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Green Energy and Delay Aware Downlink Power
Control and User Association for Off-Grid Solar

Powered Base Stations
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Abstract—Cellular base stations (BSs) powered by renewable
energy like solar power have emerged as a promising solution to
address the issues of reducing the carbon footprint of the telecom
industry as well as the operational cost associated with powering
the BSs. This paper considers a network of off-grid solar powered
BSs and addresses two key challenges while operating them
(a) avoiding energy outages and (b) ensuring reliable quality
of service (in terms of the network latency). In order to do
so, the problem of minimizing the network latency given the
constrained energy availability at the BSs is formulated. Unlike
existing literature which have addressed this problem using user-
association reconfiguration or BS on/off strategies, we address the
problem by proposing an intelligent algorithm for allocating the
harvested green energy over time, and green energy and delay
aware downlink power control and user association. Using a real
BS deployment scenario, we show the efficacy of our methodology
and demonstrate its superior performance compared to existing
benchmarks.

Index Terms—Green communications, off-grid base station,
resource management, solar energy, cellular networks.

I. INTRODUCTION

Using renewable resources like solar energy to power the
BSs has emerged as a promising solution for greening cellular
networks. According to statistics from Global System Mobile
Association (GSMA), at the end of 2014 there were around
43,000 solar powered BSs around the globe [1]. They not
only are a green solution for reducing the carbon foot-print
of cellular networks, but also provide a means to reduce
the operating expenditure. Additionally, many of the growing
telecom markets in the world like those in the Asian and
African continents lack reliable grid power. In such locations,
the telecom operators are forced to use diesel generators as
an alternative energy source which has an operational cost 10
times higher as compared to powering the BSs by the grid
[2]. There are currently 321,000 off-grid BSs and they are
predicted to grow by 22% by the year 2020. Around 80%
of these would be installed in African and Asian countries. In
such scenarios, networks of solar powered BSs are a promising
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solution for the telecom operators and there have already been
some successful deployments of the same. Examples of these
include solar powered BSs deployed by Zong Telecom in
Pakistan, Bhutan Telecom Limited in Bhutan, Telkomsel in In-
donesia, and Orange in Africa [3]. Some existing works which
study off-grid solar powered BSs include [4]-[5]. Among the
various choices to power an off-grid BS by renewable energy
sources (e.g. solar power, wind energy, natural gas); solar
power is one of the most popular choice [6].

Solar powered BSs are carefully provisioned with resources
like photo-voltaic (PV) panels and batteries, taking into ac-
count the trade-off between the CAPEX (capital expenditure)
and quality of service performance [7]-[8]. Due to cost con-
straints, the BSs cannot be over-provisioned beyond a certain
degree and thus they require additional effort for managing
the green energy available to them, specifically during bad
weather periods. In the absence of such energy management,
the network can experience critical power outages during these
times. Another key challenge in operating a network of such
BSs is to intelligently manage the green energy available to
the BSs while ensuring reliable QoS. This paper presents a
methodology for maximizing the QoS, in terms of minimizing
the network latency, given the constraints on the energy
availability at the solar-powered BSs. In contrast to existing
approaches based on just user association reconfiguration or
BS on/off strategies, our methodology uses a combination of
intelligent energy allocation, and green energy and delay aware
BS downlink power control and user association. We show the
performance gains of the proposed methodology over existing
benchmarks (the GALA scheme [9] , the ICE scheme [10] and
the SWES scheme [11]) through simulations using a real BS
deployment scenario from United Kingdom (UK).

The rest of this paper is organized as follows. Section II
presents the literature review. Section III presents the system
model. Section IV presents the problem formulation. Section
V presents the solution methodology. Section VI presents the
numerical results and Section VII concludes the paper.

II. LITERATURE REVIEW

Reducing the network energy consumption is one of the
ways of solving the problem of avoiding energy outages at
the BSs during bad weather periods [12]. In related work,
[13] introduces the concept of energy saving in a network
by BS switching (i.e. switching off some of the BSs to
reduce network energy consumption). Some basic issues in
dynamic BS switching are described in [14], [15] and [16]. A
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framework for BS switching and transmit power control with
the objective of minimizing the energy used in the network
is proposed in [17]. In [11], the authors propose a scheme
(named SWES) for dynamic switching of BSs to minimize
the overall energy consumption. This scheme saves energy
by turning off BSs and it is a greedy heuristic which seeks
to determine the minimum number of BSs required to serve
the area, with the desired quality of coverage. The authors
in [18] propose cell breathing techniques for bringing down
the network energy consumption. Cell breathing refers to BSs
reconfiguring the area being served by them. The authors in
[18] achieve cell breathing by adjusting the transmit power
levels of the BSs. The author in [19] proposes a rate and
power control based energy-saving technique for orthogonal
frequency division multiple access (OFDMA) systems. An
energy-efficient scheme for resource allocation in OFDMA
systems with hybrid energy harvesting BSs is proposed in
[20] where a dynamic programming approach for power allo-
cation is used to minimize the network energy consumption.
Further, [10] proposes an algorithm, named ICE, for green
energy aware load balancing to minimize the overall energy
consumption, achieved by tuning the beacon levels of the BSs.

The studies above are primarily focused on minimizing
the network energy consumption. However, these studies do
not consider the impact of the energy minimization on the
network delay performance. Studies which address network
delay performance include [21] which proposes a distributed
user association scheme using a primal-dual formulation for
traffic load balancing. Authors in [22] propose an α-optimal
user association policy for flow level cell load balancing with
the objective of maximising the throughput or minimizing
the system delay. However the above-mentioned schemes
([21],[22]) consider BSs powered by the grid and thus do not
account for the green energy availability at the BSs.

