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Abstract
Sensor networks are distributed event-based systems that

differ from traditional communication networks in several
ways: sensor networks have severe energy constraints,
redundant low-rate data, and many-to-one flows. Data-
centric mechanisms that perform in-network aggregation
of data are needed in this setting for energy-efficient in-
formation flow. In this paper we model data-centric rout-
ing and compare its performance with traditional end-to-
end routing schemes. We examine the impact of source-
destination placement and communication network density
on the energy costs and delay associated with data aggre-
gation. We show that data-centric routing offers significant
performance gains across a wide range of operational sce-
narios. We also examine the complexity of optimal data ag-
gregation, showing that although it is an NP-hard problem
in general, there exist useful polynomial-time special cases.

1 Introduction
The wireless sensor networks of the near future are en-

visioned to consist of hundreds to thousands of inexpen-
sive wireless nodes, each with some computational power
and sensing capability, operating in an unattended mode.
They are intended for a broad range of environmental sens-
ing applications from vehicle tracking to habitat monitoring
[1, 8, 10]. The hardware technologies for these networks –
low cost processors, miniature sensing and radio modules –
are available today, with further improvements in cost and
capabilities expected within the next decade [1, 5, 7, 8]. The
applications, networking principles and protocols for these
systems are just beginning to be developed [2, 4, 8, 11].

Sensor networks are quintessentially event-based sys-
tems. A sensor network consists of one or more “sinks”
which subscribe to specific data streams by expressing inter-
ests or queries. The sensors in the network act as “sources”
which detect environmental events and push relevant data to
the appropriate subscriber sinks. For example, there may be
a sink that is interested in a particular spatio-temporal phe-
nomenon (“does the temperature ever exceed 70 degrees in

∗This work was supported by the DARPA SensIT program.

area A between 10am and 11am ?”). During the given time
interval all sensors in the corresponding spatial portion of
the network act as event-based publishers. They publish
information toward the subscribing sink if and when they
detect the indicated phenomenon.

Because of the requirement of unattended operation in
remote or even potentially hostile locations, sensor net-
works are extremely energy-limited. However since vari-
ous sensor nodes often detect common phenomena, there is
likely to be some redundancy in the data the various sources
communicate to a particular sink. In-network filtering and
processing techniques can help to conserve the scarce en-
ergy resources.

Data aggregationhas been put forward as an essential
paradigm for wireless routing in sensor networks [3, 6]. The
idea is to combine the data coming from different sources
enroute – eliminating redundancy, minimizing the number
of transmissions and thus saving energy. This paradigm
shifts the focus from the traditionaladdress-centricap-
proaches for networking (finding short routes between pairs
of addressable end-nodes) to a moredata-centricapproach
(finding routes from multiple sources to a single destination
that allows in-network consolidation of redundant data).

In this paper we study the energy savings and the de-
lay tradeoffs involved in data aggregation and how they are
affected by factors such as source-sink placements and the
density of the network. We also investigate the computa-
tional complexity of optimal data aggregation in sensor net-
works and show that although it is generally NP-hard, there
exist polynomial special cases.

2 Routing Models
We focus our attention on a single network flow that is

assumed to consist of a single data sink attempting to gather
information from a number of data sources. We start with
simple models of routing schemes which use data aggrega-
tion (which we term data-centric), and schemes which do
not (which we term address-centric). In both cases we as-
sume there are some common elements - the sink first sends
out a query/interest for data, the sensor nodes that have the
appropriate data then respond with the data. They differ in



the manner the data is sent from the sources to the sink:
Address-centric Protocol (AC): Each source indepen-

dently sends data along the shortest path to sink ( “end-to-
end routing” ).

Data-centric Protocol (DC): The sources send data to
the sink, but routing nodes enroute can look at the content
of the data and perform aggregation on multiple input pack-
ets. We consider in this paper simple aggregation functions
(such as duplicate suppression, min, max) in which multiple
input packets can be aggregated into a single output packet.

