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Abstract—We consider the problem of dynamic multichannel
access in a Wireless Sensor Network (WSN) containing N
correlated channels, where the states of these channels follow
a joint Markov model. A user at each time slot selects a channel
to transmit a packet and receives a reward based on the success
or failure of the transmission, which is dictated by the state of the
selected channel. The objective is to find a policy that maximizes
the expected long-term reward. The problem can be formulated
as a partially observable Markov decision process (POMDP),
which is PSPACE-hard and intractable. As a solution, we apply
the concept of online learning and implement a Deep Q-Network
(DQN) that can deal with large state space without any prior
knowledge of the system dynamics. We compare the performance
of DQN with a myopic policy and a Whittle Index-based heuristic
through simulations and show that DQN can achieve near-
optimal performance. We also evaluate the performance of DQN
on traces obtained from a real indoor WSN deployment. We show
that DQN has the capability to learn a good policy in complex real
scenarios, which do not necessarily show Markovian dynamics.

I. INTRODUCTION

Inspired by the seminal work [1], dynamic spectrum access
in a Wireless Sensor Network (WSN) is believed to be one
of the keys to improving the spectrum utilization and meet
the increasing need for larger deployments. The arrival of
cognitive radio has allowed second users to search and use
idle channels that are not being used by their primary users
(PU). Although there are many existing works that focus
on the algorithm design and implementation in this field,
nearly all of them assume a simple independent-channel (or
PU activity) model. The de facto physical layer employed in
most of the WSNs (namely, IEEE 802.15.4) uses Industrial,
Scientific, and Medical (ISM) bands, such as the globally
available 2.4 GHz or 868/900 MHz. ISM bands are shared by
various wireless technologies (e.g. Wi-Fi, Bluetooth, RFID),
as well as industrial/scientific equipment and appliances (e.g.
micro-wave ovens). Thus, external interference can cause the
channels in WSNs to be highly correlated, and the design of
new algorithms and schemes in dynamic multichannel access
is required to resolve this challenge.

In this paper, we consider a wireless network with N corre-
lated channels, and each channel has two possible states: good
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or bad. There is a single user (wireless node) that selects one
channel at each time slot to transmit a packet. If the selected
channel is in the good state, the transmission is successful;
otherwise, there is a transmission failure. The goal is to obtain
as many successful transmissions as possible over time. We use
a Markov chain with 2N states to describe the joint states of
N channels. Since the user is only able to sense the selected
channel and no full observation of the system is available, the
problem can be formulated as a partially observable Markov
decision process (POMDP), which is PSPACE-hard and has
an exponential computation complexity [2].

We investigate the use of Deep Reinforcement Learning
from the field of machine learning as a way to overcome
the prohibitive computational requirements due to the large
state space. We implement a Deep Q-Network (DQN) [3] that
can find a channel access policy through online learning. This
DQN approach is able to deal with large systems, as well
as find a good policy directly from historical observations
without any requirement to know the system dynamics a-
priori. We show through simulations that DQN can achieve
a near-optimal performance. In addition, we also evaluate
DQN with real data traces collected from an indoor WSN
deployment, and DQN is able to find a good policy even
though the Markovian property may not hold in real scenarios.

The rest of the paper is organized as follows. In Sec. II, we
provide the problem formulation of the dynamic multichannel
access problem when channels are potentially correlated. In
Sec. III, a Myopic and a Whittle Index-based heuristic policies
are presented to solve the problem. In Sec. IV, we present the
DQN framework to find the policy through online learning.
We present the experiment and evaluation results in Sec. V
and conclude our work in Sec. VI.

II. PROBLEM FORMULATION

Consider a dynamic multichannel access problem where
there is a single user that dynamically chooses one out of
N channels to transmit packets. Each channel can be in one
of two different states: good (1) or bad (0). Since channels
may be correlated, the whole system can be described as a
2N -state Markov chain. At the beginning of each time slot, a
user selects one channel to sense and transmit one packet.
If the channel quality is good, the transmission succeeds



and the user receives a positive reward (+1). Otherwise, the
transmission fails and the user receives a negative reward (−1).
The objective is to design a sensing policy that maximizes the
expected long-term reward.