Methodologies which consider green energy availability in
addition to the delay performance include [9] and [23]. The
authors in [9] propose the GALA scheme which accounts for
the green energy availability at the BS while making user-
association decisions. The authors formulate the problem of
minimizing the sum of weighted latency ratios of the BSs
where the weights are chosen to account for the green energy
availability at the BSs. Authors in [23] consider BSs powered
by hybrid supplies and formulate the problem of minimizing
the weighted sum of the cost of average system latency and
the cost of on-grid power consumption. The approach in
[9] and [23] to manage the available energy and network
latency is by reconfiguring the BS-MT (mobile terminal)
user-association. In contrast to such an approach, this paper
presents a methodology for energy and latency management
based on downlink transmit power control in addition to user
association reconfiguration, and demonstrates its performance
gains over existing approaches. Also the above-mentioned
studies solve the problem of latency management and green
energy utilization for a given instant of time and do not
deal with the allocation of the available green energy over
time. Thus, in addition to downlink power control and user
association reconfiguration, our methodology uses a temporal
energy allocation algorithm presented in our earlier work [24]

to intelligently manage the green energy available to the BSs
so as to maximize the benefit derived from it. With this energy
allocation in place, this paper presents a comprehensive frame-
work for the operation of an off-grid BS, guiding the energy
allocation, power control, as well as user-association which
has been missing in existing literature. Note that although
[25] uses green energy and delay aware BS power control
and user association reconfiguration, the problem scenario and
formulation are quite different from the ones addressed in this
paper. It considers the scenario where the BSs are connected to
the grid and the challenge is to manage the trade-off between
grid energy savings and the QoS. However, in the scenario
of off-grid solar powered BSs we have different challenges to
address like avoiding power outages.

The main contributions of the paper are as follows:
• Unlike existing literature which deals with operational

strategies for grid connected BS either with or without
hybrid supplies (e.g. [26]), we focus on developing oper-
ational strategies for a network of off-grid solar powered
BSs. The off-grid scenario brings forth challenges such
as energy outages which are not a concern for grid
connected BSs.

• Existing literature has primarily used user-association
reconfiguration for managing the green energy avail-
ability and the network latency performance. But our
proposed framework uses BS downlink transmit power
control in addition to user association reconfiguration
and shows its performance gains over existing schemes.
Additionally, we propose a green energy and delay aware
user-association scheme for the off-grid scenario.

• We propose a simple temporal energy allocation algo-
rithm which guides the green allocation over time so as
to maximize the utilization of the harvested green energy.

• With the above-mentioned aspects, we present a complete
framework for guiding the operations of an off-grid
network of solar powered BSs which guides the temporal
energy allocation, BS downlink power control, as well as
the user association policy.

III. SYSTEM MODEL

In this section we describe the traffic model considered in
the paper. We also describe the formulation of the BS load
and the network latency.

A. Traffic Model, BS Load and Network Latency

We consider a network of cellular BSs offering coverage to
a geographical region R. We denote the set of the BSs as B
and the user locations are denoted by x ∈ R. For simplicity,
in this paper, we focus only on downlink communication
(i.e. BSs to MTs). We denote the downlink transmit power
vector of the BSs by P . The BSs can only operate at
discrete values of transmit power levels which are denoted by
P (j) ∈ {0, ω, 2ω, · · · , Pmax}, where P (j) denotes the power
level of the j-th BS, ω is the granularity of power control, and
Pmax is the maximum transmit power level at which the BSs
can operate. We assume that file transfer requests at location
x arrive following a Poisson point process with arrival rate
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λ(x) per unit area and an average file size of 1
µ(x) . We define

the traffic load density at location x as γ(x) = λ(x)
µ(x) , where

γ(x) captures the spatial traffic variability. Assuming BS j is
serving the users at location x, the rate offered by the BS to
the users can be generally given using the Shannon-Heartley
theorem [22] as

cj(x) = BWj log2(1 + SINRj(x)) (1)

where BWj is the total bandwidth offered by the j-th BS and
SINRj(x) is given by

SINRj(x) =
gj(x)P (j)

σ2 +
∑
m∈Ij gm(x)P (m)

(2)

where gj(x) denotes the channel gain between BS j and the
user at location x and it accounts for the shadowing loss and
path loss, σ2 denotes the noise power level, and Ij is the
set of interfering BSs for BS j. This paper assumes perfect
information of the channel gain which may be estimated given
the topological details of the terrain, and drive-through site
surveys. For simplicity, we use the average value of SINR at
a given location for calculating the data rate offered by a BS at
that location. Next, we introduce a user association indicator
function uj(x) which specifies the user association between
the BSs and the MTs. This value is 1 if users at location x
are served by BS j and is 0 otherwise. We now define the
BS load ρj , which denotes the fraction of time BS j is busy
serving its traffic requests and is given by [9]

ρj =

∫
R

γ(x)

cj(x)
uj(x)dx. (3)

Definition 1: The feasible set of the BS loads ρ =
(ρ1, · · · , ρ|B|) is denoted by F and can be defined as

F =
{
ρ | ρj=

∫
R

γ(x)

cj(x)
uj(x)dx, 0 ≤ ρj ≤ 1− ε, ∀j ∈ B,

uj(x) ∈ {0, 1},
|B|∑
j=1

uj(x) = 1, ∀j ∈ B, ∀x ∈ R
}
,

where ε is an arbitrarily small positive constant.

The MTs attach to the BS based on the scheme described
later in the paper in Section V-C. Since file transfer arrivals
are Poisson processes, the sum of transfer requests arriving at
the BSs is also a Poisson process. Since the service process at
a BS follows a general distribution, the BSs may be modeled
as a M/G/1-processor sharing queue. The average number of
flows at BS j can thus be given by ρj

1−ρj [23]. According to
Little’s law, the delay experienced by a traffic flow is directly
proportional to the average number of flows in the system [14].
Thus we take the total number of the flows in the network as
the network latency indicator, D, which is given by [23]

D =
∑
j∈B

ρj
1− ρj

. (4)

The indicator above has been used in several contemporary
studies to quantify the network latency performance (e.g. [11],
[22]–[24]).

B. BS Power Consumption

This paper considers a network of macro BSs. The power
consumption of BS j is denoted as L(j), and is given as [27]

L(j) = P0(j) + ∆P (j)ρj , 0 ≤ ρj ≤ 1, 0 ≤ P (j) ≤ Pmax
(5)

where P0 is the power consumption at no load (zero traffic)
and ∆ is the slope of the load dependent power consumption.

C. Solar Energy Resource and Batteries

We use statistical weather data provided by National Renew-
able Energy Laboratory (NREL) [28]. This is fed to NREL’s
System Advisor Model (SAM) tool which yields the hourly
energy generated by a PV panel with a given rating. The BSs
are assumed to use lead acid batteries to store the excess
energy harvested by the PV panels. These are a popular choice
in storage applications on account of their lower cost and being
more time tested than other alternatives.

