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Distributed Stochastic Online Learning Policies for

Opportunistic Spectrum Access
Yi Gai, Member, IEEE, and Bhaskar Krishnamachari, Member, IEEE, ACM

Abstract—The fundamental problem of multiple secondary
users contending for opportunistic spectrum access over multiple
channels in cognitive radio networks has been formulated recent-
ly as a decentralized multi-armed bandit (D-MAB) problem. In
a D-MAB problem there are M users and N arms (channels)
that each offer i.i.d. stochastic rewards with unknown means so
long as they are accessed without collision. The goal is to design
distributed online learning policies that incur minimal regret,
defined as the difference between the total expected rewards
accumulated by a model-aware genie, and that obtained by
all users applying the policy. We consider two related problem
formulations in this paper. First, we consider the setting where
the users have a prioritized ranking, such that it is desired for the
K-th-ranked user to learn to access the arm offering the K-th
highest mean reward. For this problem, we present DLP, the first
distributed policy that yields regret that is uniformly logarithmic
over time without requiring any prior assumption about the mean
rewards. Second, we consider the case when a fair access policy
is required, i.e., it is desired for all users to experience the same
mean reward. For this problem, we present DLF, a distributed
policy that yields order-optimal regret scaling with respect to
the number of users and arms, better than previously proposed
policies in the literature. Both of our distributed policies make
use of an innovative modification of the well-known UCB1 policy
for the classic multi-armed bandit problem that allows a single
user to learn how to play the arm that yields the K-th largest
mean reward.

Index Terms—Online Learning, Dynamic Spectrum Access,
Decentralized Multi-armed Bandit.

I. INTRODUCTION

Developing dynamic spectrum access mechanisms to enable

more efficient spectrum utilization is one of the most chal-

lenging issues in cognitive radio systems [2]. In this paper,

we focus on a problem of opportunistic spectrum access

in cognitive radio networks, where at every time slot, each

of the M decentralized secondary users searches for idle

channels which are not occupied by primary users temporarily

among N ≥ M channels. We assume that the throughput

of these N channels evolves as an i.i.d. stochastic process

over time with any arbitrary, bounded-support distribution,

which is unknown to the users. These distributed players can

only learn from their local observations and collide (with

reward penalty) when choosing the same arm. The desired
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objective is to develop a sequential policy running at each

user to make a selection among multiple choices, where there

is no information exchange, such that the sum-throughput of

all distributed users is maximized, assuming an interference

model whereby at most one secondary user can derive benefit

from any channel.

The Multi-Armed Bandit problem (MAB, see [3]–[7]) is

a fundamental mathematical framework for learning the un-

known variables. In its simplest form of classic non-Bayesian

version studied by Lai and Robbins [3], there are N arms,

each providing stochastic rewards that are independent and

identically distributed over time, with unknown means. A

policy is desired to pick one arm at each time sequentially,

to maximize the reward. Anantharam et al. [4] extend this

work to the case when M simultaneous plays are allowed,

with centralized scheduling of the players.

A fundamental tradeoff between exploration and exploita-

tion is captured by MAB problems: on the one hand, various

arms should be explored often enough in order to learn their

parameters, and on the other hand, the prior observations

should be exploited to gain the best possible immediate

rewards. A key metric in evaluating a given policy for this

problem is regret, which is defined as the difference between

the expected reward gained by a prior that always makes the

optimal choice and that obtain by the given policy. The regret

achieved by a policy can be evaluated in terms of its growth

over time. Many of the prior works on multi-armed bandits

show logarithmic scaling of the regret over time.

While most of the prior work on MAB focused on the

centralized policies, motivated by the problem of opportunistic

access in cognitive radio networks, Liu and Zhao [8], [9], and

Anandkumar et al. [10], [11] have both developed policies

for the problem of M distributed players operating N inde-

pendent arms. There are two problem formulations of interest

when considering distributed MAB: a) the prioritized access

problem, where it is desired to prioritize a ranked set of users

so that the K-th ranked user learns to access the arm with the

K-th highest reward, and b) the fair access problem, where

the goal is to ensure that each user receives the same reward in

expectation. For the prioritized access problem, Anandkumar

et al. [10] present a distributed policy that yields regret that

is logarithmic in time, but requires prior knowledge of the

arm reward means. For the fair access problem, they propose

in [10], [11] a randomized distributed policy that is logarithmic

with respect to time and scales as O(M2N) with respect to

the number of arms and users. Liu and Zhao [8], [9] also treat

the fair access problem and present the TDFS policy which

yields asymptotically logarithmic regret with respect to time

and scales as O(M(max{M2, (N −M)M})) with respect to
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the number of arms and users.

In this paper, we make significant new contributions to both

problem formulations. For the prioritized access problem, we

present a distributed learning policy DLP that results in a regret

that is uniformly logarithmic in time and, unlike the prior work

in [10], does not require any prior knowledge about the arm

reward means. For the fair access problem, we present another

distributed learning policy DLF, which yields regret that is also

uniformly logarithmic in time and that scales as O(M(N −
M)) with respect to the number of users M and the number

of arms N . As it has been shown in [9] that the lower-bound

of regret for distributed policies also scales as Ω(M(N−M)),
this is not only a better scaling than the previous state of the

art, it is, in fact, order-optimal.

