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Abstract—Base stations (BSs) equipped with resources to har-
vest renewable energy are not only environment-friendly but can
also reduce the grid energy consumed, thus bringing cost savings
for the cellular network operators. Intelligent management of
the harvested energy can further increase the cost savings.
Such management of energy savings has to be carefully coupled
with managing the quality of service so as to ensure customer
satisfaction. In such a process, there is a trade-off between the
energy drawn from grid and the quality of service. Unlike prior
studies which mainly focus on network energy minimization,
this paper proposes a framework for jointly managing the
grid energy savings and the quality of service (in terms of
the network latency) which is achieved by downlink power
control and user association reconfiguration. We use a real BS
deployment scenario from London, UK to show the performance
of our proposed framework and compare it against existing
benchmarks. We show that the proposed framework can lead
to around 60% grid energy savings as well as better network
latency performance than the traditionally used scheme.

Index Terms—Green communications, resource management,
solar energy, base stations, cellular networks.

I. INTRODUCTION

To cater to the increasing cellular traffic demands, there
have been increasing number of cellular BSs deployments by
telecom operators across the globe. This has not only increased
the operational expenditure of the operators, but has also led
to an increase in the contribution of cellular networks to the
global carbon emissions. This has led to a number of initiatives
from not only telecom operators but also government agencies
and researchers to bring down the power consumption in these
networks. Base stations contribute to around 60% of the power
consumption in cellular networks. Thus powering base stations
by renewable energy is one of the promising solutions for
addressing this problem and such a solution has been already
adopted by many telecom operators across the world [1].
According to a survery by Global System Mobile Association
(GSMA) these deployments grew from just 9000 in the year
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2010 to 43,000 in year 2014, showing 5 fold increase in a
span of 4 years [2].

Locations that are very rich in solar resources can have
base stations completely powered by solar energy. However,
for locations with occasional bad weather periods, the size of
harvesters and storage devices (e.g. PV (photo-voltaic) panels
and batteries) required becomes very large which leads to
very high CAPEX (capital expenditure), thus discouraging
operators from adopting such a solution [3]. In such scenarios
and in scenarios where the BSs are already connected to the
grid, using renewable energy in conjunction with grid energy is
a more viable approach. Powering the BSs by solar energy can
reduce the grid energy consumption. Intelligent management
of the harvested solar energy by such BSs and cooperation
among them can lead to further reduction in the grid energy
consumption in the network. Note that while doing so, the
operators also have to take into account the quality of service
(QoS) offered to the users in terms of the network latency,
and have to consider the trade-off between cost savings and
the network latency. Existing literature on joint management
of grid energy consumption and the network latency uses
only user-association reconfiguration to achieve the same.
Additionally, some works propose dynamic BS operation (i.e.
BS on/off strategies) which is also a means of bringing about
grid energy savings through network energy minimization. In
contrast to these approaches, we propose the use of intelligent
green energy allocation and the use of down-link power control
and user-association reconfiguration to address the problem.
The efficacy of the proposed methodology has been shown
by simulations using real BS deployment and solar energy
traces for London, UK and by comparison against existing
benchmarks. The major contributions of this paper can be
summarized as follows:

e« We consider a network of BSs powered by grid and
solar energy, and formulate the problem of managing the
grid energy savings and its trade-off with the network
latency. We define a trade-off factor which captures the
contribution of the grid energy consumed and the system
latency in the objective function.

o Unlike existing literature which has used only user-
association reconfiguration as a means to manage the
grid energy savings while accounting for the network
delay performance, we use BS downlink transmit power
control in addition to user-association reconfiguration and
show its performance gains. As the problem of downlink



power control is non-convex with respect to the problem
of managing the grid energy savings and network delay,
we propose a greedy heuristic algorithm to achieve the
power control operations. We also provide an optimal
user-association policy which minimizes the objective
function value given the BSs operating at power levels
decided by the power control algorithm.

o Majority of existing literature dealing with green cellular
networks considers a time snapshot problem where the
consumption of resources is minimized for an instant of
time. However, such schemes do not address the problem
of green energy allocation over time. In this paper, we
propose a simple algorithm which guides the temporal
allocation of green energy over time so as to maximize
the benefit derived from it.

o We provide numerical results showing the trade-off be-
tween the grid energy consumption and the network
latency for the proposed scheme. We also show the
superiority of the proposed scheme over existing state-
of-the-art benchmarks.

The rest of this paper is organized as follows. Section II
presents a brief overview of related works. Section III de-
scribes the system considered in the paper. Section IV presents
the problem formulation. Section V presents the solution
methodology. Section VI presents the numerical results and
Section VII concludes the paper.

II. RELATED WORK

One of the possible ways of bringing grid energy savings in
a network of grid-connected solar-powered BSs is to reduce
the energy consumption in the network. In related work,
authors in [4] propose dynamic BS switching to minimize the
network energy consumption. The energy savings in dynamic
BS switching is brought by switching off some of the BSs
during low traffic periods. The authors in [5] present a practical
scheme (named SWES) for the implementation of dynamic
BS switching for a network of BSs. The scheme is a greedy
heuristic which seeks to determine the minimum number of
BSs to be switched on in order to serve the given area with
a desired quality of coverage. BS switching for renewable
energy powered cellular networks is considered in [6]. The
problem of grid energy minimization is formulated and the
BS on/off strategy to solve the problem is derived through a
two-stage dynamic programming algorithm. In [7] the authors
consider the problem of resource allocation and admission
control in an OFDMA network and propose an algorithm
for dynamic power adaptation of femtocells to minimize the
overall power consumption of the network. An energy-efficient
scheme for resource allocation in OFDMA systems with
hybrid energy harvesting BSs is proposed in [8]. The scheme
uses a stochastic dynamic programming approach for power
allocation to minimize the network energy consumption. The
authors in [9] propose an algorithm for green energy aware
load balancing. The approach is based on tuning the beacon
power levels (and not the actual transmit power levels) of
the various BSs. By doing so, users are discouraged from
joining BSs running low on green energy. In [10], the authors

propose a Lyapunov optimization approach for bringing grid
energy savings in a network of BSs where some of the
BSs are connected to the grid whereas some are not. Note
that all of the above studies primarily focus on minimizing
the overall network energy consumption and most of them
neglect the effect of doing so on the delay experienced by the
users in the network. Some of the recent studies addressing
network delay include [11] which proposes a distributed user
association scheme using primal-dual formulation for traffic
load balancing. The authors of [12] propose an «-optimal
user association for the flow level cell load balancing with
the objective of maximising the throughput or minimizing
the system delay. However the above-mentioned schemes
([111,[12]) do not account for the green energy availability
at the BSs.