Let the state space of the Markov chain be S =
{s1, ..., s2N }. Each state si (i ∈ {1, ..., 2N}) is a length-N vec-
tor [si1, ..., siN ], where sik is the binary representation of the
state of channel k: good (1) or bad (0). The transition matrix
of the Markov chain is denoted as P. Since the user can only
sense one channel and observe its state at the beginning of each
time slot, the full state of the system, i.e., the states of all chan-
nels, is not observable. However, the user can infer the system
state according to his sensing decisions and observations.
Thus, the dynamic multichannel access problem falls into the
general model of POMDP. Let Ω(t) = [ωs1(t), ..., ωs2N

(t)]
represent the belief vector maintained by the user, where ωsi(t)
is the conditional probability that the system is in state si given
all previous decisions and observations. Given the sensing
action a(t) ∈ {1, ..., N} representing which channel to sense
at the beginning of time slot t, the user can observe the state
of channel a(t), denoted as o(t) ∈ {0, 1}. Then, based on
this observation, he can update the belief vector at time slot
t, denoted as Ω̂(t) = [ω̂s1(t), ..., ω̂s2N

(t)]. The belief of each
possible state ω̂si(t) is updated as follows:

ω̂si(t) =


ωsi

(t)1(sik(t)=1)∑2N

i=1 ωsi
(t)1(sik(t)=1)

a(t) = k, o(t) = 1

ωsi
(t)1(sik(t)=0)∑2N

i=1 ωsi
(t)1(sik(t)=0)

a(t) = k, o(t) = 0
(1)

where 1(.) is the indicator function.
Combining the newly updated belief vector Ω̂(t) for time

slot t with the system transition matrix P, the belief vector
for time slot t+ 1 can be updated as:

Ω(t+ 1) = Ω̂(t)P (2)

A sensing policy π : Ω(t) → a(t) is a function that maps
the belief vector Ω(t) to a sensing action a(t) at each time
slot t. Given a policy π, the long-term reward considered in
this paper is the expected accumulated discounted reward over
infinite time horizon, defined as below:

Eπ[

∞∑
t=1

γt−1Rπ(Ω(t))(t)|Ω(1)] (3)

where 0 ≤ γ < 1 is a discounted factor, π(Ω(t)) is the action
(i.e., which channel to sense) at time t when the current belief
vector is Ω(t), and Rπ(Ω(t))(t) is the corresponding reward.

If no information about the initial distribution of the system
state is available, one can assume the initial belief vector Ω(1)
to be the stationary distribution of the system. Our objective
is to find a sensing policy π∗ that maximizes the expected
accumulated discounted reward over infinite time

π∗ = arg max
π

Eπ[

∞∑
t=1

γt−1Rπ(Ω(t))(t)|Ω(1)] (4)

As the dynamic multichannel access problem is a POMDP,
the optimal sensing policy π∗ can be found by converting the

POMDP into a MDP with the belief as the state and solving the
corresponding MDP instead [2]. In theory, the optimal policy
π∗ can be obtained by solving via dynamic programming.
However, this approach is computationally prohibitive due to
the large size of the continuous belief space and the impact
of the current action on the future reward.

III. MYOPIC POLICY AND WHITTLE INDEX

In the domain of dynamic multichannel access, there are
many existing works on finding the optimal/near-optimal pol-
icy with low computation when the channels independent and
system statistics (P) is known. The Myopic Policy and the
Whittle Index Policy are two easy-to-implement approaches
for this settings.

A. Myopic Policy

A myopic policy only focuses on the immediate reward
obtained from an action and ignores its effects in the future.
Thus the user always tries to select a channel which gives the
maximized expected immediate reward.

The myopic policy is not optimal in general cases. Re-
searchers in [4], [5] have studied its optimality when N
channels are independent and statistically identical Gilbert-
Elliot channels that follow the same 2-state Markov chain
with the transition matrix as [ p00 p01

p10 p11 ]. It is shown the
myopic policy is optimal when the channel quality is positively
correlated, i.e., p11 ≥ p01. In addition, the myopic policy has
a simple robust structure that reduces the channel selection to
a simple round-robin procedure.

B. Whittle Index Based Heuristic Policy

When channels are independent, the dynamic multichannel
access problem can also be considered as a restless multi-
armed bandit problem (RMAB) if each channel is treated as
an arm. An index policy assigns a value to each arm based on
its current state and chooses the arm with the highest index
at each time slot. Similarly, the index policy does not have
optimality guarantee in general.