A key subroutine of both decentralized learning policies

running at each user involves selecting an arm with the desired

rank order of the mean reward. For this, we present a new

policy that we refer to as SL(K), which is a non-trivial

generalization of UCB1 in [6]. SL(K) provides a general

solution for selecting an arm with the K-th largest expected

rewards for classic MAB problems with N arms.

We focus in this work on the decentralized learning with

i.i.d stochastic model, which has been studied essentially the

same in the work [8]–[11]. To tackle other challenges in

dynamic spectrum access, there has been other researchers

[12]–[17] working within an MAB framework have considered

other problem formulation for dynamic spectrum access: [12]

considers the model of restless Markov process, where a

Restless MAB is formulated; Liu and Zhao [13] also con-

sidered the restless Markovian formulation and established

the indexability; the work by Lelarge et al. [14] set up an

adversarial linear bandit formulation; a cooperative scheme

was proposed in [15] to address the problem of distributed

spectrum selection in presence of imperfect sensing from the

secondary users; Tehrani et al. [16], [17] focus on unslotted

primary systems. We believe that our contribution in this work

will be a useful stepping stone for further theoretical research

that integrates advances made along the various dimensions of

this complicated problem.

This paper is organized as follows. We present in section II

the problem formulation. In section III, we first present our

SL(K) policy, which is a general policy to play an arm with

K-th largest expected reward for classic multi-armed bandits,

and then present our decentralized DLP policy in section

IV and DLF policy in section V based on SL(K) policy.

Both policies are polynomial-storage polynomial-time-per-step

learning policies. We show that the regrets of all policies we

proposed are logarithmic in time and polynomial in the number

of users and channels, and we compare the upper bound of

the regrets of different policies. In section VI, we compare the

decentralized learning policies with simulation results. Finally,

section VII concludes the paper.

II. PROBLEM FORMULATION

We consider a cognitive system with N channels (arms) and

M decentralized secondary users (players). The throughput of

N channels are defined by random processes Xi(n), 1 ≤ i ≤

N . Time is slotted and denoted by the index n. We assume

that Xi(n) evolves as an i.i.d. random process over time, with

the only restriction that its distribution have a finite support.

Without loss of generality, we normalize Xi(n) ∈ [0, 1]. We do

not require that Xi(n) be independent across i. This random

process is assumed to have a mean θi = E[Xi], that is

unknown to the users and distinct from each other. We denote

the set of all these means as Θ = {θi, 1 ≤ i ≤ N}.

At each decision period n (also referred to interchangeably

as time slot), each of the M decentralized users selects an

arm only based on its own observation histories under a

decentralized policy. When a particular arm i is selected by

user j, the value of Xi(n) is only observed by user j, and if

there is no other user playing the same arm, a reward of Xi(n)
is obtained. Else, if there are multiple users playing the same

arm, then we assume that, due to collision, at most one of

the conflicting users j′ gets reward Xi(n), while the other

users get zero reward. This interference assumption covers

practical models in networking research, such as the perfect

collision model (in which none of the conflicting users derive

any benefit) and CSMA with perfect sensing (in which exactly

one of the conflicting user derives benefit from the channel).

We denote the first model as M1 and the second model as

M2.

We denote the decentralized policy for user j at time n as

πj(n), and the set of policies for all users as π = {πj(n), 1 ≤
j ≤ M}. We are interested in designing decentralized policies,

under which there is no information exchange among users,

and analyze them with respect to regret, which is defined as

the gap between the expected reward that could be obtained

by a genie-aided perfect selection and that obtained by the

policy. We denote O∗
M as a set of M arms with M largest

expected rewards. The regret can be expressed as:

R
π(Θ;n) = n

∑

i∈O∗

M

θi − Eπ[

n
∑

t=1

Sπ(t)(t)] (1)

where Sπ(t)(t) is the sum of the actual reward obtained by all

users at time t under policy π(t), which could be expressed

as:

Sπ(t)(t) =

N
∑

i=1

M
∑

j=1

Xi(t)Ii,j(t), (2)

where for M1, Ii,j(t) is defined to be 1 if user j is the only

user to play arm i, and 0 otherwise; for M2, Ii,j(t) is defined

to be 1 if user j is the one with the smallest index among all

users playing arm i at time t, and 0 otherwise. Then, if we

denote V π
i,j(n) =

∑n
t=1 Ii,j(t), we have:

Eπ[
n
∑

t=1

Sπ(t)(t)] =
N
∑

i=1

M
∑

j=1

θiE[V π
i,j(n)] (3)

The analysis in this paper works the same for both models.

Besides getting low total regret, there could be other system

objectives for a given D-MAB. We consider two in this paper.

In the prioritized access problem, we assume that each user

has information of a distinct allocation order. Without loss

of generality, we assume that the users are ranked in such a
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way that the m-th user seeks to access the arm with the m-

th highest mean reward. In the fair access problem, users are

treated equally to receive the same expected reward.