Methodologies which consider the green energy availability
in addition to the delay performance of the system include
[13], [14], [15] and [16]. These studies address the issue of
bringing grid energy savings while managing the quality of
service (in terms of the network latency) [17]. The authors
in [13]-[14] propose the GALA scheme which accounts for
the green energy availability at the BS while making user-
association decisions. The authors formulate the problem of
minimizing the sum of weighted latency ratios of the BSs
where the weights are chosen to account for the green energy
availability at the BSs. The authors of [15] consider BSs
powered by hybrid supplies and formulate the problem of
minimizing the weighted sum of the cost of average system
latency and the cost of on-grid power consumption. The
authors of [16] also consider BSs powered by hybrid supplies
but formulates the problem of lexicographic minimization of
the on-grid energy consumption so as to reduce both total and
peak on-grid energy consumption. The framework proposed in
[16] introduces a penalty function to account for the network
latency. The approach in [13], [15] and [16] to manage the
available energy and network latency is by reconfiguring the
BS-MT (mobile terminal) user-association. In contrast to such
an approach, this paper presents a methodology for energy and
latency management based on BS downlink transmit power
control in addition to user association reconfiguration, and
demonstrates its performance gains over existing approaches.
The use of intelligent temporal energy allocation has been
shown to have a superior performance in terms of managing
the green energy and delay for an off-grid scenario in our
previous work [18] [19]. In this paper we use insights from
[18] and propose a temporal energy allocation scheme for grid-
connected solar powered BSs. The works in [18], [19] focus on
an off-grid scenario where the BSs are solely powered by solar
energy, and consider the problem of minimizing the network
latency. However this paper considers the scenario where the
BSs not only harvest solar energy but can also draw energy
from the grid. Thus BSs may draw energy from the grid to
improve the network latency. The work in [18], [19] have
only one parameter (i.e. the network latency) to be optimized.
In contrast, the scenario of this paper requires both network
latency and grid energy drawn to be optimized, which makes
the problem more challenging.



III. SYSTEM MODEL

In this section we describe the traffic model considered in
the paper. We also describe the formulation of the BS load
and the network latency.

A. Traffic Model, BS Load and Network Latency

Let us consider a region X served by a set, B, of BSs.
We use z € X to denote the user location. For simplicity
we primarily focus only on downlink communication (i.e.
BSs to mobile terminals (MTs)). We denote the downlink
transmit power levels of the BSs by a vector P where the
transmit power levels can take discrete values i.e. P(j) €
{0,&,2¢,- -+, Ppax }» where j is the index of the BS, ¢ is the
granularity of power control and P,,,, is the maximum trans-
mit power level allowed. File transfer requests are assumed
to arrive following a Poisson point process with an arrival
rate A\(x) per unit area at location x, with average file size
of 7(z) bytes. We define the traffic load density at location
x as y(z)=A(z)7(x), where y(x) captures the spatial traffic
variability. The rate offered at location = served by a BS j can
be generally given using the Shannon-Heartley theorem [12]
as

rj(x) = BWjlogy(1 4+ SINR;(x)) (1)

where BW; is the total bandwidth offered by the j-th BS and
SINR;(z) is given by

9(x)P(5)

R S S} (SN
where g;(x) denotes the channel gain between the j-th BS and
the user at location « which accounts for the path loss and the
shadowing loss, o2 denotes the noise power level and I; is the
set of interfering BSs for BS j. This paper assumes perfect
information of the channel gain which may be estimated given
the topological details of the terrain, and drive-through site
surveys. We introduce a user association indicator function
¢;(x) which indicates if the user at location x is served by
BS j. If that is true then this variable has the value 1, and 0
otherwise. The BS load p;, which denotes the fraction of time
the BS j is busy serving its traffic requests can thus be given

(x)

as [13]
”:Anw

Definition 1: We denote the feasible set of the BS loads p =
(p1,--+,pip|) by F which can be defined as

= {ete 30

gi(x) € 0,1}, qj(x) =1, Vj€B, Vx € X},
JjEB

g;(x)dz. 3)

qj(x)dx7 0< Pj < Pth, vj € 87

where p;p, is a threshold on the permitted BS load to avoid
congestion at a given BS.

Note that as traffic requests follow a Poisson processes, the
sum of such requests at a given BS is also a Poisson process.
Further, as the BS’s service time follows a general distribution,
its operation can be modeled as a M/G/1 processor sharing

queue. The average number of flows at BS j can thus be given
by lf—"p] [15]. According to Little’s law, the delay experienced
by a traffic flow is directly proportional to the average number
of flows in the system [20]. Thus we take the total sum of the

flows in the network as the network latency indicator, D, which

is given by [15]
p=Y P 4)
jeB 1P

Note that this indicator has been widely used in existing
literature (e.g. in [5], [12], [13], [21]) to quantify the network
latency performance.

B. BS power consumption

The base station power consumption consists of a fixed part
and a traffic dependant part. This paper considers macro BSs
where the power consumption for BS j, denoted by L(j), can
be modeled as [22]

L(j) = Py +AP(j)p;, 0<p; <1,0 < P(j) < Prgz (5)

where Py is the power consumption at no load (zero traffic)
and A is the slope of the load dependent power consumption.

