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Abstract—5G wireless networks promise to enable new kinds
of cellular use cases, by offering different network slices to
users with different needs. While pricing network bandwidth
is relatively straightforward when all users care about data rate,
more sophisticated pricing strategies are likely to emerge when
some of the customers acquire a network slice with the desire to
optimize for a different metric. We consider how a 5G wireless
provider may set per-class differential prices to maximize its
profit when offering different network slices to different classes
of customers. We formulate the problem using fundamental
economic principles and present a Drift-Plus-Penalty algorithm
to solve the problem in a dynamic setting. We show, through
simulation and analysis for a two-class network with latency and
throughput-oriented customers, that some surprising phenomena
may occur under certain conditions, such as an overall reduction
of total resources sold when the relative number of latency-
oriented customers grows.

Index Terms— 5G network slices, differential pricing, DPP

I. INTRODUCTION

With telecommunication technologies developing, 5G wire-
less networks are being developed and deployed to provide
enhanced data rates, latency, density, and reliability. They are
anticipated to play an increasingly role in society, enabling
the emergence of a wide array of new applications such as
mixed-reality, industrial IoT, connected Vehicles, smart cities
and more [1]. One of the key novel techniques introduced in
5G systems is network slicing: this allows network resources
to be divided into different slices on a per-service basis in
order to dynamically accommodate heterogeneous demands.

In the network slicing system, the different slices can offer
one or more different main functions based on special require-
ments. For example, an emergency communication slice may
need to provide alert broadcast and distress call with low-
rate but requiring latency on the order of seconds; and in a
slice serving autonomous vehicles, high data rates may be
needed [2]. Each slice consists of virtual network functions
which could support and build up the network services, and it
is created on-demand based on user requests to the provider.
After that, the slices with corresponding functional blocks are
made operative [3].

There is a growing literature addressing network slicing
architecture and technique, like SDN-NFV integration [2],
[3]. Some have focused on utility maximization and tried to
construct a business model in order to maximize the revenue,
but emphasize resource allocation based on a single fixed given
price instead of price setting [4].

From an economics perspective, the profit-maximization
strategy of the seller is extracting all surplus of tenants. In
other words, the seller will try to set the price as close
as possible to the valuation of the item in users’ opinion.
However, in real life, it is really difficult to realize arbitrarily
fine-grained price discrimination in the monopolist market. In
most cases, the seller can profit more if consumers compete
against each other like in an auction [5]. There are some
works on optimal auctions and mechanisms designing [6],
[7], [8]. In the telecommunication history, there did exist lots
of charging principles with high complexity, especially price
discrimination [9], [10]. However, the drawback is obvious as
well: the mechanism is too complex to use in practice, and
consumers dislike it compared with paying for simple prices
[9].

In [9], [10], Odlyzko admits the high profits that compli-
cated pricing forms can bring, but he predicts the trending
of pricing form should be toward simplicity. Not surprisingly,
there are a few works trying to solve the price problem by
setting a simple price instead of complex mechanism design-
ing in network economics in a traditional network system
[11], [12], [13]. For example, in [11], for some common
utility functions, Ozdaglar proves the profits of simple pricing
scheme, which only charges a flat entry fee to all potential
users, approximating the profits of revenue-maximizing prices
in communication networks. Furthermore, Ozdaglar provides
a new approach called marginal user principle to improve the
provider’s revenue, and with setting simple entry price as well
[12]. However, there was only single service – rate, in the
traditional model.

We believe it is necessary to revisit the question of pricing
and develop price schemes that are well suited for different
service needs or metrics, such as bandwidth, latency, reliabil-
ity, energy efficiency and so on in 5G system. Concretely, we
advocate a middle ground that balances profit maximization
and resource efficiency with relative simplicity that would978-1-7281-3783-4/20/$31.00 c©2020 IEEE



favor customer acceptance - allow a coarse-grained level of
price differentiation, so that customers with fundamentally
different metrics are charged different prices, but all customers
within the same class of utilities are charged the same price
(per unit resource).

To study this problem concretely, we build a model for a
5G infrastructure provider that must allocate resources to two
classes of tenants: one that cares about bandwidth, and one
that cares about latency. We focus on this two-class model
for simplicity and ease of expositions, but the ideas presented
in this work can be extended in a straightforward manner to
more classes.