III. SELECTIVE LEARNING OF THE K -TH LARGEST

EXPECTED REWARD

We first propose a general policy to play an arm with the

K-th largest expected reward (1 ≤ K ≤ N ) for classic multi-

armed bandit problem with N arms and one user, since the

key idea of our proposed decentralized policies running at each

user in section IV and V is that user m will run a learning

policy targeting an arm with m-th largest expected reward.

Our proposed policy of learning an arm with K-th largest

expected reward is shown in Algorithm 1.

Algorithm 1 Selective learning of the K-th largest expected

rewards (SL(K))

1: // INITIALIZATION

2: for t = 1 to N do

3: Let i = t and play arm i;
4: θ̂i(t) = Xi(t);
5: ni(t) = 1;

6: end for

7: // MAIN LOOP

8: while 1 do

9: t = t+ 1;

10: Let the set OK contains the K arms with the K largest

values in (4)

θ̂i(t− 1) +

√

2 ln t

ni(t− 1)
; (4)

11: Play arm k in OK such that

k = arg min
i∈OK

θ̂i(t− 1)−

√

2 ln t

ni(t− 1)
; (5)

12: θ̂k(t) =
θ̂k(t−1)nk(t−1)+Xk(t)

nk(t−1)+1 ;

13: nk(t) = nk(t− 1) + 1;

14: end while

We use two 1 by N vectors to store the information after

we play an arm at each time slot. One is (θ̂i)1×N in which

θ̂i is the average (sample mean) of all the observed values of

Xi up to the current time slot (obtained through potentially

different sets of arms over time). The other one is (ni)1×N in

which ni is the number of times that Xi has been observed

up to the current time slot.

Note that while we indicate the time index in Algorithm 1

for notational clarity, it is not necessary to store the matrices

from previous time steps while running the algorithm. So

SL(K) policy requires storage linear in N .

Remark: While UCB1 can only pick the largest arm, SL(K)

policy generalizes UCB1 in [6] and presents a general way

to pick an arm with the K-th largest expected rewards for a

classic multi-armed bandit problem with N arms (without the

requirement of distinct expected rewards for different arms).

Our analysis are build upon [6] and significantly extends those

in [6].

Now we present the analysis of the upper bound of regret,

and show that it is linear in N and logarithmic in time. We

denote AK as the set of arms with K-th largest expected

reward. Note that Algorithm 1 is a general algorithm for

picking an arm with the K-th largest expected reward for the

classic multi-armed bandit problems, where we allow multiple

arms with K-th largest expected reward, and all these arms

retreated as optimal arms. The following theorem holds for

Algorithm 1.

Theorem 1: Under the policy specified in Algorithm 1, the

expected number of times that we pick any arm i /∈ AK after

n time slots is at most:

8 lnn

∆K,i
+ 1 +

2π2

3
. (6)

where ∆K,i = |θK − θi|, θK is the K-th largest expected

reward.

Proof:

Denote Ti(n) as the number of times that we pick arm

i /∈ AK at time n. We now show the upper bound of E[Ti(n)].

Denote Ct,ni
as

√

(L+1) ln t
ni

. Denote θ̂i,ni
as the average

(sample mean) of all the observed values of Xi when it is

observed ni time. O∗
K is denoted as the set of K arms with

K largest expected rewards.

Denote by Ii(n) the indicator function which is equal to

1 if Ti(n) is added by one at time n. Let l be an arbitrary

positive integer. Then, for any arm i which is not a desired

arm, i.e., i /∈ AK :

Ti(n) = 1 +

n
∑

t=N+1

1{Ii(t)}

≤ l +

n
∑

t=N+1

1{Ii(t), Ti(t− 1) ≥ l}

≤ l +
n
∑

t=N+1

(1{Ii(t), θi < θK , Ti(t− 1) ≥ l}

+ 1{Ii(t), θi > θK , Ti(t− 1) ≥ l})

(7)

where 1(x) is the indicator function defined to be 1 when the

predicate x is true, and 0 when it is false.

Note that for the case θi < θK , arm i is picked at time t
means that there exists an arm j(t) ∈ O∗

K , such that j(t) /∈
OK . This means the following inequality holds:

θ̂j(t),Tj(t)(t−1)+Ct−1,Tj(t)(t−1) ≤ θ̂i,Ti(t−1)+Ct−1,Ti(t−1)
. (8)
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Then, we have

n
∑

t=N+1

1{Ii(t), θi < θK , Ti(t− 1) ≥ l}

≤

n
∑

t=N+1

1{θ̂j(t),Tj(t)(t−1) + Ct−1,Tj(t)(t−1)

≤ θ̂i,Ti(t−1) + Ct−1,Ti(t−1), Ti(t− 1) ≥ l}

≤
n
∑

t=N+1

1{ min
0<nj(t)<t

θ̂j(t),nj(t)
+ Ct−1,nj(t)

≤ max
l≤ni<t

θ̂i,ni
+ Ct−1,ni

}

≤

∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=l

1{θ̂j(t),nj(t)
+ Ct,nj(t)

≤ θ̂i,ni
+ Ct,ni

}

(9)

