Mean value g

40

n =5, CIFARIO n =5, CIFAR100

[[[70 T T
, * N -»- Uncomp.
60 _‘g\\\\\\ ey =2
% 50 x| =y =4
L T P _h-)—"'\x Y=
Rk 40 T —e— 1, Y2
| | | 30 | | |
1 2 3 1 2 3
Variance o Variance o

Fig. 3: Expected effective accuracy under various value of p and o, where B; = N (i, 0)

TABLE II: MobileNet-v2: Accuracy & computation overhead

CIFAR-10 CIFAR-100
Accuracy Overhead Accuracy Overhead
Original 90.2 0.00% 69.1 0.00x
y=2 89.2 0.02x 67.4 0.02x
y=4 88.5 0.02x 66.7 0.02x
v=28 87.7 0.02x 65.7 0.02x

layers, where layer 1 and 19 are regular 33 convolutional lay-
ers, and layers 2 to 18 are inverted-residual blocks constructed
by depthwise separable convolution. Both CIFAR10 and CI-
FAR100 consist of 32 x 32 R.G.B color images. Raspberry Pi
contains a Broadcom BCM2837B0 quad-core A53 (ARMvS)
CPU @1.4GHz, and a Broadcom Videocore-IV GPU. The
RAM is 1GB LPDDR2. Raspberry Pi supports 2.4GHz and
5GHz 802.11b/g/n/ac Wi-Fi. We insert a 32GB Micro-SD card
for storage. The inference pipeline consists of four Raspberry
Pi devices. Devices in the pipeline communicate via Wi-Fi.
We implement our code using Python3.7 and Tensorflow-Lite.

A. Evaluation on Compressors

Based on our splitting algorithm (Section IV-A), the split-
ting points are S = {4, 11, 15}. The communication bottleneck
only happens at the first splitting point. We thus insert com-
pressors of v = 2,4, 8 between device 1 and 2 of the pipeline.
The compressor architectures are defined by Table I.

Table II summarize the pre-trained accuracy (i.e.,) and the
computation overhead due to the additional compressor layers.
Clearly, 1) the proposed end-to-end training ensures high
accuracy even when the compression ratio is very high; 2) the
additional computation load due to the inserted compressor is
at most 2% of the computation load of the original model.
Therefore, after inserting the compressor, there is no need to
re-split layers for re-balance of computation load.

B. Evaluation on End-to-End Performance

We evaluate the expected effective accuracy E[ves] under
various network conditions. Figure 3 is measured by 1) fixing
the variance to be ¢ = 2Mbps, and changing the mean
value from p = 3Mbps to 9Mbps; 2) fixing the mean to be
o = bMbps, and changing the variance from o = 0.5Mbps to
3Mbps. In all experiment, we set the input image generation

rate to be the throughput of the bottleneck computation stage
(i.e., Tgen = T}). SO vegr = v if and only if the communication
stages never become the system bottleneck.

Effectiveness of compression Data compression signifi-
cantly improves the overall effective accuracy. Effective ac-
curacy of the uncompressed model catches up with that
of the compressed model, only for very large p. For the
two plots of MobileNet-v2 in Figure 3, when p = 9, we
have D% ~ 1.7 x T,. In addition, we observe that higher
compression ratio is more useful when the network condition
is bad. For Figure 3, larger v leads to significant accuracy
improvement compared with smaller +, when p is small.
Effective accuracy of CNNs with small v eventually becomes
better when p keeps increasing. This is because when p is
very large, the communication stage is very unlikely to become
the bottleneck, and v then becomes the dominant term in the
calculation of v¢. Lastly, larger compression ratio are more
beneficial when the variance of the bandwidth is larger.

Effectiveness of adaptive compression With adaptive com-
pression (red line labeled “vy;, 72”), we use a single 6 to
support two compression ratio between devices 1 and 2. In-
ference with adaptive data compression almost always achieve
the best performance, regardless of the bandwidth condition.
For example, for MobileNet-v2 on CIFAR100, the adaptive
compression scheme clearly leads to higher accuracy than
other single compression ratio schemes. Under large band-
width variance, we can hardly identify a single compression
ratio suitable for all scenarios. If we allow the communication
stage to choose among more compressors, we expect higher
accuracy than the current simple adaptive scheme.

VII. CONCLUSION

We have proposed a framework for improving throughput
and accuracy of pipelined CNN inference on the edge. To
improve the inter-device communication performance, we have
proposed an AE-based adaptive compression scheme to 1) sig-
nificantly reduce the activation size with negligible accuracy
loss, and 2) optimizes expected accuracy by adapting the
compression ratio given the current bandwidth.

We will extend our adaptive compression scheme to support
multiple communication stages. We will apply data quantiza-
tion for higher compression ratio. We will evaluate on more
CNNSs and devices to better understand the performance gain.

[2]

[3]

[4]

[6]

[7]

[9]
[10]

(11]

REFERENCES

X. Xie and K.-H. Kim, “Source compression with bounded

dnn perception loss for iot edge computer vision,” in The
25th Annual International Conference on Mobile Computing
and Networking, ser. MobiCom ’19. New York, NY, USA:

Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3300061.3345448

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263-7271.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510-4520.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” arXiv
preprint arXiv:1905.02244, 2019.

E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications. ACM, 2018,
pp. 31-36.

Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,” in
Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges. ACM, 2019, pp. 21-26.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications,” in
Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2017, pp. 82-95.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2016, pp. 243-254.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2018, pp. 389—
400.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. Xxviii—xxxiv,
1992.

R. Eldan and O. Shamir, “The power of depth for feedforward neural
networks,” in Conference on learning theory, 2016, pp. 907-940.

S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Perga-
ment, E. Cidon, S. Katti, and M. Pavone, “Network offloading poli-
cies for cloud robotics: a learning-based approach,” arXiv preprint
arXiv:1902.05703, 2019.

I. Cardei, A. Agarwal, B. Alhalabi, T. Tavtilov, T. Khoshgoftaar, and P.-
P. Beaujean, “Software and communications architecture for prognosis
and health monitoring of ocean-based power generator,” in 2011 IEEE
International Systems Conference. 1EEE, 2011, pp. 353-360.