IV. PROBLEM FORMULATION

Our objective is to maximize the benefit derived from the
green energy available to the BS, in terms of improving the
system level latency. While doing so, we desire to avoid energy
outages at the BSs. Thus, we consider the problem, [P1], as
minimizing the total system level latency during the day, given
the harvested solar energy available to the BSs. The problem
can be formulated as

[P1] minimize
Et, Pt, ρt

24∑
t=1

Dt

subject to: ρ ∈ F , ∀t
24∑
t=1

Lt(j) ≤ G(j), ∀j ∈ B

where the network latency for the t-th hour of the day is
denoted by Dt, Lt(j) denotes the BS j’s power consumption
for the t-th hour, and G(j) denotes the green energy budget
available to the j-th BS during the day. Note that the design
variables in the above problem are the green energy allocation
(denoted by E), the transmit power levels (P ) and the BS
loads (ρ).

V. SOLUTION METHODOLOGY

To solve the problem formulated in Section IV, we propose
the Green energy and delay Aware User association and
Resource Allocation (GAURA) scheme which consists of three
parts: (a) temporal energy allocation (b) BS downlink power
control and (c) user association reconfiguration. In Section
V-A we propose an algorithm for intelligently allocating the
green energy budget over time. Further, given the energy
allocation, in Sections V-B and V-C we address the opti-
mization problem by suitably adjusting the downlink transmit
power levels of the different BSs and applying user association
reconfiguration, respectively.
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Algorithm 1 The TEA Algorithm
1: Initialize: Eexcess(j) = 0, ∀j ∈ B
2: for j = 1 : B do
3: G(j)= Sini(j)− Scr(j) +

∑24
t=1Ht(j)

4: for t = 1 : 24 do
5: Bexpt (j) = St−1 +Ht(j)− Lt(j);
6: if Bexpt (j) > Scap(j) then;
7: Eexcess(j) = Eexcess(j)+(Bexpt (j)−Scap(j))
8: end if
9: end for

10: G(j) = G(j)− Eexcess(j)
11: for t = 1 : 24 do
12: Et(j) = G(j) Lt(j)∑24

h=1 Lh(j)

13: end for
14: end for

A. Temporal Energy Provisioning

The energy available to power the BS on a given day
comes from two sources: (a) the solar energy harvested by
the BS during the day and (b) the charge remaining in the
batteries from the previous day. This energy needs to be used
intelligently during the day. To determine the green energy
provisioning during the different hours of the day, we propose
the Temporal Energy Allocation (TEA) algorithm (shown in
Algorithm 1) which is described below.

We first note that the BSs require some charge in the
batteries to power them during the early morning hours of the
next day, as the solar energy is only available after sunrise.
Therefore it is required that the battery level does not go below
a certain level at the end of the day, which we denote by Scr.
Thus the energy budget which is actually available to the j-th
BS for use is given by G(j)= Sini(j)−Scr(j) +

∑24
t=1Ht(j)

where Sini(j) denotes the battery level of the j-th BS at the
beginning of the day, and Ht(j) denotes the solar energy
harvested by BS j in the t-th hour of the day. Additionally, the
battery level at any time cannot exceed the battery capacity. To
accomodate this constraint, before doing the energy allocation,
the expected battery level at the end of each hour, Bexpt , is
noted. If this estimated battery level exceeds the battery ca-
pacity (Scap), the excess energy (tracked through the variable
Eexcess) is discarded. The overall available energy budget is
now allocated to the different hours of the day in proportion
to the estimated BS power consumption during that hour. The
energy allocated to BS j in the t-th hour is denoted by Et(j).

The proposed algorithm requires the information of the solar
energy expected to be harvested during the day. There exist
many methodologies to predict the solar energy generation,
usually days and hours in advance. These could be integrated
with weather forecasts to give a more accurate prediction.
Some models for the prediction of solar energy include
[29] and [30]. Additionally, with the increasing adoption of
renewable energy for various applications, there exist many
companies which specialize in solar energy prediction for such
applications (e.g. [31]). Note that the proposed framework
only needs an hourly estimate of the solar energy generation
which makes the task even simpler. We also assume that the

information of traffic profile from previous weeks is available,
which is used to generate the predicted BS power consumption
(L) for the initial energy allocation. Note that this energy
allocation is only an initialization step and is later updated
as shown in Section V-B. We assume that there is a central
server which does these operations at the beginning of the
day and the decisions made by it guide the temporal energy
allocation during the day.

B. Green Energy and Delay Aware Transmission Power Con-
trol

We begin this section by with the following proposition that
affects downlink power control.

Proposition 1. The network latency (D) is a non-convex
function of the BS power levels.

We use simulations to show that the network delay (D) is
a non-convex function of the BS power levels. We consider
a network of BSs as shown in Figure 3, and the simulation
settings are as described in Section VI. We consider the BSs
operating at 3 p.m. in the afternoon and with BSs 2, 4, 5 and
6 operating at transmit power level 20 W. Next, we vary the
power levels of BS 1 and BS 3 and study the effect of doing
so on the network latency. Figure 1 shows the network latency
for different values of power levels for BS 1 and BS 3. From
the figure we can easily conclude that the network latency is
a non-convex function of BS power levels.

The problem of power level control of a set of BSs to
address the objective function in [P1] is thus a non-convex
optimization problem with respect to the BS power levels.
Finding the global minima of the optimization problem re-
quires a search over the whole search space of possible power
levels, which has very high computational complexity. For
B BS’s, the computational complexity is given by O(Q|B|T )
where Q denotes the number of power levels a BS can operate
at and T denotes the number of hours under consideration.
Thus to address the power control problem, next we propose
a greedy heuristic with very low computational complexity.

We assume that a central server does the power control
operations at the beginning of the day and the decisions made
by it guide the power levels of the BSs during the day. The
power control decisions are made for a time granularity of a
hour. To facilitate the power control operations, we assume that
the central server has the information of the average hourly
traffic profile at a given location which is used for evaluating
the underlying user association based on the user association
policy proposed in Section V-C. In existing literature, there
exist many papers which study, model and predict traffic in
cellular networks (e.g. [32], [33] and [34]). These models
can be used for the real time implementation of the proposed
power control algorithm. Note that such an assumption is not
uncommon and has been considered in many contemporary
works like [35] and [36].