3 Data Aggregation

3.1 Optimal and Suboptimal Aggregation
Considerk sources,S1 throughSk and a sinkD. Let the

network graphG = (V,E) consist of all the nodesV , with
E consisting of edges between nodes that can communicate
with each other directly. With the assumption that the num-
ber of transmissions from any node in the data aggregation
tree is exactly one, the following result holds:
Result 1: The optimum number of transmissions required
per datum for the DC protocol is equal to the number of
edges in the minimum Steiner tree in the network which
contains the node set(S1, ...Sk, D). Hence, assuming an
arbitrary placement of sources and a general network graph
G, the task of doing DC routing with optimal data aggrega-
tion is NP-hard.

We examine three generally suboptimal schemes in this
paper:

1. Center at Nearest Source (CNS): In this data aggre-
gation scheme, all sources send their data directly to
the source which is nearest the sink which sends the
the aggregated information on to the sink.

2. Shortest Paths Tree (SPT): In this data aggregation
scheme, each source sends its information to the sink
along the shortest path between the two, and overlap-
ping paths are combined to form the aggregation tree.

3. Greedy Incremental Tree (GIT) : This is a sequential
scheme: at the first step the aggregation tree consists of
only the shortest path between the sink and the nearest
source. At each step after that the next source closest
to the current tree is connected to the tree1.

3.2 Sensor Network Models
We focus primarily on two performance measures in ex-

ploring the gains and tradeoffs involved in data-centric pro-
tocols – energy savings due to aggregation in terms of the
number of transmissions, and the aggregation latency.

The chief factors that can affect the performance of data
aggregation methods are the positions of the sources in the

1The GIT scheme is known to have an approximation ratio of 2 [9].

network, the number of sources, and the communication
network topology. In order to investigate these factors, we
study two models of source placement, theevent-radius
(ER) model, and therandom sources(RS) model. In both
models, we generate a sensor network by scatteringn sen-
sor nodes , one of which is a sink node, in a unit square. In
the ER model all sources are located within a distanceS of a
randomly chosen “event” location, whereas in the RS model
k random nodes are chosen to be sources. All nodes are as-
sumed to be able to communicate with any other nodes that
are within a communication rangeR.

4 Energy Savings due to Data Aggregation

4.1 Theoretical Results

We now give some analytical bounds on the energy costs
and savings that can be obtained with data aggregation,
based on the distances between the sources and the sink,
and the inter-distances among the sources. The main point
of this section is that the greatest gains due to data aggre-
gation are obtained when the sources are close together and
far away from the sink.

Let di be the distance (in terms of number of hops) of
the shortest path from sourceSi to the sink in the graph.
Per datum, the total number of transmissions required for
the optimal AC protocol in this case (call itNA) is:

NA = d1 + d2 + ...dk = sum(di) (1)

Let the number of transmissions required for the optimal
DC protocol beND.
Definition : The “diameter”X of a set of nodesS in a graph
G is the maximum of the pairwise shortest paths between
these nodesX = maxi,j∈SSP (i, j) whereSP (i, j) is the
shortest number of hops needed to go from nodei to j in G.
Result 2: If the source nodesS1, S2, . . . Sk have a diameter
X ≥ 1, the total number of transmissions (ND) required for
the optimal DC protocol satisfies the following bounds:

ND ≤ (k − 1)X + min(di) (2)

ND ≥ min(di) + (k − 1) (3)

Corollary: If the diameterX < min(di), thenND < NA.
In other words, the optimum data-centric protocol will per-
form strictly better than the AC protocol in terms of the total
number of transmissions.
Result 3: Assume X and k are fixed, then asmin(di) tends
to infinity (i.e. as the sink is farther and farther away from
the sources):

limd→∞
ND

NA
=

1
k

. (4)



Figure 1. Comparison of energy costs versus
R in the ER model

Figure 2. Comparison of energy costs versus
R in the RS model

Result 4: If the subgraphG′ of the communication graph
G induced by the set of source nodes(S1, . . . Sk) is con-
nected, the optimal data aggregation tree can be formed in
polynomial time.
Corollary: In the ER model, whenR > 2S, the optimal
data aggregation tree can be formed in polynomial time.