C. Solar Energy Resource and Batteries

We consider solar irradiation data provided by National
Renewable Energy Laboratory (NREL) for London, UK [23].
This data is fed to NREL’s System Advisor Model (SAM),
to obtain the hourly energy generated by a PV panel of a
given rating. We assume that the BSs use lead acid batteries
to store the excess energy harvested by the PV panels. These
are a popular choice in storage applications on account of their
lower cost and being more time tested than other alternatives.

IV. PROBLEM FORMULATION

This section describes the problem formulation. We begin
by describing the mechanism for green energy allocation over
time. This mechanism is an important pre-requisite before
formulating the optimization problem which jointly manages
the grid energy savings and the quality of service. After
describing the green energy allocation scheme, we formulate
the optimization problem.

A. Green Energy Allocation

The green energy available to the BSs is in the form of
energy stored in the batteries and the energy harvested during
the day. This budget of green energy available to a BS needs to
be intelligently allocated during the different hours of the day
so as to optimize the use of the green energy, and in turn to
minimize the grid energy usage. The green energy allocation
for a given hour is done based on the energy available in
the BS’s battery at that time and the energy expected to be
harvested in future hours during the day. Additionally, to avoid
battery degradation, we dis-allow the battery from discharging
below a certain state of charge, v B, where B, denotes the
battery capacity and v is a value which decides the lower limit
below which batteries are dis-allowed to discharge. The green



energy budget M, at the beginning of a hour ¢ is the green
energy available for allocation from that hour to the last hour
of the day (i.e. ¢ = 24). Please note that we use the subscript
t to denote the value of the variable during the ¢-th hour
throughout this paper. Considering the t¢-th hour of operation
for the j-th BS, the green energy budget at the beginning of
hour ¢, which is the overall green energy that can be used over
a period begining from time ¢ to the last hour of the day, can
be given as

M, (j) = Bi1(j) = Ber () + Y Ha(G)  (6)
h=t

where B;_; denotes the battery level at the end of the
previous hour, and Z?f:t H,,(j) denotes the green energy to
be harvested during the given hour and the coming hours of
the day. The battery levels are dis-allowed to go below state
of charge vB.,, at any point of time. Because the energy
allocation is done based on the expected energy to be harvested
during the day which is a random process, we add a margin
of safety to reduce the likelihood that the battery level goes
below vBcqp. Thus we take B, = (1 + 3)vBe,, where [
is the safety margin. Based on the information of the energy
budget available, we allocate green energy to the given hour
in proportion to the traffic load in the given hour. Thus the
green energy allocated by the BS j to the hour ¢ is given by

. L.(5)
M) L(j) + Z?:::Hrl L, (j)

Py + APt(j)PE‘
Py + APt(j)PE' + Z?::t+1 Lin(j)

where p§- denotes the load of BS j in the ¢-th hour. For sake
of clarity we use the following notation

A(j) = AP(j)

24
Bi(j) =P+ Y Lm(j)
m=t+1

Gt(j) =

= M.(j)

(7

®)
€))

Thus the green energy allocated for the hour ¢ is given by
A ()P + Po
A (5)p + Bi(j)

Note that the green energy allocated for a given hour cannot
exceed the green energy available to the BS at that time. Thus
we limit the value of G¢(j) to be always below B;_1(j) —
VBup(7)+H,(7) (i.e. the total green energy available for hour
t.) The overall green energy allocated for hour ¢ is therefore
given by

Gi(j) = Me(j) (10)

A(j)p; + Po
A1 (7)p5 + Bi(j)
+(1*At(])) (Bt—l(])fyBcap(J)‘i’%t(])) (11)

where A.(j) is an indicator variable defined below. If

N A(G)pt+P . . .

M“J)W < Bi1(j) = vBeap(j) + Hi(j), then
the BS has sufficient energy to satisfy the proportional energy
allocation in (10) and the variable A;(j) is set to 1, and to

0 otherwise. For ease of notation, we denote (B;_1(j) —

Gt(j) :At(j)Mt(j)

Algorithm 1 The LPEA Algorithm
1: for j =1:8 do o
2 My(§)= Bi1(j) — Ber(j) + 25— Hald)s

i pf < POt then
4: At (]) =1

5: else

6: Ay (]) =0

; end if Ao+ P

Gi(j) = MM 2. Gy iBe)

9 +(1=A(j)) (Bi-1(j) —vBeap (i) +He(4))
10: end for

VBeap(j) + Hi(j)) by Ginresh- Then, Ai(j) =1 when

A(4)pt

M < Gth’r'esh

A (7)p; + Bi(j)

= p; < Bt(j)Gthr.esh - Mt(])PO (12)
Mt (.7) - Gthresh

and if the above inequality is not satisfied, A;(j) = 0.

The methodology for assigning the green energy described
above has been summarized in Algorithm 1 as the load
proportional energy allocation (LPEA) algorithm.

This paper assumes that all energy allocation operations
are done by a central server. The central server is assumed
to have perfect information of the renewable energy that is
harvested during the day which can be implemented in real
life using weather forecasts. In existing literature there are
many methodologies which predict the solar energy generation
(e.g. [24], [25]). Integrating them with weather forecasts can
give a more accurate prediction. The proposed algorithm needs
only an hourly estimate of the solar energy generation for the
day (i.e. an estimate of solar energy generation for the whole
day with time granulaity of one hour), making the task even
simpler. Also, for the initial green energy allocation (using
the LPEA algorithm), any arbitrary load profile (like the one
in [3] or [26]) can be used. Note that this energy allocation
is just an initialization step and the green energy allocation
is later iteratively updated after the downlink power control
operations as discussed in Section V-B.

The green energy allocated to the BS in a given hour, G,
is used to power the BS. If it not sufficient, then additional
energy is drawn from the grid. Thus the grid energy consumed
by the network during hour ¢, denoted by &, is given by

M, (j)

gt:Zmax (0, Lt(5) = Ge(5)) -

JjEB

(13)

Lemma 1: Grid energy is drawn by BS j in the t-th hour
only if its load value is greater than a certain value given as
follows

M (§)—B:(4) N
R A R S )
J t—10J Xltp(]?) t\J 0 At(]) =0.