The BS load, BS power consumption and the traffic served
by a BS are affected by its transmit power level. For the
transmit power level control operations, it is important to
capture the information whether a BS is energy constrained
or not. In order to do so, we define deficiency ratio of BS j
during hour t, Θi(j), as
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Fig. 1. Latency variation with power control operations on BS 1 and BS 3.

Θt(j) = Lt(j)/Et(j). (6)

Note that the case when Lt(j) > Et(j) corresponds to a
situation where the power consumption of the j-th BS in the
t-th hour is more than the green energy allocated for that given
hour, which indicates that the BS is energy constrained. While
determining power levels for the BSs, two concerns regarding
the operations of the BSs need to be accounted for which are
to avoid energy deficinecy (i.e. Θ(j) > 1) and to avoid traffic
overload at a BS (i.e. ρj > 1). To capture the intensity of
these problems faced by a BS, we define a term strain index
which is given by

Ψ(j) = max(0,Θ(j)− 1) + max(0, ρj − 1). (7)

Next, we propose the green energy and delay aware power
control algorithm (Algorithm 2) which is aimed at eliminating
the strain index and improving the network latency perfor-
mance. The operation of Algorithm 2 can be explained as
follows. The proposed algorithm is sequentially carried out
for each hour of the day. For a given hour, the BS power
control begins by trying to eliminate the strain index (Ψ) for
the BSs. To achieve this, the BS with the largest value of
strain index is identified at every step (using max(Ψ)) and its
transmit power level is reduced by ω (line 6 in Algorithm 2).
This reduction in transmit power level contributes to relieving
the strain of the BS in terms of energy deficiency as well as
traffic overload. The reason for this is as follows. When the
transmit power level of a BS is reduced, some of its users
are offloaded to nearby BSs which reduces the BS load (ρ).
Further, as the BS load is reduced, the power consumption
of the BS which is dependent on the BS load (as shown in
(5)) is also reduced. After all the BSs have zero strain index,
the power control operations are done so as to minimize the
overall system latency. For this, one by one the BSs reduce
their transmit power by ω and the system latency with the
new set of power levels is stored in the vector Γpc (lines 10-

Algorithm 2 Green Energy and Delay Aware Power Control
Algorithm

1: Initialize: Pt(j) = Pmax, ∀j ∈ B
2: Compute Ψ for all BSs
3: Ψ(j) = max(0,Θ(j)− 1) +max(0, ρj − 1)
4: while max(Ψ) > 0 do
5: a. g : arg max

j∈B
Ψ

6: b. Pt(g) = max(0, Pt(g)− ω) ;
7: end while
8: Latency reduction = True;
9: while Latency reduction = True do

10: Γold= network latency with power vector P .
11: for j = 1 : |B| do
12: Pcurr = Pt
13: Pcurr(j) = max(0, Pt(j)− ω)
14: Compute network latency for power vector Pcurr

and store in Γpc(j)
15: if max(Θ) > 1 then
16: Poss(j)= False
17: else Poss(j)= True
18: end if
19: end for
20: a. h : index of BS having Poss = True for which

power control leads to minimum network latency (Γpc)
21: b. Set Γnew = Γpc(h)
22: if Γnew < Γold then
23: Pt(h) = max(0, Pt(h)− ω) ;
24: else
25: Set Latency Improvement = False
26: end if
27: end while
28: for j = 1 : |B| do
29: Lt(j) = P0(j) + ∆Pt(j)ρj
30: Ut(j) = Et(j)− Lt(j)
31: for h = t+ 1 : 24 do
32: Eh(j) = Eh(j) + Ut(j) Lh(j)∑24

m=t+1 Lm(j)

33: end for
34: end for

19 in Algorithm 2). The BS for which the reduction of power
level leads to the largest reduction in the system latency, while
allowing all BSs to have Θ > 1 (which is tracked by the
vector Poss), updates its transmit power level. This process is
continued until there is no further improvement in the system
latency by powering down any of the BS (lines 20-26 in
Algorithm 2). The latency improvement is checked through
the status variable Latency reduction which is true when
the latency reduces by power control operation, and it is set
false otherwise. Note that the latency improvement brought by
the power control operations is because of the load balancing
effect and interference management.

For a given hour, for the transmit power levels determined
by the proposed algorithm, the BSs may not be using all
of the energy allocated to them for that hour. We denote
the leftover energy by U in the algorithm and this energy
is distributed to the subsequent hours in proportion to their
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respective traffic loads (lines 28-34 in Algorithm 2). Note that
with each iteration of the power control operations, the load
levels at each BS change. Thus after each iteration (consisting
of Algorithm 1 followed by Algorithm 2) we use the new load
levels at each BS as the input to Algorithm 1 for the next
iteration. After a few iterations (typically 3-4), solution for
transmit power levels converges. The worst case computational
complexity of the proposed algorithm is given by O(Q|B|2).

Remarks: The power control operations begin with ad-
dressing the energy outage and the traffic overload issue.
Once that is addressed, power level control is done to bring
down the network latency. As the problem of minimizing the
network latency by power control operations is a non-convex
optimization problem, the proposed algorithm obtains a local
optimal solution. The proposed algorithm has the rationale of
a greedy descent approach where the BS whose power level
decrement leads to the largest reduction in the delay is powered
down. Thus the power levels at any subsequent iteration of
power control operation has delay performance better than that
before it. Further, when decrementing the power level of none
of the BSs leads to a reduction in the delay, we return that set
of power levels as the solution of the power level values for
that hour.

C. Green Energy and Delay Aware User Association Policy

The user-association policy determines the MT-BS asso-
ciation at any point of time. In this section we propose a
green energy and delay aware user association policy. For any
given value of power levels and green energy allocation at a
given time, the proposed user association policy contributes to
achieving the global optimal of value of the objective function
(for that set of power levels). The user association policy
operates in an iterative way. The BSs periodically measure
their traffic loads and use it to determine their coalition factors
(defined later in this subsection) which are advertised to the
MTs. These coalition factors are used by the MTs to associate
with the BSs so as to minimize the objective function. The BSs
and MTs update their association until convergence. Note that
this can be easily implemented in a distributed manner where
the BSs have to just periodically broadcast their coalition
factors which can be embedded in the beacon signals of the
BSs [14].