θ̂j(t),nj(t)
+Ct,nj(t)

≤ θ̂i,ni
+Ct,ni

implies that at least one

of the following must be true:

θ̂j(t),nj(t)
≤ θj(t) − Ct,nj(t)

, (10)

θ̂i,ni
≥ θi + Ct,ni

, (11)

θj(t) < θi + 2Ct,ni
. (12)

Applying the Chernoff-Hoeffding bound [18], we could find

the upper bound of (10) and (11) as,

Pr{θ̂j(t),nj(t)
≤ θj(t) − Ct,nj(t)

} ≤ e−4 ln t = t−4, (13)

Pr{θ̂i,ni
≥ θi + Ct,ni

} ≤ e−4 ln t = t−4 (14)

For l ≥
⌈

8 lnn
∆2

K,i

⌉

,

θj(t) − θi − 2Ct,ni

≥ θK − θi − 2

√

2∆2
K,i ln t

8 lnn

≥ θK − θi −∆K,i = 0,

(15)

so (12) is false when l ≥
⌈

8 lnn
∆2

K,i

⌉

.

Note that for the case θi > θK , when arm i is picked at time

t, there are two possibilities: (1) OK = O∗
K ; (2) OK 6= O∗

K .

If OK = O∗
K , the following inequality holds:

θ̂i,Ti(t−1) − Ct−1,Ti(t−1) ≤ θ̂K,TK(t−1) − Ct−1,TK(t−1).

If OK 6= O∗
K , OK has at least one arm h(t) /∈ O∗

K . Then, we

have:

θ̂i,Ti(t−1) − Ct−1,Ti(t−1) ≤ θ̂h(t),Th(t)(t−1) − Ct−1,Th(t)(t−1).

So to conclude both possibilities for the case θi > θK , if we

denote O∗
K−1 = O∗

K − AK , at each time t when arm i is

picked, these exists an arm h(t) /∈ O∗
K−1, such that

θ̂i,Ti(t−1) − Ct−1,Ti(t−1) ≤ θ̂h(t),Th(t)(t−1) − Ct−1,Th(t)(t−1).
(16)

Then similarly, we can have:

n
∑

t=N+1

1{Ii(t), θi > θK , Ti(t− 1) ≥ l}

≤

∞
∑

t=1

t−1
∑

ni=l

t−1
∑

nh(t)=1

1{θ̂i,ni
− Ct,ni

≤ θ̂h(t),nh(t)
− Ct,nh(t)

}

(17)

Note that θ̂i,ni
− Ct,ni

≤ θ̂h(t),nh(t)
− Ct,nh(t)

implies one

of the following must be true:

θ̂i,ni
≤ θi − Ct,ni

, (18)

θ̂h(t),nh(t)
≥ θh(t) + Ct,nh(t)

, (19)

θi < θh(t) + 2Ct,ni
. (20)

We again apply the Chernoff-Hoeffding bound and get

Pr{θ̂i,ni
≤ θi − Ct,ni

} ≤ t−4, Pr{θ̂h(t),nh(t)
≥ θh(t) +

Ct,nh(t)
} ≤ t−4.

Also note that for l ≥
⌈

8 lnn
∆2

K,i

⌉

,

θi − θh(t) − 2Ct,ni

≥ θi − θK −∆K,i ≥ 0,
(21)

so (20) is false.

Hence, we have

E[Ti(n)] ≤

⌈

8 lnn

∆2
K,i

⌉

+

∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=⌈(8 lnn)/∆2
K,i⌉

(Pr{θ̂j(t),nj(t)
≤ θj(t) − Ct,nj(t)

}+ Pr{θ̂i,ni
≥ θi + Ct,ni

})

+
∞
∑

t=1

t−1
∑

ni=⌈(8 lnn)/∆2
K,i⌉

t−1
∑

nh(t)=1

(Pr{θ̂i,ni
≤ θi − Ct,ni

}+ Pr{θ̂h(t),nh(t)
≥ θh(t) + Ct,nh(t)

})

≤
8 lnn

∆2
K,i

+ 1 + 2

∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=1

2t−4

≤
8 lnn

∆2
K,i

+ 1 +
2π2

3
.

(22)

The definition of regret for the above problem is different

from the traditional multi-armed bandit problem with the goal

of maximization or minimization, since our goal now is to

pick the arm with the K-th largest expected reward and we

wish we could minimize the number of times that we pick

the wrong arm. Here we give two definitions of the regret to

evaluate the SL(K) policy.