In [6], the Whittle Index is introduced in the case when
P is known and all channels are independent but may follow
different 2-state Markov chain models. In this case, the Whittle
Index policy can be represented in closed-form, and it has
been proved to be optimal when all channels are i.i.d. and
positively correlated. In addition, under these conditions, the
Whittle Index policy has the same round-robin structure as the
myopic policy.

When channels are correlated, the Whittle Index cannot be
defined and thus the Whittle Index policy cannot be directly
applied to our problem. To leverage its simplicity, we propose
a heuristic that ignores the correlations among channels and
uses the joint transition matrix P and Bayes’ Rule to compute
the 2-state Markov chain for each individual channel. After
each channel model is found, we apply the Whittle Index
policy accordingly.

In the case of independent channels, the Myopic and the
Whittle Index policies are easy to implement and they can



achieve optimality under certain conditions. However, so far
to the best of our knowledge there are no easy-to-implement
policies applicable to the general case where channels are cor-
related. Moreover, both policies require the prior knowledge
of the system’s transition matrix, which is hard to be obtained
in practice. Thus, we need to come up with a new approach
that copes with these challenges.

IV. DEEP REINFORCEMENT LEARNING FRAMEWORK

When channels are correlated and system dynamics is
unknown, there are two ways to approach the dynamic mul-
tichannel access problem: (i) estimate the transition matrix P
from observations and then apply either the Myopic policy or
the Whittle index-based policy; (ii) learn the policy directly
through interactions with the system. The first approach may
not scale well when the system becomes large, as the size of
the transition matrix grows exponentially with the number of
channels. The second approach, by incorporating the idea of
Reinforcement Learning, does not need to deal with the large
transition matrix and can be easily extended to very large and
complicated systems.

A. Q-Learning

We focus on Reinforcement Learning paradigm, Q-learning
specifically, to incorporate learning in the solution for the
dynamic multichannel access problem. The goal of Q-learning
is to find an optimal policy, i.e., a sequence of actions that
maximizes the long-term expected accumulated discounted
reward. Q-learning is a value iteration approach and the
essence is to find the Q-value of each state and action pair,
where the state x is a function of observations (and rewards)
and the action a is some action that user can take given
the state x. The Q-value of a state-action pair (x, a) from
policy π, denoted as Qπ(x, a), is defined as the sum of the
discounted reward received when taking action a and then
following the policy π thereafter. Then the optimal policy π∗

is π∗(x) = arg maxaQ
π∗(x, a),∀x.

One can use online learning method to find Qπ
∗
(x, a)

without any knowledge of the system dynamics. Assume at
the beginning of time slot t + 1, the agent takes an action
at ∈ {1, ..., N} that maximizes its Q-value of state-action
pair (xt, at) given the state is xt, and gains a reward rt+1.
Then the online update rule of Q-values with learning rate
0 < α < 1 is given as follows:

Q(xt, at)←Q(xt, at)

+ α[rt+1 + γmax
at+1

Q(xt+1, at+1)−Q(xt, at)] (5)

It has been shown that in the MDP case, if each action is
executed in each state an infinite number of times on an infinite
run and the learning rate α decays appropriately, the Q values
will converge with probability 1 to the optimal Qπ

∗
[7].

In the context of the dynamic multichannel access, the
problem can be converted to an MDP when considering the
belief space, and Q-learning can be applied consequently.
However, this approach is impractical since the belief update

is maintained by knowing the system transition matrix P a-
priori, which is hardly available in practice. Instead, we apply
the Q-learning framework to the original POMDP by directly
using the history of actions and observations. We define the
state for the Q-learning at time slot t as the combination of
the channels that are decided to sense and the corresponding
observed conditions of such sensed channels over previous M
time slots, i.e., xt = [at−1, ot−1, ..., at−M , ot−M ]. Then we
can execute the online learning through Eq. (5) to find the
sensing policy. Intuitively, the more historical information we
consider (i.e., the larger M is), the better Q-learning can learn.

B. Deep Q-Network

Q-learning works well when the problem state and action
spaces are small, as a look-up table can be used to execute the
update rule in Eq. (5). But this is impossible when the state-
action space becomes very large. Even worse, many states
are rarely visited, so the corresponding Q-values are seldom
updated, which may require a very long time to converge.