For the user-association problem we consider the trans-
formed problem [P2.1], with an intentionally added barrier
function in the problem [P1] to have delay and energy aware
user association. User association is a continuous phenomenon
where the set of active users in the network keeps changing
and the users associate with the BSs based on the proposed
user-association policy. The proposed user-association policy
is applicable at all times and thus we omit the time index t
in this subsection. Additionally, we use D(ρj) to denote the
delay indicator for the j-th BS (i.e. D(ρj) =

ρj
1−ρj ). Note

that the constraint corresponding to the energy availability at
the BS has been indirectly incorporated in the transformed
objective problem through the barrier function eΘ(ρj). The
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problem [P2.1] is defined as follows

[P2.1] minimize
ρ

X(ρ) =
∑
j∈B

(
D(ρj) + eΘ(ρj)

)
subject to: ρ ∈ F

and its solution involves finding the optimal BS loads (ρ)
which minimizes the value of X(ρ). Note that the value of Θ

for BS j is a function of ρj , as Θ(j) = L(j)
E(j) =

P0+∆P (j)ρj
E(j) .

Thus in this subsection, for notational clarity we denote it
by Θ(ρj). The intuition behind choosing the particular barrier
function (i.e. eΘ(ρj)) is as follows. While deciding the user
association policy, we not only want the user association policy
to bring about delay improvement in the network, but also want
it to account for the green energy available at the BS. Θ(ρj),
has been defined previously as L(j)

E(j) . When a BS is running
low on energy, the value Θ(ρj) grows large and thus the users
will be discouraged to join that BS (as it increases the value
of the objective function sharply). Further, the barrier function
is exponential with respect to the value of Θ(j). Thus after a
certain point when the BS starts running very low on energy,
its contribution to the objective function increases sharply.
Figure 2 shows how the contribution of a given BS j in the
objective function in problem [P2.1] varies with its load and
Θ values.

Since uj(x) ∈ {0, 1}, the set F is not convex. To formulate
our problem [P2.1] as a convex optimization problem, we
begin with relaxing the user-association indicator function to
0 ≤ uj(x) ≤ 1, where uj can be interpreted as the probability
that a user at location x associates with BS j. We denote the
relaxed set of BS loads as F̃ and it is given as

F̃ =
{
ρ | ρj=

∫
R

γ(x)

cj(x)
uj(x)dx, 0 ≤ ρj ≤ 1− ε, ∀j ∈ B,

0 ≤ uj(x) ≤ 1,

|B|∑
j=1

uj(x) = 1, ∀j ∈ B, ∀x ∈ R
}
,

The feasible set F̃ is convex. The convexity of F̃ has been
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proved by the authors in [22]. The problem [P2.2] with the
relaxation condition is given by

[P2.2] minimize
ρ

X(ρ) =
∑
j∈B

(
D(ρj) + eΘ(ρj)

)
subject to: ρ ∈ F̃ .

Remarks: Note that although we formulate the optimization
problem [P2.2] using F̃ , the user association algorithm which
we propose in this paper determines the deterministic user
association (belonging to F). This is shown in Theorems 1
and 2, later in this section.

Next we describe the working of the proposed user associ-
ation algorithm. The proposed user association algorithm is
a distributed MT-BS association scheme. To guarantee the
convergence of the scheme, we assume that traffic arrival and
departure processes occur at a faster time scale as compared
to that at which the BSs broadcast their coalition factors.
Thus, after the BSs broadcast their coalition factors, the users
are able to make their association decisions based on the
broadcast indicators before the next set of BS coalition factors
are broadcast. We also assume that the BSs are synchronized
and the coalition factors are broadcast at the same time. We
begin with describing the user side and the BS side algorithms
for carrying out the proposed user association.

1) User side algorithm: The time between two successive
BS coalition factor updates is defined as the time slot in our
algorithm. At the start of k-th time-slot the BSs send their
coalition factors to the users through a broadcast signal. The
users at location x in turn choose the BS they associate with
based on these coalition factors and the rate offered by the BSs
at their location. We use superscript k to denote the value of a
particular variable at the beginning of the k-th time slot. The
coalition factor, φkj broadcast by BS j at the beginning of the
k-th time slot is defined as

φkj =
∂Xk(ρ)

∂ρkj

=

∂

(∑
j∈B

(
ρkj

1−ρkj
+ e

L(j)
E(j)

))
∂ρkj

=
1

(1− ρkj )2
+

∆P (j)

E(j)
eΘk(j). (8)

The MTs associate with a BS based on the following rule

wk(x) = arg max
j∈B

cj(x)

φkj
, (9)

where wk(x) is the index of the BS with largest value of
cj(x)
φk(j)

and cj(x) is the rate offered by BS j at location
x. The optimality of the proposed user association rule in
terms of minimizing the objective function has been proved
in the subsequent part of this section. The users update their
association functions as

ukj (x) =

{
1 if j = wk(x)
0 otherwise . (10)

For an individual user, the computational complexity of the

proposed user side algorithm is O(|B|).
2) BS side algorithm: The BSs measure their load levels

at the end of the k-th time slot which we denote by Tj(ρ
k
j )

and it can be given as

Tj(ρ
k
j ) = min

(∫
R

γ(x)

cj(x)
ukj (x)dx, 1− ε

)
. (11)

After measuring this traffic load, the BS updates its traffic
load to be used in evaluating the next coalition factor to be
broadcast for time slot k + 1 as [22]

ρk+1
j = θρkj + (1− θ)Tj(ρkj ) (12)

with 0 < θ < 1 being an averaging exponential factor.
Next, we present the proofs to show the optimality and

convergence of the proposed user association algorithm.
Lemma 1. The objective function X(ρ) =∑
j∈B

(
D(ρj) + eΘ(ρj)

)
is convex in ρ when ρ is defined on

F̃ .