Proof. Considering BS 7, the grid energy drawn by the BS
can be written as

E(7)=max (0, L:(j)—G:(j)) . (15)



For energy to be drawn from the grid we need

Li(j) — G(j) > 0. (16)

Note that for clarity, we omit the subscript ¢ in the later part of
the proof. First we consider the case when the BS has sufficient
green energy for the load proportional allocation in (10) (i.e.
A(j) = 1). From (5) and (11), substituting the values of L,
G and A(j) in 16 we have

A(j)pj + Po
A(j)p; + B(j)
. M(j)
= (A(Y)p; + Py (1—, - >0. 17
(Aes P 4050, + BG)
Note that as p;, A(j) and Py are all positive, for the above
inequality to be true we require the following

Po+ AP(j)p; — M(j) >0

M(j)
L AGe +BG)
= p;> A’%)B(j) (18)

Next for the case when A(j) = 0, (16) can be written as
P+ AP(j)pj — (Bi-1(j) — VBcap(j) +Hi(§)) >0
Bi—1(j) = vBeap(j) + Hie(j) — Po
- . (19)
A(j)
This completes the proof of the lemma. ]

= pj >

B. Problem Formulation

We consider the following problem of minimizing the grid
energy drawn and its trade-off with the network latency which
is formulated as problem [P1] and given by

24
[P1] minimize > (Di(Pi, pr) + 1€y, py))
b P t=1
subject to: py € F

where 7 is a parameter which controls the trade-off between
grid energy savings and the delay performance. Note that for
n = 0, the problem reduces to minimizing the network latency,
whereas for  — oo the problem becomes minimizing the grid
energy consumed without considering the delay performance.
We propose to solve the above problem by using BS downlink
transmission power control and user-association reconfigura-
tion which involves suitably tuning the BS transmit power
levels (P;) and managing the BS loads (p;).

V. SOLUTION METHODOLOGY

This section presents the proposed methodology for ad-
dressing the problem [P1]. We address the problem using BS
downlink power control and user association reconfiguration.
The proposed framework for addressing the problem is named
Green energy and Delay aware - Renewable Asset and re-
source Management (GD-RAM).

The problem [P1] is very challenging on account of the
complexity arising from the coupling between BS power levels

Algorithm 2 Sequence of operations

1: for t=1:24do

2 while power control convergence do

3: while user association convergence do

4 Perform green energy allocation for given hour
using the LPEA algorithm.

5: Solve user association problem for the given
hour using the allocated green energy and the predicted
traffic.

6: end while

Solve power control problem for the underlying
user-association determined in the inner loop.
end while
9: end for

and the resulting user-association. Thus to make our analysis
tractable, we make the assumption of time scale separation
between the user association process and the period over which
the power level control decisions are made. The user associa-
tion process happens at a much faster time-scale than the time
scale at which the green energy availability and the network
traffic load vary. Studies have shown that the green energy
availability and traffic pattern is nearly constant during a given
hour of the day [5]. Further, as the time scale for determining
the power levels of the BSs is of the order of that of traffic
pattern and green energy availability variation (i.e. hours), it is
much greater than that of the user-association process. Hence,
with this assumption we decompose our problem into two sub-
problems, in which the BS power control problem is solved
at a slower time scale than the user association problem. The
BS power level decisions are made on an hourly scale whereas
the user-association scheme is periodically updated on a faster
time scale. These sub-problems are given as follows:

1) User association problem: For BSs operating with
power levels specified by a vector P, the user association
problem aims at load balancing (balancing the BS loads) so
as to find the optimal BS load vector p that minimizes the
objective function. This problem is denoted as [P-UA] and
can be expressed as

[P-UA] minin}_ize Di(Py, pt) + nE( Py, pr)-

pec (20)
2) BS power control problem: The BSs try to adjust their
power levels so as to minimize the objective function and the

problem is denoted by [P-PC] which can be given as
[P-PC] {Qi(P) = Di(Py) +néu(Py)} -

2y
where P is the set of all possible power level vectors and
Q. (P,) is defined as the solution to the user association prob-
lem in (20). Next, Section V-A describes the solution method-
ology for addressing the user association problem whereas
Section V-B describes the solution methodology for addressing
the BS power control problem. Algorithm 2 summarizes the
sequence of the various operations inovolved in solving the
problem P1.
Remark: Note that problem P-UA does not have a sum-

minimize
P.CP



mation over time because user-association is a continuous
process where the set of active users changes with time.
However the active users associate with the BSs according
to the proposed user-association policy so as to minimize
the objective function at a given time instant. Further the
problem P-PC does not have summation because it is solved
individually for every hour of the day, with user-association
determined using the average traffic profile for that given hour.

A. Optimal User Association Policy

In this section we propose the user association policy which
achieves the global optimal of value of the objective function
(with BSs operating at a given set of power levels).

Since ¢;j(z) € {0,1}, the set F is not convex. Thus,
to formulate the problem [P-UA] as a convex optimization
problem, we relax the constraint to 0 < g; (z) < 1. Here q;
can be interpreted as the probability that the user at location
x associates with BS j. The relaxed set of BS loads, F , can
be given as

rj(x)

f'={p|pj=/X
151

0<g (z) < 1,2(]]-(:1:) =1, VjeB, Vre X}.
j=1

()

qj(x)dx7 0< Pj < Pths v] € 87

The feasible set F is convex. The convexity of F has been
proved by the authors in [12]. The problem [P-UA] with the
relaxation condition is denoted as [P-UAR] and can be given
as

[P-UAR] minimize U(p) = D(p) + n€(p).
pEF

Remark: We drop the subscript ¢ throughout this section
as user association is an continuous process where the set
of active users in the network keeps changing, but at all
times they associate with the BSs according to the proposed
user-association policy. Additionally, we drop P, as the time-
scale of user-association problem is faster than that of the
power control operations, and thus power levels of the BSs
are assumed to be fixed during the user-association operations.
Further for notational simplicity we denote the optimization
function value in the problem [P-UAR] by U(p). Note that
although we formulate the optimization problem [P-UAR]
using F, the user association algorithm which we propose
in this paper determines the deterministic user association
(belonging to JF). This is shown in Theorems 1 and 2.