The paper is organized as follows. First we show how the
provider could obtain the best demand curve from tenants’
different utility functions for each class. Then, we try to find
the point that the marginal revenue equals to the marginal cost
to increase the total profits. In this case, the provider could
determine the lower bound of entry price, and the upper bound
of resource allocation for each slice in certain type. We then
formulate the problem more generally to allow for joint re-
source optimization to determine a single price for each class.
We present a Drift-plus-penalty (DPP) algorithm that allows
for pricing in the presence of dynamic, unpredictable, arrivals.
Finally, we simulate both static and dynamic conditions and
analyze the resource allocation and profits obtained in different
cases. We show that, as expected, having a differential price,
one for each class, improves the provider’s profit.

II. MODEL

A. Network Model

The network is logically divided into different network
slices according to different demands, such as bandwidth,
latency, reliability, and so on.

Let S denote the set of logical slices and rs denote the
network rate resource of slice s,∀s ∈ S. Suppose the Ss be
the set of tenants who choose type s slice and define Rtot be
the total rate resource that the provider has.∑

s∈S

∑
i∈Ss

rsi ≤ Rtot (1)

In general, we assume the group of tenants who request to
slice s ∈ S has an increasing and concave utility function
Us(rs), which could be seen as the amount of money they
would like to pay to the allocated rate rs. Moreover, each
tenant in the same group may have different utility gain
coefficient γi,∀i ∈ Ss.

For ease of exposition, let us henceforth suppose the tenants
just have two types of demand and classify them into two
groups accordingly: the first group of tenants cares about
latency while another is interested in bandwidth.

The first group of tenants demands steady rate allocation in
order to ensure low latency in every time slot; and the second
group has elastic demand that they would like to pay if the
average throughput during a long period of time is above a
certain threshold.

Assume there are M potential tenants in the first “latency”
group and let SL = {1, 2, ...,M} denote the set of tenants;
similarly, assume the “bandwidth” group size is N and the set
SB = {1, 2, ..., N}, where S = SL ∪ SB.

Define the utility function of latency and bandwidth:
UL(r), UB(r). As for these tenants, it is natural that they
have different utility gains:

ULi (ri) = αiU
L(ri); (2)

UBj (rj) = βjU
B(rj); (3)

where α, β is the utility gain coefficient of users, and it follows
normal distribution:

αi ∼ N (ᾱ, σ2
α),∀i ∈ SL

βj ∼ N (β̄, σ2
β),∀j ∈ SB

B. Business Model

First of all, We construct the business model with the
following players:
• Infrastructure Provider: the owner of the network re-

source. The resources are virtualized and allocated to
tenants corresponding to demands.

• Tenant: requests the virtual network resources from the
InP, and uses these resources to serve users.

• User: purchases the network service from the tenants for
themselves

In this paper, we only consider the game between infrastruc-
ture provider and tenants: tenants need to purchase the service
that can satisfy their demands while the provider would like
to maximize the revenue.

Let K denote the number of tenants with the same demand,
and the tenant set is Ss = {1, 2, , ...,K}. The utility function
of tenant k is Usk(r) = γkU

s(r),∀k ∈ S∫ , which is an
increasing concave function.

In tenants’ opinion, everyone has valued the service and
would purchase it if and only if the value is greater or equal
to the unit price, where the valuation function V (r) is based
on the utility function.

V sk (r) =
Usk(r)

r
> Price (4)

In the market, we would like to find a best valuation function
V sbest(r) of the certain slice type among tenants’ different
valuation functions {V sk (r)}, k ∈ S∫ , which is called the
demand curve – represents the relationship between the unit
rate price and amount of rate needed.

Prices(r) = V sbest(r) = f(γ1, ..., γn)V s(r) (5)

The revenue RV (r) and economic profits π(r) that the
infrastructure provider sales the certain type slice:

RV s(r) = Prices(r) · r (6)
πs(r) = RV s(r)− Costs(r) (7)

Per classical microeconomics, the necessary condition for
rate allocation that maximizes profits is that the marginal



revenue must equal the marginal cost MRV = MC [5].
In this model, we assume the marginal cost is fixed, i.e.
MCs(r) = constant.