Proof. To prove this we show that O2X(ρ) > 0. This can
be shown as follows. We consider the value of our objective
function as

X(ρ) =
∑
j∈B

(
D(ρj) + eΘ(ρj)

)
=
∑
j∈B

(
ρj

1− ρj
+ e

P0+∆P (j)ρj
E(j)

)
. (13)

The first and second order derivatives of the objective function
with respect to ρ are given by

OX(ρ) =
∑
j∈B

(
1

(1− ρj)2
+

∆P (j)

E(j)
eΘ(ρj)

)
(14)

O2X(ρ) =
∑
j∈B

(
2

(1− ρj)3
+

(
∆P (j)

E(j)

)2

e
P0+∆P (j)ρj

E(j)

)
.

(15)

Note that the term O2X(ρ) above is always positive as it is
sum of terms which are all non-negative and the term 2

(1−ρj)3

is positive for all the BSs. This proves that the objective
function X(ρ) is convex with respect to ρ. �

Remarks: The proof above is based on the fact that we are
considering steady state analysis of the system and thus we
can assume the following [10], [22], [23]:

∂f(ρj)

∂ρg
= 0 , j 6= g (16)

where f(ρj) is purely a function of ρj and does not depend
on ρg (g 6= j).

Lemma 2. A unique optimal user association ρ∗ ∈ F̃ exists
which minimizes X(ρ) =

∑
j∈B

(
D(ρj) + eΘ(ρj)

)
.

Proof. This follows from the fact that the objective function
X(ρ) is a convex function of ρ when ρ ∈ F̃ (as shown in
Lemma 1). �

Lemma 3: When ρk 6= ρ∗, then T (ρk) provides a descent
direction for X(ρk) at ρk.
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Proof. As the function X(ρ) is a convex function of ρ when ρ
is defined on F̃ , this lemma can be easily proved by showing
< OX(ρk), T (ρk)) − ρk >≤ 0 (where < a, b > denotes the
inner product of vectors a and b). Let uj(x) and uTj (x) be
user association indicators which result in BS traffic ρkj and
Tj(ρ

k
j ), respectively. Then the inner product is given by

< OX(ρk), T (ρk)− ρk >

=
∑
j∈B

(
1

(1− ρkj )2
+

∆P (j)

E(j)
eΘk(ρj)

)(
Tj(ρ

k)− ρkj
)

=
∑
j∈B

(
1

(1− ρkj )2
+

∆P (j)

E(j)
eΘk(ρj)

)

×

(∫
R

γ(x)(uTj (x)− uj(x))

cj(x)
dx

)

=

∫
R
γ(x)

∑
j∈B

(
1

(1−ρkj )2 + ∆P (j)
E(j) e

Θk(ρj)
)

(uTj (x)−uj(x))

cj(x)
dx.

Note that

∑
j∈B

(
1

(1−ρkj )2 + ∆P (j)
E(j) e

Θk(ρj)
)

(uTj (x)− uj(x))

cj(x)
≤ 0

holds because uTj (x) from (9) and (10) maximizes the value
of cj(x)(

1

(1−ρk
j

)2
+

∆P (j)
E(j)

eΘ
k(ρj)

) . Thus as a result we can claim that

< OX(ρk), T (ρk)− ρk > ≤ 0 which proves the lemma. �

In Theorems 2 and 3, we prove the convergence and opti-
mality of the proposed user association scheme, respectively.

Theorem 1: The traffic load ρ converges to the traffic load
ρ∗ ∈ F .

Proof. To prove this, we show that ρk+1−ρk is also a descent
direction of X(ρk). Considering the following expression we
have

ρk+1
j − ρkj = θρkj + (1− θ)Tj(ρkj )− ρkj

= (1− θ)(T (ρkj )− ρkj ). (17)

Now, based on Lemma 3, we have already shown that
(T (ρk) − ρk) is the descent direction of X(ρk), and addi-
tionally we have (1 − θ) > 0 as 0 < θ < 1. Thus even
ρk+1 − ρk gives the descent direction of X(ρk). Further, as
X(ρk) is a convex function we can easily state that X(ρk)
converges to the user association vector ρ∗. Suppose X(ρk)
converges to any point other than X(ρ∗). Then ρk+1 again
gives a descent direction so as to decrease X(ρk), which is
contradiction to the assumption of convergence. Additionally,
as ρk is derived based on (9) and (10) where uj(x) ∈ {0, 1},
ρ∗ is in the feasible set F . �

Theorem 2: If the set F is non-empty and the traffic load
ρ converges to ρ∗, the user association corresponding to ρ∗

minimizes X(ρ).

Proof. Let u∗ ={u∗j (x)|u∗j (x) ∈ {0, 1},∀j ∈ B,∀x ∈ R} and
u = {uj(x)|uj(x) ∈ {0, 1},∀j ∈ B,∀x ∈ R} be the user
association corresponding to ρ∗ and ρ, where ρ is some traffic
load vector satisfying ρ ∈ F . Let ∆ρ∗= ρ− ρ∗. As X(ρ) is a
convex function over ρ, the theorem can be proved by showing
< OX(ρ∗),∆ρ∗ > ≥ 0. In the proof below, we substitute
∂X(ρ∗)
∂ρ∗j

as φj(ρ∗j ) for notational clarity (these expressions are
identical as shown in the derivation leading to (8).

< OX(ρ∗),∆ρ∗ > =
∑
j∈B

φj(ρ
∗
j ) (ρ− ρ∗)

=
∑
j∈B

(∫
R

γ(x)(uj(x)− u∗j (x))

cj(x)φ−1
j (ρ∗j )

dx

)

=

∫
R
γ(x)

∑
j∈B

(uj(x)− u∗j (x))

cj(x)φ−1
j (ρ∗j )

dx.

But as optimal user association is determined by the following
rule

u∗j (x) =

{
1, if j = arg max

j∈B

cj(x)
φj(ρ∗j ) ,

0, otherwise.
,

we thus have,∑
j∈B

u∗j (x)

cj(x)φ−1
j (ρ∗j )

≤
∑
j∈B

uj(x)

cj(x)φ−1
j (ρ∗j )

. (18)

Hence, < OX(ρ∗),∆ρ∗ > ≥ 0 which proves the theorem.
�

We note that the proposed scheme does not achieve the
global optimal solution. The proposed scheme uses power
contol operations and user association reconfiguration to man-
age the network delay and green energy usage. Due to non-
convexity of the delay with respect to the power control oper-
ations, the proposed scheme does not obtain a global optimal
solution but a locally optimal solution (as explained in Section
V-B). However, for BSs operating at any given power levels
(such as those obtained by our power control mechanism),
the user-association mechanism obtain the globally optimal
solutions for the relaxed optimization problem as discussed in
Section V-C.