Researchers have proposed both linear and non-linear Q-
value approximations to overcome these issues. In 2015,
DeepMind developed a Deep Q-Network (DQN), which makes
use of a deep neural network to approximate the Q-value,
and it achieves human-level control in the challenging do-
main of classic Atari 2600 games [3]. A neural network is
a biologically-inspired programming paradigm organized in
layers. Each layer is made up of a number of nodes known as
neurons. Each neuron takes the weighted linear combination
of the outputs from neurons in the previous layer as input and
outputs the result from its nonlinear activation function to the
next layer. A deep neural network is a neural network that can
be considered as a deep graph with many processing layers. A
deep neural network is able to learn from low-level observed
multi-dimensional data and find its success in areas such as
computer vision and natural language processing [8], [9].

DQN combines Q-learning with deep learning, and the Q-
function is approximated by a deep neural network that takes
the state-action as input and outputs the corresponding Q-
value. The basic idea behind DQN is the use of a neural
network function approximator with weights θ as a Q-network.
The Q-network updates its weights at each iteration i to
minimize the loss function Li(θi) = E[(yi − Q(x, a; θi))

2],
where yi is also derived from the same Q-network with old
weights, i.e., yi = E[r + maxa′ Q(x′, a′; θi−1)], and x′ is the
new state after taking action a given the state x.

In a typical multichannel WSN based on the widely used
IEEE 802.15.4-2015 standard [10], nodes have to choose one
out of 16 available channels to sense at each time slot. The
state space tends to be large especially when considering the
potential correlations among channels. Since we directly use
the previous actions and observations as the state for the Q-
learning, the state space becomes very large. Therefore, a DQN
implementation is needed to help to find a tractable policy
implementation in the dynamic multichannel access problem.



V. EXPERIMENT AND EVALUATION

In this section, we present the details of our DQN im-
plementation together with its evaluations based on both
simulations and real traces.

A. DQN Architecture details

In the experiment, we follow the Deep Q-learning with
Experience Replay Algorithm [3]. The structure of our DQN
is finalized as a five-layer fully connected neural network
with each hidden layer containing 50 neurons. The activation
functions used for neurons are either all ReLU functions
or all tanh functions. The state of the DQN is defined as
the combination of previous actions and observations over
previous M steps, and the considered number of historical
time slots is the same as the number of channels in the system.
We apply the ε-greedy policy with ε fixed as 0.1 to balance
the exploration and exploitation, i.e., with probability 0.1 the
agent uniformly selects an action, and with probability 0.9
the agent chooses the action that maximizes the Q value of
a given state. When updating the weights θ of the DQN, a
minibatch of 32 samples are randomly selected from the replay
memory to compute the loss function, then a recently proposed
Adam algorithm [11] is used to conduct the stochastic gradient
descent to update the weights (details on the hyperparameters
are listed in Table I).

B. Performance Evaluation

We compare the DQN primarily with two other policies:
the Random Policy and the Whittle Index Based Heuristic
Policy. In the Random Policy, at the beginning of each
time slot, the user randomly selects one channel with equal
probability. In the Whittle Index Policy, the user assumes
all channels are independent. Since there is no information
about the probability distribution of each channel, the user
first observes each channel by sensing it for some time, and
then uses Maximum Likelihood Estimation (MLE) to estimate
the transition matrix of the 2-state Markov chain. We do not
consider the Myopic policy in general, as the transition matrix
P is too large to access. However, in some simulation cases
when P is sparse and easy to access, we implement the myopic
policy as a genie and evaluate its performance.

1) Simulations with perfectly correlated scenario: We con-
sider a highly correlated scenario. In a 16-channel system,
we assume only two or three channels are independent, and
other channels are exactly identical or opposite to one of these
independent channels. This is the case when some channels
are perfectly correlated, i.e., the correlation coefficient ρ is
either 1 or −1.

During the simulation, we arbitrarily set the independent
channels to follow the same 2-state Markov chain with p11 ≥
p01. When the correlation coefficient ρ = 1, the myopic policy
with known P (sparse and easy to access) is optimal and has
a simple round robin structure alternating among independent
channels [4], [5]. In the case when ρ = −1, though the myopic
policy with known P is not proved optimal, our conjecture is
that its performance is near-optimal.

TABLE I: List of DQN Hyperparameters

Hyperparameters Values
ε 0.1

Minibatch size 32
Optimizer Adam

Activation Function ReLU or tanh
Learning rate 10−5

Experience replay size 1, 000, 000
γ 0.9

Fig. 1: Average discounted reward for 6 different cases. Each
case considers a different set of correlated channels.