Definition 1: We define the regret of type 1 at each time

slot as the absolute difference between the expected reward

that could be obtained by a genie that can pick an arm with

K-th largest expected reward, and that obtained by the given
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policy at each time slot. Then the total regret of type 1 by time

n is defined as sum of the regret at each time slot, which is:

R
π
1 (Θ;n) =

n
∑

t=1

|θK − Eπ[Sπ(t)(t)]| (23)

Definition 2: We define the total regret of type 2 by time

n as the absolute difference between the expected reward that

could be obtained by a genie that can pick an arm with K-th

largest expected reward, and that obtained by the given policy

after n plays, which is:

R
π
2 (Θ;n) = |nθK − Eπ[

n
∑

t=1

Sπ(t)(t)]| (24)

Corollary 1: The expected regret under both definitions is

at most

∑

i:i/∈Ak

(
8 lnn

∆K,i
) + (1 +

2π2

3
)
∑

i:i/∈Ak

∆K,i. (25)

Proof: Under the SL(K) policy, we have:

R
π
2 (Θ;n) ≤ R

π
1 (Θ;n)

=
n
∑

t=1

|θK − Eπ [Sπ(t)(t)]|

=
∑

i:i/∈Ak

∆K,iE[Ti(n)]

≤
∑

i:i/∈Ak

(
8 lnn

∆K,i
) + (1 +

2π2

3
)
∑

i:i/∈Ak

∆K,i.

(26)

Here we note that ∀n, R
π
2 (Θ;n) ≤ R

π
1 (Θ;n) because

|nθK − Eπ[
∑n

t=1 Sπ(t)(t)]| = |nθK −
∑n

t=1 E
π[Sπ(t)(t)]| ≤

∑n
t=1 |θK − Eπ[Sπ(t)(t)]|.

Corollary 1 shows the upper bound of the regret of SL(K)

policy. It grows logarithmical in time and linearly in the

number of arms.

IV. DISTRIBUTED LEARNING WITH PRIORITIZATION

We now consider the distributed multi-armed bandit prob-

lem with prioritized access. Our proposed decentralized policy

for N arms with M users is shown in Algorithm 2.

In the above algorithm, line 2 to 6 is the initialization part,

for which user m will play each arm once to have the initial

value in (θ̂mi )1×N and (nm
i )1×N . Line 3 ensures that there

will be no collisions among users. Similar as in Algorithm 1,

we indicate the time index for notational clarity. Only two 1
by N vectors, (θ̂mi )1×N and (nm

i )1×N , are used by user m to

store the information after we play an arm at each time slot.

We denote o∗m as the index of arm with the m-th largest

expected reward. Note that {o∗m}1≤m≤M = O∗
M . Denote

∆i,j = |θi − θj | for arm i, j. We now state the main theorem

of this section.

Algorithm 2 Distributed Learning Algorithm with Prioritiza-

tion for N Arms with M Users Running at User m (DLP)

1: // INITIALIZATION

2: for t = 1 to N do

3: Play arm k such that k = ((m+ t) mod N) + 1;

4: θ̂mk (t) = Xk(t);
5: nm

k (t) = 1;

6: end for

7: // MAIN LOOP

8: while 1 do

9: t = t+ 1;

10: Play an arm k according to policy SL(m) specified in

Algorithm 1;

11: θ̂mk (t) =
θ̂m
k (t−1)nm

k (t−1)+Xk(t)
nm
k
(t−1)+1 ;

12: nm
k (t) = nm

k (t− 1) + 1;

13: end while

Theorem 2: The expected regret under the DLP policy

specified in Algorithm 2 is at most

M
∑

m=1

∑

i6=o∗m

(
8 lnn

∆2
o∗m,i

+ 1 +
2π2

3
)θo∗m

+
M
∑

m=1

∑

h 6=m

(
8 lnn

∆2
o∗
h
,o∗m

+ 1 +
2π2

3
)θo∗m .

(27)

Proof: Denote Ti,m(n) the number of times that user m
pick arm i at time n.

For each user m, the regret under DLP policy can arise

due to two possibilities: (1) user m plays an arm i 6= o∗m; (2)

other user h 6= m plays arm o∗m. In both cases, collisions may

happen, resulting a loss which is at most θo∗m . So for both

cases, the regret of user m is upper bounded by:

R
π(Θ,m;n) ≤

∑

i6=o∗m

E[Ti,m(n)]θo∗m +
∑

h 6=m

E[To∗m,h(n)]θo∗m

(28)

From Theorem 1, Ti,m(n) and To∗m,h(n) are bounded by

E[Ti,m(n)] ≤
8 lnn

∆2
o∗m,i

+ 1 +
2π2

3
, (29)

E[To∗m,h(n)] ≤
8 lnn

∆2
o∗
h
,o∗m

+ 1 +
2π2

3
. (30)

So,

R
π(Θ,m;n) ≤

∑

i6=o∗m

(
8 lnn

∆2
o∗m,i

+ 1 +
2π2

3
)θo∗m

+
∑

h 6=m

(
8 lnn

∆2
o∗
h
,o∗m

+ 1 +
2π2

3
)θo∗m

(31)
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The upper bound for regret is:

R
π(Θ;n) =

M
∑

m=1

R
π(Θ,m;n)

≤

M
∑

m=1

∑

i6=o∗m

(
8 lnn

∆2
o∗m,i

+ 1 +
2π2

3
)θo∗m

+

M
∑

m=1

∑

h 6=m

(
8 lnn

∆2
o∗
h
,o∗m

+ 1 +
2π2

3
)θo∗m

(32)

For a concise expression on the upper bound of the regret, if

we define ∆min = min
1≤i≤N,1≤j≤M

∆i,j , and θmax = max
1≤i≤N

θi,

we could get a more concise (but looser) upper bound as:

R
π(Θ;n) ≤ M(N +M − 2)(

8 lnn

∆2
min

+ 1 +
2π2

3
)θmax. (33)

Theorem 2 shows that the regret of our DLP algorithm is

uniformly upper-bounded for all time n by a function that

grows as O(M(N +M) lnn).