The overall worst case complexity of the proposed GAURA
scheme for the centralized server is O(Q|B|2) which results
from the operations required to determine the power levels of
the BSs during the different hours for the day (Section V-B).
For the MTs, the complexity is O(|B|) whereas for the BSs it
is O(1) which come from the user-association algorithm.

VI. NUMERICAL RESULTS

To validate the performance of the proposed scheme, we
consider a 3G BS deployment by network provider Vodafone
near Southwark, London, UK in an area of 1 km2 with 6 BSs
as shown in Figure 3. We assume that 12 V, 205 Ah flooded
lead acid batteries are used by the BSs. Each BS is assumed
to be equipped with PV panel of 6 kW DC rating and 10
batteries. We consider a carrier frequency of 2.5 GHz and 10
MHz bandwidth with full frequency reuse. We take the noise
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Fig. 3. 3G BS deployment near Southwark (London).

power to be -174 dBm/Hz. We assume log normal shadowing
with standard deviation 8 dB with the correlation distance for
shadowing taken as 50 m [37]. The path loss, denoted by PL
has been modeled as [37]

PL(dB) = 40(1− 4× 10−3hBS)log10(R)− 18log10(hBS)

+21log10(f) + 80 (19)

where R is the distance between the BS and the MT, hBS
is the BS antenna height above rooftop and f is the carrier
frequency in MHz. Based on the suggestions from the baseline
test scenario mentioned in the IEEE 802.16 evaluation method-
ology document [37], we take hBS as 15 metres and the carrier
frequency is 2.5 GHz. Thus, the path loss is calculated as

PL(dB) = 130.19 + 37.6 log(R). (20)

A homogeneous Poisson point process is used to generate the
file transfer requests. The rate of the Poisson process depends
on the hour of the day, with the smallest number of file transfer
requests in the morning (2-5 a.m.) with an average of 20
requests (equivalently, 20 active users) per unit area (km2) and
the largest number of requests in the evening (5-7 p.m.) with
an average of 200 requests per unit area. To model temporal
traffic dynamics, a new spatial profile of file transfer requests
is generated after every 2 minutes. Each file transfer request
is assumed to request 50 KB of data traffic to be served. The
entire area (of 1 km2) is divided into 1600 locations with each
location representing a 25 m x 25 m area.

For performance analysis we consider solar insolation on
12th January of typical meteorological year (TMY) data for
London from the NREL database [28]. The total energy
harvested on this day by a PV panel with 6 kW DC rating
is 8.67 kW. P0, Pmax and ∆ for the BSs are taken as 412.4
W, 40 W and 22.6 respectively [27]. Scr is taken as the energy
required to power the BS to operate for at least 5 hours. To
avoid battery degradation, we assume that the batteries are
disconnected from the BS if the battery level goes below a
certain threshold state of charge, Sc = νScap, at any point of
time. Here Scap is the battery capacity and ν is the threshold
which decides the charge level below which the battery is
not allowed to discharge. ν, is taken as 0.7. Bini has been
randomly chosen for different BSs. ω, the granularity of power

control has been taken as 5 W. We assume that a BS is turned
off when its transmit power level is 0 W. The averaging factor
for the BS side algorithm θ, has been taken as 0.95.

As a benchmark for comparison, we consider a Best-Effort
scheme where all BSs operate with transmit power 20 W and
a MT associates with the BS that has the strongest signal
strength at the MT’s location. We also consider ICE [10] and
GALA [9] schemes with BSs operating at transmit power 20
W, and SWES [11] which is a BS on-off scheme with BSs
operating at 40 W when they are switched on. The ICE, GALA
and SWES schemes have been discussed in Section II.

A. Green Energy Performance

Figure 4 shows the battery discharging-charging profiles
for the various benchmarks and the proposed algorithm. For
clarity, battery levels have been normalized with respect to
the maximum battery capacity. It can be seen that the Best-
Effort scheme can lead to some of the BSs to run very low
on energy at the end of the day. Additionally, one of the BS
(BS 4) faces around 6 hours of energy outage during the day.
The ICE scheme does better than the Best-Effort scheme by
trying to equalize the available green energy. However even
in the ICE scheme some of the BSs run low on battery levels
at the end of the day and BS 4 still faces 6 hours of energy
outage during the day. The performance of the GALA scheme
in terms of the battery level profile for the BSs is similar to
that of the Best-Effort scheme and BS 4 faces energy outage
for around 5 hours during the day. Note that the Best-Effort,
ICE and GALA schemes lead to some of the BSs ending up
below the critical battery level (Scr) at the end of the day
which indicates that there would be energy outages in the early
morning hours on the next day. The SWES scheme leads to an
un-even discharge of battery levels (as BSs turn on/off so as
to maximize the number of BSs to be switched off). Although
with this scheme there is no energy outage for any BS during
the day, some of the BSs run very low on energy and face
energy outage at the end of the day. Note that the proposed
GAURA scheme provides a greater capability to avoid uneven
discharging. Additionally, it ensures that the battery level of
none of the BSs goes below the critical level, Scr, at the end
of the day.