In Fig. 1 we present the performance of all four policies: (i)
DQN, (ii) Random, (iii) Whittle Index Based Heuristic Policy,
and (iv) Myopic policy with known P. In the first three cases
(x-axis 1, 2 and 3), the correlation coefficient ρ is fixed as 1
and in the last three cases (x-axis 4, 5 and 6), ρ is fixed as
−1. We also vary the set of correlated channels to make cases
different. The myopic policy in the first three cases is optimal,
and in the last three cases is conjectured to be near-optimal. As
it is shown in Fig. 1, the myopic policy, which is implemented
based on the full-knowledge of the system, is the best among
all six cases and serves as an upper bound. DQN provides
a performance very close to the myopic policy without any
knowledge of the system dynamics. The Whittle Index policy
performs worse than DQN in all cases as it ignores correlations
among channels.

In addition, we collect the Q-values predicted from the
DQN to show that DQN, indeed, tries to learn and improve
its performance. Given a state x, the maximum Q-value over
all actions, i.e., maxaQ(x, a), represents the estimate of the
maximum expected accumulated discounted reward starting
from x over an infinite time horizon. For each simulation case,
we fix a set of states that are randomly selected, and then plot
the average maximum Q value of all these states as the training
is executed. As it is shown in Fig. 2, in all cases, the average
maximum Q-value first increases and then becomes stable,
which indicates the DQN learns from experience to improve
its performance and converges to a good policy.

2) Simulations with real data traces: We use real data
traces collected from our indoor testbed Tutornet 1 to train and

1More information about the testbed on http://anrg.usc.edu/www/tutornet/



Fig. 2: Average maximum Q-value of a set of states in 6
different simulation cases

evaluate the performance of DQN on real systems. The testbed
is composed of TelosB nodes with IEEE 802.15.4 radio.
We programmed a pair of motes distanced approximately
20 meters to be transmitter/receiver. The transmitter contin-
ually transmits one packet on each one of the 16 available
channels periodically and the receiver records the successful
and failed attempts. Both nodes are synchronized to avoid
packet loss due to frequency mismatch and the other motes
on the testbed are not in use. The only interference suffered
is from surrounding Wi-Fi networks and multi-path fading.
There are 8 Wi-Fi access points on the same floor and dozens
of people working in the environment, which creates a very
dynamic scenario for multichannel access.

The data are collected for around 17 hours. Due to the
configuration of Wi-Fi central channels, there are 8 channels
whose conditions are significantly better than others. Ran-
domly selecting one channel from these good channels and
keeping using it can lead to a good performance. Thus, in
order to create a more adverse scenario and test the learning
capability of the DQN, we ignore all these good channels and
only use the data trace from the rest 8 channels.

We use the same data trace to train the DQN and to
compute the MLE of the transition matrices of each channel
for the Whittle index based heuristic policy. We compare
the performance of the DQN policy, the Whittle index based
heuristic policy and the Random policy. The average ac-
cumulated discounted reward from each policy is listed in
descending order: 0.947 (DQN), 0.767 (Whittle Index) and
−2.170 (Random Policy) It can be seen that DQN performs
best in the complicated real scenario. We also present the
channel utilization of each policy in Fig. 3 to illustrate the
difference among them. It shows DQN benefits from using
other channels when the two best channels (used by the
Whittle Index Heuristic all the time) may not be in good states.

VI. CONCLUSION

In this paper, we considered the dynamic multichannel
access problem in a more general and practical scenario when
all channels are correlated. As the problem is POMDP without

Fig. 3: Channel utilization of 8 channels in the testbed

a tractable solution, we have applied DQN that directly utilizes
historical actions and observations to find the access policy
via online learning. It has been shown from simulations that
DQN can achieve a near-optimal performance without a-priori
knowing any system dynamics. In addition, when applying real
data traces, which may not even have the Markovian property,
DQN still perform better than other existing algorithms. There
are a couple of open directions suggested by the present work.
First, we plan to apply the DQN framework to consider more
realistic and complicated scenarios such as multi-hop and
simultaneous transmissions in WSN. Second, we intend to
study the structure and property of the policy learned from
DQN which might enable us to design heuristics that can
perform better without the burden of the long learning period.
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