The working of the proposed user association algorithm is
described as follows. The proposed user association algorithm
operates in an iterative way. The BSs periodically measure
their traffic loads and use it to determine an operational vari-
able (called coalition factors in this section) and advertise it to
the MTs. The mobile terminals choose which BS to associate
with based on these coalition factors in order to minimize the
objective function. The association between the MTs and the
BSs is updated until convergence. To ensure convergence of
the scheme, we assume that the traffic arrival and departure
processes occur at a faster time scale as compared to that at

which the BSs broadcast their coalition factors. This ensures
that the users are able to make their association decisions for
the broadcasted coalition factors before the next broadcast of
coalition factors by the BSs. We assume BSs to be synchro-
nized, thus broadcasting their coalition factors at the same
time. The proposed user-association scheme can be easily
implemented in a distributed way where the BSs periodically
broadcast their coalition factor that can be embedded in the
the beacon signals of the BSs [32] and users can use them to
choose which BSs to associate with as described above.

Next, we begin with describing the user side and the BS
side algorithms for carrying out the proposed user association
mechanism.

1) User Side Algorithm: We define the time between two
successive BS-MT association updates as a time slot in our
algorithm. At the start of k-th time slot, the BSs send their
coalition factors to the users using a broadcast signal. The
users at location x in turn choose the BSs they associate with
based on the coalition factors. In this section, superscript k
is used to denote the value of a particular variable at the
beginning of the k-th time slot. The coalition factor broadcast
by BS j is given as

g UM )
J ap;§

(Mpf+B(j))?
(22)

T AU <1A(j)M(j) By) ~ B )

where (; is a variable which captures whether BS j is drawing
power from the grid. If the BS is drawing power from the grid
then this variable is 1, else it is set to zero. The MTs update
their user association functions as

rj(x)

o (23)

1 if j = argmax
qf(x) = jeB
0 otherwise.

Note that the association functions (g;(z)) are indicator of
which BS the MTs at location z associate with as discussed
in Section III-A. The computational complexity of the user
side algorithm for an individual user is O(|B|).

2) BS side algorithm: At the end of the k-th time slot, the
BSs measure their load levels which we denote by Tj(p%),
and is given as

, (@)
T;(p" :mm(/ q»xd:c,ph>.
J( j) er(l,) J( ) t
After measuring T} (p?), the BS updates its traffic load which

is used to evaluate the next coalition factor to be broadcast for
time slot k + 1 as [12]

(24)

Pyt = apf + (1 - a)T;(pf) (25)

with 0 < a < 1 being an averaging exponential factor.

Next, the proof of convergence and optimality and conver-
gence of the proposed user association algorithm is presented.
We begin by showing that the objective function I/ is convex in
pE F in Lemma 2 which leads to Lemma 3 which shows that
there is an unique optimal user association which minimizes



the objective function.
Lemma 2: The objective function U(p)
convex in p when p is defined on F.

= D(p) +n&(p) is

Proof. This can be proven by showing that V2 (p) > 0. The
objective function can be written in terms of p as

U(p) = D(p) +n&(p)

> (725 96 20) - 60) )

jeB
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We evaluate the first and second order derivatives of the
objective function with respect to p which are given as

> (@

JEB

0t AG) ((1 AG)MG)

VU(p) =

B(j) - P
(A(7)p;+B(1))

)

(27
AGPAGIMG) i s ) o)

Note that all the addition terms in the function above are
non-negative, and W is always positive for all the BSs.
Thus, the above term is always positive which proves that the
function is convex. Also for the case when grid energy is not
drawn, the component in the objective function for a particular
BS just consists of the first term which is always positive. Thus
even for the case when energy is not drawn from the grid, the

objective function is convex in p. ]

v2U(p)

e

jEB

+2nG;

Remark: Note that as we consider the steady state analysis
of the system, the proof above assumes that i p” D = , ] F#F
g ([91, [12], [15]) where f(p;) is purely a function of p; and
does not depend on py (g # ).

Lemma 3: A unique optimal user association p* € F exists

which minimizes U(p) = D(p) + nE(p).

Proof. It has been shown in Lemma 1 that the objective
function U (p) is a convex function of p € F . Thus there
exists a unique optimal p = p* which minimizes U(p). W

Next we prove the convergence of the proposed user-
association algorithm. We begin with proving that T} (p*)
gives a descent direction for U (p*) at p¥ (shown in Lemma
4). Thus after some iterations the traffic load converges which
is proved in Theorem 1. Further, in Theorem 2 we prove that
the trafic load thus obtained minimizes the objective function
U(p).

Lemma 4: For p* # p*, T;(p"*) gives a descent direction
for U(p") at p.

< VU(p"),

Proof. U(p) is a convex function of p € F . Thus the fact
that T'(p*) gives a descent direction to U(p*) at p* can be
easily proved by showing < VU(p*),T(p*)) — p* > < 0
(where < a,b > denotes the inner product of vectors a and b)
[33]. Let ¢j () and g7 (x) be user association indicators which
result in BS traffic pé and T(pf), respectively. Then the inner
product can be written as

T(p"')—ﬂk >

+nCJ ()(1—A(j)M(j)(A(IJ'S))(})JBJ:B]D((}))2>>

X (T(Pj) - pk
pk)?
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X (/X (@) dx)
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Note that
1AW (A0 MO) st 6 (@) -0()

(
2 rj(x)

jEB

< 0 holds because qu evaluated based on (23) maximizes the
rj(z)

oA (1A M)

(p") -

The traffic load p converges to the traffic load

B(j)~Pg
(AG)pk+B(1))?

pk ><0. |

value of . Thus we
(e )

have < VU(p*), T

Theorem 1:
preF.