4.2 Simulation Results

We now present our simulation results showing the en-
ergy costs of AC and DC protocols for both the ER and RS
source placement models. The experimental setup is as fol-
lows: n = 100 nodes are placed in a square area of unit
size; for the ER model, the sensing rangeS is varied from
0.1 to 0.3, and for the RS model the number of sourcesk is
varied from 1 to 15; in both cases the communication radius
R is varied from 0.15 to 0.45. For each combination ofS
or k andR 100 simulations were run. Any runs resulting in
unconnected graphs or no sources, which can happen occa-
sionally when the values ofS or R are low, were not taken
into account. The error-bars shown in the plots represent
the standard error in the mean.

Figure 1 compares the transmission energy costs of the
various protocols as the communication range is varied In
this figure it can be seen that the GITDC seems to coincide

Figure 3. Comparison of energy costs versus
S in the ER model

Figure 4. Comparison of energy costs versus
k in the RS model

with the lower bound (from relation (3)) throughout. This
is because the necessary conditions for result 4 holds with
high probability in this setting. Also, the performance of the
CNSDC approaches the optimal asR increases, as per the
corollary to result 4. In all cases there is a50−80% savings
compared to the AC protocol. One thing to note in figure 2
for the RS model is that the lower bound is no longer tight,
since the the sources are unlikely to be within one hop of
each other except whenR is very high. Intuitively, CNSDC
performs poorly in the RS model since the sources can be
far apart and it is not always beneficial to aggregate at the
source nearest to the sink.

Figures 3 and 4 both show that while the absolute trans-
mission costs may increase, the relative gains due to a good
data aggregation technique like GITDC can be very signifi-
cant when the number of sources is high.

To summarize, our experiments show that the energy
gains due to data aggregation can be quite significant par-
ticularly when there are a lot of sources (largeS or largek)
that are many hops from the sink (smallR).

5 Delay due to Data Aggregation
Although data aggregation results in fewer transmis-

sions, there is a tradeoff – potentially greater delay in



Figure 5. max(di) and min(di) versus R in the
ER model

Figure 6. max(di) and min(di) versus S in the
ER model

the case of some aggregation functions because data from
nearer sources may have to be held back at an intermedi-
ate node in order to be aggregated with data coming from
sources that are farther away. In the worst case, the latency
due to aggregation will be proportional to the number of
hops between the sink and the farthest source. One way
to quantify the effect of aggregation delay is to examine the
differencemax(di) andmin(di). This is shown in figures 5
and 6. Similar figures obtain for the random sources model
as well. The experimental setup is the same as discussed in
section 4.2. The upper curve in all these figures is represen-
tative of the latency delay in DC schemes with non-trivial
aggregation functions and the lower curve is representative
of the latency delay in AC schemes. The difference between
these curves is greatest in both models when the communi-
cation radius is low, and the number of sources is high.

6 Conclusions
Wireless sensor networks are an important type of

resource-constrained distributed event-based system. We
have modelled and analyzed the performance of data ag-
gregation in such networks. We identified and investigated
some of the factors affecting performance, such as the num-
ber of placement of sources, and the communication net-

work topology. The formation of an optimal data aggrega-
tion tree is generally NP-hard. We presented some subopti-
mal data aggregation tree generation heuristics and showed
the existence of polynomial special cases.

The modelling tells us that whether the sources are clus-
tered near each other or located randomly, significant en-
ergy gains are possible with data aggregation. These gains
are greatest when the number of sources is large, and when
the sources are located relatively close to each other and far
from the sink. The modelling, though, also seems to sug-
gest that aggregation latency could be non-negligible and
should be taken into consideration during the design pro-
cess. Data-centric architectures such as directed diffusion
should support a Type of Service (TOS) facility that would
permit applications to effect desired tradeoffs between la-
tency and energy.

In-system processing of data is useful to avoid over-
whelming the consumer of data notification, be it a person
or a program. Thus the results we have presented in this
paper for a resource-constrained event-based system might
well hold important design lessons for scalable event-based
systems, even if they are less constrained.
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