V. DISTRIBUTED LEARNING WITH FAIRNESS

For the purpose of fairness consideration, secondary users

should be treated equally, and there should be no prioritization

for the users. In this scenario, a naive algorithm is to apply

Algorithm 2 directly by rotating the prioritization as shown in

Figure 1. Each user maintains two 1 by N vectors (θ̂mj,i)M×N

and (nm
j,i)M×N , where the j-th row stores only the observation

values for the j-th prioritization vectors. This naive algorithm

is shown in Algorithm 3.
 

  

 

Fig. 1. Illustration of rotating the prioritization vector.

Algorithm 3 A Naive Algorithm for Distributed Learning

Algorithm with Fairness (DLF-Naive) Running at User m

1: At time t, run Algorithm 2 with prioritization K = ((m+
t) mod M)+1, then update the K-th row of (θ̂mj,i)M×N

and (nm
j,i)M×N accordingly.

We can see that the storage of Algorithm 3 grows linear in

MN , instead of N . And it does not utilize the observations

under different allocation order, which will result a worse

regret as shown in the analysis of this section. To utilize all the

observations, we propose our distributed learning algorithm

with fairness (DLF) in Algorithm 4.

Same as in Algorithm 2, only two 1 by N vectors, (θ̂mi )1×N

and (nm
i )1×N , are used by user m to store the information

after we play an arm at each time slot.

Line 11 in Algorithm 4 means user m play the arm with

the K-th largest expected reward with Algorithm 1, where the

Algorithm 4 Distributed Learning Algorithm with Fairness

for N Arms with M Users Running at User m (DLF)

1: // INITIALIZATION

2: for t = 1 to N do

3: Play arm k such that k = ((m+ t) mod N) + 1;

4: θ̂mk (t) = Xk(t);
5: nm

k (t) = 1;

6: end for

7: // MAIN LOOP

8: while 1 do

9: t = t+ 1;

10: K = ((m+ t) mod M) + 1;

11: Play an arm k according to policy SL(K) specified in

Algorithm 1;

12: θ̂mk (t) =
θ̂m
k (t−1)nm

k (t−1)+Xk(t)
nm
k
(t−1)+1 ;

13: nm
k (t) = nm

k (t− 1) + 1;

14: end while

value of K is calculated in line 10 to ensure the desired arm

to pick for each user is different, and the users play arms

from the estimated largest to the estimated smallest in turns

to ensure the fairness.

Theorem 3: The expected regret under the DLF-Naive

policy specified in Algorithm 3 is at most

∑

o∗m∈O∗

m

M
∑

m=1

∑

i6=o∗m

(
8 ln⌈n/M⌉

∆2
o∗m,i

+ 1 +
2π2

3
)θo∗m

+
∑

o∗m∈O∗

m

M
∑

m=1

∑

h 6=m

(
8 ln⌈n/M⌉

∆2
o∗
h
,o∗m

+ 1 +
2π2

3
)θo∗m .

(34)

Proof: Theorem 3 is a direct conclusion from Theorem

2 by replacing n with ⌈n/M⌉, and then take the sum over all

M best arms which are played in the algorithm.

The above theorem shows that the regret of the DLF-Naive

policy grows as O(M2(N +M) lnn).
Theorem 4: The expected regret under the DLF policy

specified in Algorithm 4 is at most

M

N
∑

i=1

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)θmax

+M(M − 1)
∑

i∈O∗

M

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)θi,

(35)

where ∆min,i = min
1≤m≤M

∆o∗m,i.

Proof:

Denote K∗
m(t) as the index of the arm with the K-th (got

by line 10 at time t in Algorithm 4 running at user m) largest

expected reward. Denote Qm
i (n) as the number of times that

user m pick arm i 6= K∗
m(t) for 1 ≤ t ≤ n.

The proof here is similar to the first part of proof of Theorem

1: we notice that for any arbitrary positive integer l and any

time t, Qm
i (t) ≥ l implies ni(t) ≥ l. So (7) to (21) in the

proof of Theorem 1 still hold by replacing Ti(n) with Qm
i (n)

and replacing K with K∗
m(t). Note that since all the channels

are with different rewards, there is only one element in the set

AK∗

m(t).
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To find the upper bound of E[Qm
i (n)], we should let l to

be l ≥
⌈

8 lnn
∆2

min,i

⌉

such that (12) and (20) are false for all t. So

we have,

E[Qm
i (n)] ≤

⌈

8 lnn

∆2
min,i

⌉

+

∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=
⌈

(8 lnn)/∆2
K∗

m(t),i

⌉

(Pr{θ̂j(t),nj(t)
≤ θj(t) − Ct,nj(t)

}+ Pr{θ̂i,ni
≥ θi + Ct,ni

})

+

∞
∑

t=1

t−1
∑

ni=
⌈

(8 lnn)/∆2
K∗

m(t),i

⌉

t−1
∑

nh(t)=1

(Pr{θ̂i,ni
≤ θi − Ct,ni

}+ Pr{θ̂h(t),nh(t)
≥ θh(t) + Ct,nh(t)

})

≤
8 lnn

∆2
min,i

+ 1 + 2

∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=1

2t−4

≤
8 lnn

∆2
min,i

+ 1 +
2π2

3
.