Proof. We prove this by showing that p**! — pF is also a
descent direction of U(p"*). To show this we consider the
following expression

k1 _

Pt —ph = apf 4+ (1—a)Ti(05) — P}

= (1-a)(T(pf) - ).

In Lemma 3, it has been shown that (T'(p*) — p*) is a
descent direction of U(p*). Further we have (1 — a) > 0
as 0 < o < 1, thus pF+1 — p” also gives the descent direction
of U(p*). Additionally, as U(p*) is a convex function it can
be easily concluded that U(p*) converges to p*. If U(p*)
converges to any other point than U(p*), then pF*! again
gives a descent direction so as to decrease U(p"), which
contradicts the assumption of convergence. Further, because
p" is derived based on (23) where ¢;(z) € {0,1}, p* is in
the feasible set F. ]

(29)

Theorem 2: If the set F is non-empty and the traffic load
p converges to p*, the user association corresponding to p*
minimizes U(p).



Proof. Let ¢* ={q;j(z)|q;(x) € {0,1},Vj € B,Vz € X }
and v = {g;(z)|¢;(z) € {0,1},Vj € B,Vx € X } be the
user association corresponding to p* and p, where p is some
traffic load vector satisfying p € F. As U(p) is a convex
function over p, the theorem can be proved by showing <
VU(p*),Ap — p* > > 0. In the proof below, we substitute
B%Eﬁ*) as (bj(p;) for notational clarity (these expressions are
identical as shown in the derivation leading to (22). We have

> 60} (p— p")

jeB
( / v(z)(g;(w)

— o (x
) B,
() — ¢ (z
[ 3 g,
X jeB Tj(x)(bj (Pj)
But because the optimal user association is determined based
on the following rule

<VU(p*),p—p" >

rj(®)

1 .f ] = 5 y
g@)=4 T TN
0, otherwise.
we can say that,
q; (x) q;(x)
jezzs ri(z); " (0}) jEZB ri(z)e;  (p%)

Therefore, < VU(p*),p — p* > > 0 which completes the
proof. ]

B. Base Station Transmission Power Control

We assume that the power control operations are decided
by the central server before a day begins and that guides the
power levels of the BSs during the day. Further as the power
level decisions are made on a time-scale of an hour, the power
control operations just require the average traffic profile at
a given location for each hour. We assume that the central
server has this average traffic profile information which is used
to evaluate the underlying user association for facilitating the
power control decisions. There are a number of existing papers
in literature which study, model and predict cellular network
traffic like [27], [29] and [28] . The information/ideas from
these models could be used in real time implementation of our
work. Additionally, such information could be also predicted
by the operators using the traffic pattern during past few
weeks/months. Note that the above-mentioned assumptions
have been considered in several contemporary works (e.g.
[30], [31]). Next, we show an important observation about
the downlink power control.

Proposition 1: The objective function Qi(P;) = D:(P;) +
nE(Py) is a non-convex function of the BS power levels.

To verify this proposition using simulations, we consider a
network of BSs as shown in Figure 2. The simulation settings
are as described in Section VI. We consider BSs operating at 3
p-m (t = 15) on January 1st with BSs 2, 4, 5 and 6 operating at
transmit power level 20 W. Next, we vary the power levels of
BSs 1 and 3 and study the effect of the same on the objective

20

P3(W) 00 P1 (W)

Fig. 1. Objective function (Q¢) value variation with power control operations
on BS 1 and BS 3 (n = 2, t =15).

function. Figure 1 shows the objective function (for n = 2)
and from the figure we can easily conclude that the objective
function is a non-convex function of the BS power levels.

As shown above, the power level control problem to min-
imize the objective function is a non-convex optimization
problem. Finding the optimal solution for such a problem
requires a search over the entire state space and has a very high
computational complexity. The order of such computations
increases exponentially with the number of BSs (5B) and the
hours under consideration (denoted by 7') and is given by
O(N'BIT) where N denotes the number of possible power
levels the BSs can operate at. To make the power control
approach feasible, we resort to developing a greedy heuristic
for addressing the problem of power control and the proposed
downlink transmit power control algorithm is presented in
Algorithm 3.

The proposed algorithm is carried out sequentially for each
hour of the day. The working of the downlink transmit power
control algorithm can be explained as follows. For every hour,
all the BSs start with a transmit power level of P,,,,. Next
we check for which BS the decrement of power level brings
the largest improvement in the objective function (Q;). The
BS with the largest reduction in the objective function while
satisfying the system constraints (which is tracked in the
algorithm by the variable con) is chosen for transmit power
reduction. This is done until no further improvement in the
objective function can be realized. The improvement in the
delay component of the objective function in the power control
operations is due to its interference management and load
balancing effect. The reduction in the grid energy consumption
is due to the transmit power level of a BS low on green energy
going down, and further, some users being offloaded (which
reduces p), thus decrementing the BS power consumption.
The worst case computational complexity of this algorithm
is O(NV|BJ?). Note that the load levels of the BSs change
after every iteration of power control operations. Thus after
this algorithm is carried out for all the hours of the day, we
have different traffic load profiles for the different hours as



Algorithm 3 Downlink Transmit Power Control Algorithm

1: Initialization

2: Set Py(j) = Ppq, for all j € B
3: Compute Q;(P); Set 6Q =1
4: while 6Q > 0 do

5 Qo= Qi (Py)

6 for j =1:|B| do

7: Pcurr = Pt

8 Pcurr(.j) = IH?LX(O, Pt(]) - g)
9 Ql(]) = Qt(Pcurr)

10: if max(p) > p;;, then

11 con(j)=0

12: else con(j)=1

13: end if

14: end for

15: a. z : index of BS having con = 1 for which power
control leads to minimum objective function value (Q')

16: b. Set Qpew = Q'(2)

17: 6Q = Qold - Qnew

18: if 6Q > 0 then

19: P,(z) = max(0, Py(z) — &) ;

20: end if

21: end while

compared to that used for initial energy allocation during the
day (using Algorithm 1). Consequently, we repeat the energy
allocation followed by another application of the downlink
transmit power control algorithm for the day. After some
iterations of doing this (typically 3-4 iterations) the solution for
the downlink power levels converges. Note that the proposed
power control approach does not guarantee an optimal solution
but gives an local optimal solution. It follows the intution of
greedy descent approach to minimize the objective function.
At a given iteration, the BS for which the power level
decrement leads to maximum delay reduction is chosen to be
powered down. Thus the power levels for the next iteration
gives a delay performance better than that at the previous
iteration. Additionally as the number of power levels a BS
can take are limited and lower-bounded by 0, the algorithm is
guaranteed to converge.