MRV s(r) =
dRV s(r)

dr
(8)

MCs(r) =
dCosts(r)

dr
(9)

Hence the provider could maximize the profits :

MRV s(r) = MCs(r) (10)

and the total rate allocated to type “A” slice: r ≤ rsmax, where
rsmax is the solution of (10); such that rsk ≤ rsmax

Correspondingly, the price setting

Prices ≥ psmin = Prices(rsmax) (11)

Similarly, if there are more than one type of slices, we could
use the same method to ensure the price range for each type.
Take latency and bandwidth we mentioned before as examples:

MRV L(rLmax) = MCL(rLmax)

rLi ≤ rLmax
PriceL ≥ pLmin;

(12)

MRV B(rBmax) = MCB(rBmax)

rBj ≤ rBmax
PriceB ≥ pBmin;

(13)

C. Allocation Rules

We have determined the pricing strategy to each type slice
and the infrastructure provider could price differently with
constraints to maximize the revenue. However, the above
decoupled formulation doesn’t clarify how resources should
be split across the different slices, which requires a joint
formulation. In general, the profit maximization problem can
be expressed as a joint utility maximization:

max
∑
s∈S

∑
i∈Ss

Usi (rsi )

s.t. r0 ≤ rsi ≤ rsmax,∀i ∈ Ss, s ∈ S∑
s∈S

∑
i∈Ss

rsi ≤ Rtot

(14)

In our model, we have classified two groups and defined
the tenants sets and utility functions.

max
∑
i∈SL

ULi (rLi ) +
∑
j∈SB

UBj (rBj )

s.t. rL0 ≤ rLi ≤ rLmax,∀i ∈ SL

rB0 ≤ rBj ≤ rBmax,∀j ∈ SB∑
i∈SL

rLi +
∑
j∈SB

rBj ≤ Rtot

(15)

where rL0 and rB0 are the minimum demands of tenants in
latency group and bandwidth group.

One approach to solving this problem is to use Lagrange
multiplier theory with KKT constraints. In this paper, we

instead present a drift-plus-penalty (DPP) algorithm to solve
it [14], and we can simplify it (15) by using virtual queues
and defining an appropriate domain set. This approach has
the benefit of being simple to implement in a dynamic setting
and not requiring prior knowledge of arrival rates of different
classes.
• Define the domain set R

R = {rL0 ≤ rLi ≤ rLmax,∀i ∈ SL;

rB0 ≤ rBj ≤ rBmax,∀j ∈ SB}
(16)

• Define virtual queue Q(t):

Q(t+ 1) = max
[
Q(t) + g(rLi (t), rBj (t))−Rtot, 0

]
(17)

where Q(0) = 0,

g(rLi (t), rBj (t)) =
∑
i∈SL

rLi (t) +
∑
j∈SB

rBj (t);

• The problem equals to choose rs(t) to minimize

−Wf(rLi (t), rBj (t)) +Q(t)g(rLi (t), rBj (t)); (18)

where

f(rLi (t), rBj (t)) =
∑
i∈SL

ULi (rLi (t)) +
∑
j∈SB

UBj (rBj (t))

and W is a non-negative parameter that affects the
amount minimization of f .

• Observe the virtual queue and choose .rLi (t), rBj (t) ∈ R
to solve it.

III. ANALYSIS

A. Demand Curve Fitting

In our assumption above, the potential tenants in set SL =
{1, 2, ...,M} who care about latency should satisfy (2)

ULi (ri) = αiU
L(ri);

αi ∼ N (ᾱ, σ2
α),∀i ∈ SL

They would like to purchase if and only if the valuation of
the object is greater or equal to the price:

V Li (ri)− Price > 0;

Suppose every tenant has the same latency demand rL0 <
rmax, the valuation function could be expressed as:

V Li (ri) =
αiU

L(ri)

ri
=
αiU

L(r0)

r0
= V αi; (19)

where V = UL(r0)/r0 is a constant. Hence the valuation
function follows the normal distribution:

V Li (ri) ∼ N (V ᾱ, V 2σ2
α) (20)

In order to maximize the profit, it is necessary to set an
appropriate demand curve to set price so that we can attract
enough potential tenants.

For example, in Fig.2, there are four tenants with different
utility gain coefficients, which means for the same service,



Fig. 1. Distribution of tenants’ gain coefficient

Fig. 2. Example of curve fitting

they would like to pay different amount of money because
they gain differently. Assume the optimal valuation function,
which could be regarded as the demand curve, is the valuation
function of tenant 2:

V Lbest(r) = f(α1, ..., α4)V L(r) = α2V
L(r)

If we set the unit price same as the V Lbest(rmax), where
rmax is the solution of (10), then we have:{

all tenants will purchase if r ≤ r′
tenants 2 ∼ 4 will purchase if r′ ≤ r ≤ rmax

In a more general case, assume the number of arrival
potential tenants At follows a Poisson process of rate λL at
each time slot t; s.t.