(36)

Hence for user m, we could calculate the upper bound

of regret considering the two possibilities as in the proof of

Theorem 2 as:

R
π(Θ,m;n) ≤

N
∑

i=1

Qm
i (n)θmax +

∑

h 6=m

∑

i∈O∗

M

Qm
h (n)θi (37)

So the upper bound for regret for m users is:

R
π(Θ;n) =

M
∑

m=1

R
π(Θ,m;n)

≤ M

N
∑

i=1

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)θmax

+M(M − 1)
∑

i∈O∗

M

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)θi

(38)

To be more concise, we could also write the above upper

bound as:

R
π(Θ;n) ≤ M(N +M(M − 1))(

8 lnn

∆min
+ 1 +

2π2

3
)θmax.

(39)

Theorem 5: When time n is large enough such that

n

lnn
≥

8(N +M)

∆2
min

+ (1 +
2π2

3
)N +M, (40)

the expected regret under the DLF policy specified in Algo-

rithm 4 is at most

M
∑

i/∈O∗

M

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)θmax +M2(1 +

2π2

3
)θmax

+M(M − 1)(1 +
2π2

3
)
∑

i∈O∗

M

θi.

(41)

Proof: The inequality (36) implies that the total number

of times that the desired arms are picked by user m at time n

is lower bounded by n−
N
∑

i=1

( 8 lnn
∆2

min,i
+ 1+ 2π2

3 ). Since all the

arms with M largest expected rewards are picked in turn by

the algorithm, ∀i ∈ O∗
M , we have

ni(n) ≥
1

M

(

n−

N
∑

i=1

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)

)

. (42)

where ni(n) refers to the number of times that arm i has

been observed up to time n at user m. (For the purpose of

simplicity, we omit m in the notation of ni.)

Note that when n is big enough such that n
lnn ≥ 8(N+M)

∆2
min

+

(1 + 2π2

3 )N +M , we have,

ni(n) ≥
1

M

(

n−
N
∑

i=1

(
8 lnn

∆2
min,i

+ 1 +
2π2

3
)

)

≥ ⌈
8 lnn

∆2
min

⌉.

(43)

When (43) holds, both (12) and (20) are false. Then ∀i ∈
O∗

M , when n is large enough to satisfy (43),

E[Qm
i (n)] =

n
∑

t=N+1

1{Ii(t)}

=
n
∑

t=N+1

(1{Ii(t), θi < θK}+ 1{Ii(t), θi > θK})

≤
∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=⌈(8 lnn)/∆2
min⌉

(Pr{θ̂j(t),nj(t)
≤ θj(t) − Ct,nj(t)

}+ Pr{θ̂i,ni
≥ θi + Ct,ni

})

+

∞
∑

t=1

t−1
∑

ni=⌈(8 lnn)/∆2
min⌉

t−1
∑

nh(t)=1

(Pr{θ̂i,ni
≤ θi − Ct,ni

}+ Pr{θ̂h(t),nh(t)
≥ θh(t) + Ct,nh(t)

})

≤ 1 + 2

∞
∑

t=1

t−1
∑

nj(t)=1

t−1
∑

ni=1

2t−4 ≤ 1 +
2π2

3
.

(44)

So when (43) is satisfied, a tighter bound for the regret in

(35) is:

R
π(Θ;n) ≤ M

∑

i/∈O∗

M

(
8 lnn

∆2
min,i

+ 1+
2π2

3
)θmax

+M2(1 +
2π2

3
)θmax +M(M − 1)(1 +

2π2

3
)
∑

i∈O∗

M

θi.

(45)

We could also write a concise (but looser) upper bound as:

R
π(Θ;n) ≤ M(N −M)(

8 lnn

∆min
+ 1 +

2π2

3
)θmax

+M3(1 +
2π2

3
)θmax.

(46)

Comparing Theorem 3 with Theorem 4 and Theorem 5,

if we define C = 8(N+M)
∆2

min
+ (1 + 2π2

3 )N + M , we can

see that the regret of the naive policy DLF-Naive grows as
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(a) N = 4 channels, M = 2 secondary users,
Θ = (0.9, 0.8, 0.7, 0.6).
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(b) N = 5 channels, M = 3 secondary users,
Θ = (0.9, 0.8, 0.7, 0.6, 0.5).
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(c) N = 7 channels, M = 4 secondary users,
Θ = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3).

Fig. 2. Normalized regret
R(n)
lnn

vs. n time slots.

 

 i=1 i=2 i=3 i=4 i=5 

m=1 995835 3030 659 659 184 

m=2 2914 994062 2138 623 263 

m=3 711 2570 993495 2640 584 

 
(a) DLP policy.