VI. NUMERICAL RESULTS

For performance analysis of the proposed scheme, we
consider a 3G BS deployment (shown in Figure 2) deployed
by network provider Vodafone near Southwark, London, UK
with 6 BSs providing coverage to an area of 1 km?. The BSs
are assumed to be equipped with PV panel with DC rating 6
kW and 10 batteries. We consider that the BSs use 12 V, 205
Ah flooded lead acid batteries. The carrier frequency is 2.5
GHz and we assume 10 MHz bandwidth with full frequency
reuse. Log normal shadowing with standard deviation 8§ dB
with the correlation distance for shadowing taken as 50m has
been considered [35]. We model the path loss, PL, as [34]

PL(dB) = 40(1 — 4 x 10"®hpg)logio(R) — 18logio(hps)
+21log1o(f) + 80 (31

Fig. 2. 3G BS deployment near Southwark (London).

where R denotes the distance between the MT and the BS,
hpg is the base station antenna height above rooftop and f is
the carrier frequency in MHz. We take hpg as 15 meters and
the carrier frequency is 2.5 GHz, based on the suggestions
from the baseline test scenario mentioned in IEEE 802.16
evaluation methodology document [35]. Thus, the path loss
is calculated as PL(dB) = 130.19 + 37.6log(R). We take
the noise power to be -174 dBm/Hz [35]. A homogeneous
Poisson point process is used to generate the file transfer
request. The rate of the Poisson process depends on the hour
of the day, with the smallest number of file transfer requests
during early morning hours (2-5 am) with an average of 20
requests per unit area (km?) and the largest number of requests
in the evening (5-7 pm) with an average of 200 requests per
unit area. For weekends a lower traffic level with minimum
and maximum number of file transfer requests (per unit area)
of 10 and 150 respectively, in the corresponding hours have
been considered. For simplicity, we assume that each file
transfer request requires 50 KB of data traffic to be served.
The entire area (of 1 km?) is divided into 1600 locations with
each location representing a 25 m x 25 m area. To model
temporal traffic dynamics, a new spatial profile of file transfer
requests is generated after every 2 minutes. The location based
traffic load density is calculated based on the traffic model.
For simulations we consider solar energy data obtained from
NREL [23] for the month of January of typical meteorological
year (TMY) data for London. Figure 3 shows the solar energy
harvested by the PV panels during the different days of this
month by the BSs (with PV panels having DC rating 6 kW).
Additionally we assume that 1%% January is Monday (i.e.
weekday load profile). The values of Py, P4, and A used
for the results were 412.4 W, 40 W and 22.6 respectively [22].
The granularity of the power control, £, was 5 W and py, used
for the results was 0.85. The value of v, the limiting state of
charge was taken as 0.3, and the safety margin S was taken
as 0.1. The initial battery levels were randomly chosen for the
different BSs for 1°¢ January. We take the averaging factor o
for the BS side algorithm to be 0.95, and with this value the
proposed user-association algorithm was observed to converge
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Fig. 3. Solar energy harvested during the day by the BSs for the month of

January of Typical meterological year (TMY) for London (PV panel rating:
6 kW).
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Fig. 4. Grid energy consumption for the different schemes.

to the optimal solution within 20 iterations.

As a benchmark for comparison, we consider a Best-Effort
scheme where all BSs operate with transmit power 20 W
and the MTs associate with the BS with the strongest signal
strength at that location. BSs use green energy as long as
it is available and after that draw energy form the grid. We
also consider the GALA [13] scheme with BSs operating at
transmit power 20 W, and the SWES [5] scheme which is a
BS on-off scheme with BSs operating at 40 W when they are
switched on. The GALA and the SWES scheme have been
briefly described in Section II.

A. Grid Energy Savings

Figure 4 shows the grid energy consumption for the different
schemes for the month of January. It can be seen that the
Best-Effort scheme leads to very high values of grid energy
consumption. The GALA scheme shows significant grid en-
ergy savings as compared to the Best-Effort scheme. Note that
the SWES scheme has lower grid energy consumption than
the Best-Effort and the GALA scheme. This is because in
this scheme some of the BSs switch off to reduce the overall

T T T
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Day of the month

Fig. 5. Average network latency performance for the different schemes.
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Fig. 6. Peak network latency performance for the different schemes.

network power consumption. The BSs which are switched off
save energy and the energy harvested during this period is
stored in the batteries to be used for future hours, thus reducing
the need to draw energy from the grid. The proposed GD-
RAM scheme allows a wide range of control over the grid
energy consumption. Note that with n = 0, the grid energy
consumption is the highest which is comparable to the Best-
Effort scheme. This is because for this case, the power control
and user association operations are done solely considering the
network delay. For n = 1, we observe that the grid energy
consumed is smaller as compared to the other benchmark
schemes. Further, for 7 = 10 the energy drawn from the grid
is even smaller. Note that the grid energy savings in the SWES
scheme and our scheme for n = 10 is at the expense of an
increase in the network latency (Figure 5) which is discussed
in the next subsection.