Figure 5 shows the average values of battery levels for
the BSs for the various schemes, normalized with respect
to the battery capacity. Note that the Best-Effort, ICE and
GALA schemes can lead to very low values of average
battery level at the end of the day. SWES achieves a higher
average battery level since some of the BSs have higher
battery levels. Additionally, as discussed earlier, due to un-
even discharging some of the BSs can run very low on energy
in the SWES scheme. The average values of battery levels
for the proposed GAURA scheme is greater than the Best-
Effort, ICE and GALA scheme but lower than that of the
SWES scheme. However as discussed earlier, the GAURA
scheme has a more even discharging profile for the various
BSs. Table I summarizes some key parameters quantifying
the battery level variations, energy outage probability and the
delay performance of the BSs for the benchmarks and the
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Fig. 4. Battery discharging-charging profiles for the different algorithms.
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Fig. 5. Average normalized battery charge for the different schemes.

proposed scheme. To quantify the evenness of battery charge
levels in the different BSs, we calculate the variance V ar(B)
which denotes the sum of the variances of the normalized
battery levels of the BSs over the day. V ar(B) is calculated
as

V ar(B) =

24∑
t=1

B∑
j=1

(
St(j)− S̃t
Scap

)2

(21)

where St(j) is the battery level of j-th BS at the end of the
t-th hour and S̃t is the average value of battery levels of the
different BSs at the end of t-th hour. Note that for the SWES
scheme this parameter is highest as battery charge profiles of
different BSs are very un-even. For the proposed GAURA
scheme it is the lowest indicating most even discharging
among the batteries. Õ denotes the energy outage probability
and is calculated as

Õ =
Hout

24B
(22)

TABLE I
COMPARISON OF AVERAGED METRICS FOR DIFFERENT SCHEMES

Scheme V ar(B) Õ Pavg(W ) Bavg Davg

Best-Effot 0.86 7.66 544 0.36 6.72
ICE 0.60 7.66 610 0.33 12.73

GALA 0.82 5.55 562 0.34 5.6
SWES 3 2.78 400 0.47 6.85

GAURA 0.43 0 475 0.44 4.96

where Hout denotes the number of outage events in the
network during the day (i.e. 24 hours of operation). Note
that the energy outage probability for the proposed GAURA
scheme is 0 whereas for all other schemes there are some
energy outage events during the day. Further Pavg denotes the
average BS power consumption during the day. Note that the
average BS power consumption for the Best-Effort, ICE and
the GALA schemes are significantly higher than the SWES
and GAURA scheme which lead to lower average battery level
at the end of the day which is denoted by Bavg in the table.

B. Delay Performance

Figure 6 shows the delay performance for the schemes
during the different hours of the day. It can be observed
from the figure that GALA has good latency performance as
compared to the Best-Effort scheme. However, as discussed
earlier, GALA is unable to avoid energy outages in some of
the BSs and from some of the BSs running very low on energy
at the end of the day. Note that in these schemes the delay
increases for the hours when there is an outage event. The
performance of the ICE and SWES schemes is worse than
the performance of the Best-Effort scheme in terms of the
delay performance. Note that as compared to the Best-Effort
scheme, the benefit of more even discharging of batteries in the
ICE scheme and the benefit of higher average battery levels
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Fig. 6. Delay performance for the different schemes.

in the SWES scheme are at the cost of increased delay. In
contrast, the proposed GAURA scheme reduces the system
latency while simultaneously ensuring that the battery levels
do not become very low. The last column in Table I lists
the average delay value denoted by Davg for the different
schemes. Note that the proposed GAURA scheme gives the
lowest average delay followed by GALA, Best-Effort and the
SWES scheme, and the value is largest for the ICE scheme.

C. Transmit Power Levels

Figures 7 and 8 show the transmit power levels at which
the BSs operate during the different hours of the day for
the SWES and the proposed GAURA scheme, respectively.
The BSs in Best-Effort, ICE and GALA schemes operate at a
fixed transmit power level of 20 W. Note that although SWES
can reduce the energy consumption during morning hours by
completely switching off most of the BSs, the battery levels
fall quickly during afternoon and evening hours on account
of most of the BSs being switched on and operating at full
transmit power. While GAURA also switches off most of
the BSs during morning hours, it avoids a quick decrease in
the battery levels during the afternoon and evening hours by
adapting the transmit power levels of the BSs to lower values,
and the adjustments are done in such a way that the system
latency is improved. BSs with very low energy shut down
during the early morning hours, and further even during other
hours the BSs prefer to operate at lower power levels to save
energy.

Remarks: Note that the proposed model assumes perfect
knowledge of solar energy and network traffic by the central
server. Additional simulations conducted by us show that
the performance degradation is not significant even in the
presence of 5-10% error in the predicted values of solar
energy and network traffic. Figure 9 shows these results. The
simulation results correspond to scenarios where the errors
in the harvested energy and traffic load follow independent
Gaussian distributions with zero mean and standard deviation
(SD) of 5% and 10% of the actual value. Note that a SD of 0%
represents no prediction error. As can be seen, the presence
of errors does not have much of an impact.

1 3 5 7 9 11 13 15 17 19 21 23
0

5

10

15

20

25

30

35

40

45

50

55

60

65

Hour of the day

T
ra

ns
m

it
 p

ow
er

 le
ve

l (
W

)

 

 
BS1
BS2
BS3
BS4
BS5
BS6

Fig. 7. Transmit power levels for various BSs during the day (SWES).
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Fig. 8. Transmit power levels for various BSs during the day (GAURA).

1 3 5 7 9 11 13 15 17 19 21 23
0

2

4

6

8

10

12

14

Hour of the day

N
et

w
o

rk
 la

te
n

cy
 in

d
ic

at
o

r 
(D

)

 

 
SD =  0%
SD =  5%
SD =  10%

1 3 5 7 9 11 13 15 17 19 21 23
0.4

0.45

0.5

0.55

0.6

0.65

Hour of the day

A
ve

ra
g

e 
n

o
rm

al
iz

ed
 b

at
te

ry
 le

ve
l

 

 

SD =  0%
SD =  5%
SD =  10%

Fig. 9. a. Average normalized battery level for GAURA with prediction error
b. Delay performance for GAURA with prediction error.

VII. CONCLUSION

This paper proposed a framework for avoiding energy
outages and improving the quality of service performance
for a network of off-grid solar powered BSs. We formulated
the problem of minimizing the system latency given the
constraints on the green energy availability at the BSs. We
first proposed a methodology for intelligently allocating the
green energy available to the BSs over time. Next, with
the given energy allocation, we addressed the problem of
avoiding energy outages and improving the QoS using the
proposed green energy and delay aware power control and user
association algorithm. The proposed framework was evaluated
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using real BS deployment data and solar energy traces, and it
outperforms existing benchmarks in terms of reducing energy
outages while ensuring good delay performance.
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