 

 i=1 i=2 i=3 i=4 i=5 

m=1 333328 333322 331068 1761 521 

m=2 333328 333269 330982 1872 549 

m=3 333326 333316 330764 2098 496 

 
(b) DLF policy.

 

 

 

 

 

 

 i=1 i=2 i=3 i=4 i=5 

j=1 329604 2749 474 330 176 

j=2 2184 327301 3031 540 277 

j=3 659 2282 327684 2109 600 

 

i=1 i=2 i=3 i=4 i=5 

j=1 330062 2154 589 374 155 

j=2 2952 327695 1759 703 224 

j=3 743 1978 328347 1738 527 

 

 i=1 i=2 i=3 i=4 i=5 

j=1 329891 2303 732 261 146 

j=2 2197 327574 2344 825 394 

j=3 515 2519 327619 1932 748 

 
(c) DLF-Naive policy.

Fig. 3. Number of times that channel i has been chosen by user m up to time n = 106, with N = 5 channels, M = 3 secondary users and Θ =
(0.9, 0.8, 0.7, 0.6, 0.5).

O(M2(N+M) lnn), while the regret of the DLF policy grows

as O(M(N +M2) lnn) when n
lnn < C, O(M(N −M) lnn)

when n
lnn ≥ C. So when n is large, the regret of DLF grows

as O(M(N −M) lnn).
We also note that the following theorem has been shown in

[11] on the lower bound of regret under any distributed policy.

Theorem 6 (Proposition 1 from [11]): The regret of any

distributed policy π is lower-bounded by

R
π(Θ;n) ≥

M
∑

m=1

∑

i/∈O∗

M

∆min,iE[Q
m
i ]. (47)

Lai and Robbins [3] showed that for any uniformly good

policy, the lower bound of Qm
i for a single user i grows as

Ω(lnn). So DLF is a decentralized algorithm with finite-time

order-optimal regret bound for fair access.

VI. NUMERICAL RESULTS

We present simulation results for the algorithms developed

in this work, varying the number of users and channels to

verify the performance of our proposed algorithms detailed

earlier. In the simulations, we assume channels are in either

idle state (with throughput 1) or busy state (with throughput

0). The state of each N channel evolves as an i.i.d. Bernoulli

process across time slots, with the parameter set Θ unknown

to the M users.

Figure 2 shows the simulation results averaged over 50

runs using the three algorithms, DLP, DLF-Naive, and DLF,

and the regrets are compared. Figure 2(a) shows the sim-

ulations for N = 4 channels, M = 2 users, with Θ =
(0.9, 0.8, 0.7, 0.6). In Figure 2(b), we have N = 5 channels,

M = 3 users, and Θ = (0.9, 0.8, 0.7, 0.6, 0.5). In Figure

2(c), there are N = 7 channels, and M = 4 users, with

Θ = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3).

As expected, DLF has the least regret, since one of the key

features of DLF is that it does not favor any one user over

another. The chance for each user to use any one of the M
best channels are the same. It utilizes its observations on all the

M best channels, and thus makes less mistakes for exploring.

DLF-Naive not only has the greatest regret, also uses more

storage. DLP has greater regret than DLF since user m has to

spend time on exploring the M − 1 channels in the M best

channels expect channel k 6= o∗m. Not only this results in a loss

of reward, this also results in the collisions among users. To

show this fact, we present the number of times that a channel

is accessed by all M users up to time n = 106 in Figure 3.

Figure 2 also explores the impact of increasing the number

of channels N , and secondary users M on the regret expe-

rienced by the different policies with the minimum distance

between arms ∆min fixed. It is clearly that as the number of

channels and secondary users increases, the regret, as well as
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the regret gap between different algorithms increases.
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Fig. 4. Comparison of DLF and TDFS [8], [9].

In Figure 4, we compare the normalized regret
R(n)
lnn of

DLF logarithm and the TDFS algorithm proposed by Liu and

Zhao [8], [9], in a system with N = 4 channels and M = 2
secondary users. Θ = (0.9, 0.8, 0.7, 0.6). The results are got

by averaging 50 runs up to half million time slots. We can

see that compared with TDFS, our proposed DLF algorithm

not only has a better theoretical upper bound of regret, it

also performs better for practical use. Also, TDFS only works

for problems with single-parameterized distribution. We don’t

have this requirement for DFS. Besides, the storage of TDFS

is not polynomial.

VII. CONCLUSION

The problem of distributed multi-armed bandits is a fun-

damental extension of the classic online learning framework

that finds application in the context of opportunistic spectrum

access for cognitive radio networks. We have made two

key algorithmic contributions to this problem. For the case

of prioritized users, we presented DLP, the first distributed

policy that yields logarithmic regret over time without prior

assumptions about the mean arm rewards. For the case of fair

access, we presented DLF, a policy that yields order-optimal

regret scaling in terms of the numbers of users and arms,

which is also an improvement over prior results. Through

simulations, we have further shown that the overall regret is

lower for the fair access policy. We have considered the i.i.d.

formulation throughout this work.
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