B. Delay Performance

Figures 5 and 6 show the average network latency and
the peak network latency for the benchmark schemes and for
the proposed scheme for three different values of the trade-
off factor n for the days under consideration. Note that the
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Fig. 7. Hourly network latency for the different schemes (25" January).

proposed algorithm shows delay performance better than the
Best-Effort and the SWES scheme for all three n values. The
network latency performance of the GALA scheme is better
than the Best-Effort and the SWES scheme. Note that for most
of the days, the average latency for n = 1 is smaller than
that for n = 0. This is because of the non-convexity of the
objective function with respect to power control operations.
Note that for n = 1, the BS power levels reduce to much
lower values as compared to the case for n = 0, so as
to bring grid energy savings. Our experiments show that at
lower BS power levels, there is better interference management
through the power control operations, thus also bringing down
the network latency. However, for n = 10, on certain days
which have very bad weather, the proposed scheme trades the
network latency performance for bringing about grid energy
savings. For example, the values of the average delay and
peak delay on 25" January (which is a bad weather day)
for n = 10 are significantly higher than that for = 0 and
n = 1. However on good weather days, like 12!" January,
the delay performance for n = 10 is comparable to that for
n = 0 and n = 1. Additionally, the results show that the
network latency is lower on weekends as compared to the
weekdays. This is because the traffic to be served on these days
is lower than that on weekdays. Note that the SWES scheme
leads to a lower average delay on weekends as compared to
all other schemes. This is because the traffic to be served
during weekends is smaller and therefore most of the BSs
turn off, thus reducing the interference to the BSs that are
turned on. This contributes to reducing the system delay for
the SWES scheme on these days. However on weekdays, as
the traffic to be served is higher, turning off BSs has the effect
of increasing the network latency as can be seen from the
results. Figure 7 shows the hourly network latency for 25"
January. The network latency is low for all the schemes during
the early morning hours due to the low traffic during those
hours. However, during the daytime, the SWES scheme and
the proposed scheme for n = 10 lead to a higher delay than
the Best-Effort scheme. The GALA scheme and our proposed
scheme (for n = 0 and 1 = 1) have better delay performance
than the other benchmarks. Figure 8 shows the transmit power

levels of the BSs on 25" January for the GDRAM scheme for
three different n values. Note that the power levels for n =0
are relatively higher than for the cases when n = 1,10. This
is because for n = 0 the power control operations are aimed
solely on delay reduction. As n = 1 also accounts even for
the grid energy consumption, the power levels for this case
are lower as compared to those with 7 = 0. For the case of
n = 10, the power levels are still lower as compared to the
case of n = 1.

C. Grid Energy Consumption and Delay Trade-off

Figures 9 and 10 show the grid energy consumption and
delay trade-off for the proposed GD-RAM scheme for different
trade-off parameter values and for the benchmark schemes
(averaged for the month of January). Note that for GALA
scheme, 6 is the trade-off parameter and its value varies from
0 to 1. Figure 9 considers the trade-off between the grid
energy consumption and the average (over 31 days) of the
hourly network latency whereas Figure 10 considers the trade-
off between the grid energy consumption and the average
(over 31 days) of the daily peak network latency. We can
observe that for the proposed scheme, as we start increasing n
from 0, the average grid energy consumption reduces sharply
while there is no degradation in the latency, rather there is
a slight improvement in the network latency. The reason for
this phenomenon is the non-convexity of the objective function
with respect to power control operations. Note that as the 7
value increases from 0, the BS power levels become smaller
in order to reduce the grid energy consumption. However, the
power level adjustments are made while accounting for the
network latency, in addition to accounting for the grid energy
savings (as our objective function accounts for both). Figure
8 shows the transmit power levels for three different 7 values
(n = 0,1 and 10). For n = 1, the transmit power levels for
all the BSs are lower as compared to those for n = 0. A
reduction in the transmit power level of a BS reduces the signal
power received by the MTs served by it. However, because
the transmit power levels of the other BSs also reduce, the
interference term in (2) also reduces. Thus, the reduction in
power levels does not necessarily decrease the SINR (and thus
the rate offered by the BSs and in turn the network latency)
at the MTs. Rather, slightly better latency performance is
realized due to better interference management when BSs are
operating at lower transmit power levels. However, for large
values of 1 (say n = 10), as can be seen from Figure 8, to
save grid energy, the transmit power levels of the BSs are
very low and additionally some of the BSs are switched off
even during the peak traffic hours of the day (e.g. hour 16
(4 p.m.) to hour 20 (8 p.m.)). This increases the traffic that
is handled by the BSs which are switched on and degrades
the network latency performance. Additionally, as the transmit
powers of the BSs decreases to very low levels, the impact
of the reduced interference power on improving the SINR
become marginal, and in many cases, the SINR degrades
due to lower signal power. These two factors contribute the
degradation of network latency at higher n values. Therefore,
for higher values of 7 (e.g. 7 = 10), when 7 is increased,
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Fig. 8. Transmit power levels for the GD-RAM scheme for different 7 values (25t" January).
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the energy savings are less significant whereas the increase in
the delay for the marginal savings in the grid energy is very
high. For a 7 value of 1 we observe that there is around 60%
grid energy savings as compared to the traditional Best-Effort
scheme while ensuring a better network latency performance.
Additionally, in Figure 11 we present results showing the
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Fig. 11. Tradeoff between grid energy savings and average network latency
for GD-RAM with and without power control and user-association.

energy-delay trade-off for the GD-RAM scheme with and
without power control and user-association. It is note-worthy
that the power control operation is much more effective in
reducing the energy consumption as compared to the use of
user-association reconfiguration.

VII. CONCLUSION

In this paper we considered a network of grid connected
solar powered BSs. We proposed a methodology for reducing
the grid energy consumption while ensuring good quality of
service. The methodology also gives the operator the freedom
to mange the trade-off between the grid energy savings and the
quality of service. The objective of reducing the grid energy
consumption while maintaining the QoS was achieved by
intelligent temporal energy allocation, BS downlink transmit
power control and user association. A real BS deployment
scenario and real solar energy traces were used to test the
performance of the proposed methodology and to show its
superiority over existing benchmark schemes. Compared to
existing schemes, the proposed GD-RAM scheme provides
control over trading energy for delay, and for a good choice of
the trade-off factor (7)), it can outperform all other benchmark



schemes in terms of minimizing the grid energy required while
maintaining good quality of service.
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