At = λ(t) ∼ Poisson(λL) (21)

Fig. 3. Profit-α, Finding the best curve fitting

The revenue of time slot t:

RV (t) = TotalSold · UnitPrice
= (Pr[V L

i (r0)>V ∗(r0)] ·At · r0) · V ∗(r0)

= [1− φ(V α∗)]Atr0V α
∗

(22)

where φ(V α) is the cumulative distribution function (CDF)
of the normal distribution (20).

The average revenue:

E[RV ] =
1

T

T∑
t=1

RV (t)

= (1− φ(V α∗))λLr0V α
∗

(23)

Maximize the revenue: ∂E[RV ]/∂V α∗ = 0

⇒ 1− φ(V α∗)− V α∗φ′(V α∗) = 0 (24)

Hence, we could find the best utility function, called demand
curve, of tenants who care about latency:

PriceL(r) = V Lbest(r) = α∗V L(r)

ULbest(r) = V Lbest(r) ∗ r = α∗UL(r)
(25)

where α∗ is the solution of (24), α∗ ≈ 0.8ᾱ < ᾱ.

1− φ(V α∗)− V α∗φ′(V α∗) = 0

Similarly, as for tenants in the bandwidth group:

PriceB(r) = V Bbest(r) = β∗V B(r)

UBbest(r) = V Bbest(r) ∗ r = β∗UB(r)
(26)

where β∗ is the solution of

1− φ(V β∗)− V β∗φ′(V β∗) = 0

and φ(V β) is the CDF of N (V β̄, V 2σ2
β)



B. Lyapunov Optimization
Based on the lower bound of price from price discrimina-

tion, we could determine the resource allocation and set the
price in order to maximize the total profits. In practice, it
is related to the arrival requests at each time slot. We have
assumed it follows a Poisson process (21) s.t.

ALt = λL(t) ∼ Poisson(λL);

ABt = λB(t) ∼ Poisson(λB);

Previously, we have found the best demand curve (25),
(26) that profits most in such circumstance. In the ideal case,
suppose the arrived tenant in the same group has the same
demand rL0 , r

B
0 and everyone would purchase.

Then the problem (15) is converted to

Max ALt U
L
best(r

L(t)) +ABt U
B
best(r

B(t))

s.t. ALt r
L(t) +ABt r

B(t) ≤ Rtot
rL(t) ≤ rLmax
rB(t) ≤ rBmax
rL(t) ≥ rL0
rB(t) ≥ rB0

(27)

Define: Set R

R = {rL0 ≤ rL(t) ≤ rLmax; rB0 ≤ rB(t) ≤ rBmax}
Lyapunov function L(t) and Lyapunov drift ∆(t) [14]

L(t) =
1

2
Q(t)2 (28)

∆(t) = L(t+ 1)− L(t) (29)

where Q(t) is the virtual queues defined in (17).

Q(t+ 1) = max[Q(t) +ALt r
L(t) +ABt r

B(t)−Rtot, 0]

The L(t) is a parameter to decide the virtual queue size so
the lower the value of L(t) is, the more stable the system is.
The drift-plus penalty inequality:

∆(t)−W (ALt U
L
best(r

L(t)) +ABt U
B
best(r

B(t))) ≤
B −W (ALt U

L
best(r

L(t)) +ABt U
B
best(r

B(t)))

+Q(t)[ALt r
L(t) +ABt r

B(t)−Rtot]
(30)

where W is a non-negative weight parameter and B is the
upper bound of 1

2 (ALt r
L(t) +ABt r

B(t)−Rtot)2.
Moreover, the problem is seperable to minimize the fol-

lowing equation with constraint rL(t), rB(t) ∈ R and it is
separable:

[−WALt U
L
best(r

L(t)) +Q(t)ALt r
L(t)]

+[−WABt U
B
best(r

B(t)) +Q(t)ABt r
B(t)]

(31)

For example, take UL(r) = a− b/(r − λ) + cλ, UB(r) =
dlog(1 + r). Then we can select optimized rL(t) and rB(t):

rL(t) =

[
(
Wbα∗

Q(t)
)

1
2 + λ

]rLmax

rL0

(32)

rB(t) =

[
Wdβ∗

Q(t)
− 1

]rBmax

rB0

(33)

C. Price Setting

The following can then be used to set the price for each
slice based on the resource allocation from DPP algorithm.

PriceL(rL) = V Lbest(r̄
L(t))

PriceB(rB) = V Bbest(r̄
B(t))

(34)

IV. SIMULATION

In this section, we simulate the cases that the resource
allocated, price setting and profits with number of latency
group tenants increasing while total number of both groups
is fixed.

We generated two groups of tenants whose utility gain co-
efficients follow same normal distribution: α ∼ N (5, 1);β ∼
N (5, 1); and have same group size M = N = 1000,SL =
SB = {1, 2, ..., 1000}.

Set fixed marginal cost MC = 0.5 and two marginal
revenue function, we have calculated the rLmax < rBmax, so
that we have pLmin > pBmin, which means allocating resource
to latency group is more profitable than to bandwidth group.

A. Static Case

In the ideal static case, we have a fixed total tenants number;
assume the tenants in the same group have the same demand
rL0 , r

B
0 and the price satisfies the purchase constraint (4) for

everyone.
Fix the total arrivals A = AL + AB = 1000, take

AL ∈ {100, 200, ..., 900}. From Fig.4, with AL increasing,
we see, as expected, that the resource allocated to latency
group increases while the resource allocated to bandwidth
group decreases.

Moreover, surprisingly, we observe that in this case the total
resource consumed actually decreases slightly when AL is
large enough. We present below an analysis of the condition
under which this would happen.

We have calculated the rLmax and rBmax where rLmax < rBmax
, which are the solutions of equation (10) (MRV = MC). The
resource sold Rsold = ALrL + ABrB . There are three cases
that can occur:

1) Rtot < rLmax · A = rLmax · (AL + AB) < rLmax · AL +
rBmax · AB ; In this case, we can always sell the total
resource Rsold = Rtot,∀ AL ∈ [0, N ]; and we could
have rL ≤ rLmax, rB ≤ rBmax ;

2) rLmax ·A < Rtot < rBmax ·A; in this case, there exists a
threshold Ath, s.t.:

Rtot = Ath · rLmax + (A−Ath) · rBmax;

• If AL << Ath, we have AL · rLmax +AB · rBmax >
Rtot:

⇒ Rsold = ALRL +ABRB = Rtot

where RL ≤ rLmax, R
B ≤ rBmax and can be solved

by resource allocation algorithm;
• With AL increasing and AL → Ath, RL → rLmax

and RB → rBmax; Rsold = Rtot;



Fig. 4. Resource allocation

Fig. 5. Resource allocated to each slice

• If AL > Ath , the resource sold would decrease
because Rtot > ALrLmax + ABrBmax; This is the
surprising case observed in our simulations.

3) Rtot > rBmax · A > rBmax · (AL + AB) > rLmax · AL +
rBmax ·AB ; In this case, the provider has enough resource
so that he could allocate rmax to every slice: rL =
ramxL, rB = rBmax; but Rsold < Rtot,∀ AL ∈ [0, A].

In Fig.6, with resource allocated increasing slightly, the unit
price of each slice decreases because Price(r) = U(r)/r,
which is a decreasing convex function of r.

In Fig.7, it shows the trend of total profits earned. We have
known that pLmin > pBmin, which means it is more profitable
to allocate resource to latency group. With AL increasing, the
total profit = ALrLmaxp

L
min+ABrBmaxp

B
min increases, although

the provider cannot sell all resource.

Fig. 6. Price set to each slice

Fig. 7. Total profits

Fig. 8. Profit from Price Discrimination vs. Single Price



B. Dynamic Case

In the ideal static case, the total buyers are fixed and
everyone will purchase at every time slot, so that we define
the profit in such case as “Max Profit”.

In dynamic case, the number of arrival requests fol-
lows the Poisson distribution λL = λB = N/2;ALt ∼
Poisson(500), ABt ∼ Poisson(500).

Take ALt = λL and ABt = λB into DPP algorithm to
converge the best resource allocation strategy, and we can
finish corresponding price setting. The profit earned by price
discrimination is 86% of the max profit while the profit earned
by best single price is only 74% of the max.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented the price setting principle

based on simple price discrimination, where the provider sets
different entry prices according to different services provided.
We did not only focus on utility optimization but also consid-
ered demand curve fitting based on different potential tenants’
gain coefficient, to determine the optimum price for each
group.

The approach we have presented improves profits compared
to the single-price scheme while keeping complexity relatively
low (single price for each type of service).

In the future, we would like to extend our work into more
general and complex settings, such as more complex variations
and combinations of utility functions, and understand their
implication on resource allocation and price-setting. Evalu-
ating the proposed approach of per-class differential pricing
of network slices with subjective survey-type feedback on the
complexity of the service and price offerings may also be of
interest to the 5G industry.
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