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Abstract—With a growing demand for computationally inten-
sive applications with widely distributed data sources, there is an
increased need for dispersed computing systems that can schedule
computation on cloud nodes across a network. A key challenge
in dispersed computing is the need to characterize the end to
end network performance for data transfer between compute
points and measure it at run-time so that optimized computation
scheduling decisions can be made. To address this challenge,
we empirically study file transfer times between geographically
dispersed cloud computing points using SCP (secure copy). We
show, to our knowledge for the first time, that the end to end
file transfer latency experienced by this widely-used protocol is
better modelled to have a quadratic dependency on the file size
(instead of a simple linear dependency that would be expected
if the network were treated as an bit-pipe with a deterministic
average bandwidth). We incorporate this observation into the
design of a real-time network profiler for dispersed computing
that determines best fit quadratic regression parameters between
each pair of nodes and reports them to the scheduler node.
Our end to end network quadratic latency profiler has been
released as a key part of an open source tool dispersed computing
profiler called DRUPE, and also as part of a DAG-based dispersed
computing scheduling tool called CIRCE.

I. INTRODUCTION

Over last decade, we have witnessed a rapid growth in the
demand of the computationally intensive applications such
as image processing and voice recognition, in the end user
devices such as a cellphone or a car dashboard. In the era
of Internet of Things (IoT), with the availability of very low
cost (as low as ≈ $5) micro-computers such as Intel Edison
and Raspberry Pi, there is a growing interest to perform
computations on the edge devices (partly or fully) rather than
sending the data to a central cloud for processing, to avoid
unnecessary network overhead and delays. The cutting edge
field of Dispersed Computing is focused on leveraging all
the available computation resources in the communication
path from an end device to a cloud (including processing
capable routers) for timely and optimized processing of the
data by jointly optimizing the computation costs and the
communication overhead costs. To this end, our research is
focused on developing a dispersed computing system that
would real-time monitor the network traffics and available
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computation capable node resources (which we will refer to
as a “compute node” or a “worker node” in this paper) to
optimally distribute the execution of a networked set of tasks
which can be represented as a Directed Acyclic Graph (DAG)
task graph.

As the core idea of dispersed computing involves dispersing
a set of networked task into a set of geographically distributed
compute nodes, one of the key requirements is a real-time
profiling of the network characteristics such as file transfer
delay along with a running database of available compute
resources descriptions. For highly computation intensive tasks
such as image processing, the amount of data required to
be transferred between different compute nodes is significant
(in the order of hundreds of Kilobytes) and therefore the
data transfer time among different compute nodes can be a
bottleneck in the processing of a DAG based Task graph. To
this end, we are interested in a) understanding how network
transfer latencies behave as a function of data/file sizes and b)
building a tool that can monitor and tell us about the function
over time.

The key contribution of this work is that we are the first
(to our knowledge) to demonstrate via a measurement study
of a widely used file transfer protocol (SCP) that expected
file transfer latencies are well modeled as a quadratic function
of the transferred file size instead of a simple linear function
model. In our experiments, a quadratic curve-fit yields less
than 5.4% mean absolute percentage error compared to 9.2%
error with a linear curve-fit. The quadratic curve suggests
that there is an additional penalty incurred by larger files -
possibly because over longer time-spans the transport layer is
more likely to see severe loss events resulting in lower average
bandwidth. This latter conjecture remains to be further verified
in future work. Secondly, we incorporate this observation
into the design of a distributed network monitoring system
where nodes across a computing network periodically take
pairwise measurements, curve fit them using the quadratic
regression, and send the parameters to a central/scheduler
node. This network monitoring system is implemented as part
of an open source profiler tool called DRUPE (DispeRsed
compUting ProfilEr, https://github.com/ANRGUSC/DRUPE)
as well as a DAG-based dispersed computing sched-
uler tool called CIRCE (CentralIzed Runtime sChedulEr,
https://github.com/ANRGUSC/CIRCE).

Since the late 90’s, investigating and predicting end-to-



end latency has been an important topic for the network
researchers. In 1999, Barford and Crovella [1] tried to measure
world wide web performance by analyzing file transfer latency
statistics (mean and standard deviations of packet delay, packet
loss, etc.) over combinations of different server load, network
load and file sizes (1KB, 20KB, 500KB) by traceroute network
tool. In 2002, Sharma et al. [2] raised the question whether
file size alone can help predict wide-area transfer time. While
exploring HTTP traffic over the specific data set of web
caching, the authors concluded that for small transfers of up
to 30KB, there is virtually no correlation between file size
and transfer time; and for larger files, file size and transfer
time are increasingly well correlated, but using file size alone
for prediction of transfer time is not highly accurate. In [3],
the authors integrated multiple sources of data sets (GridFTP
server data transfers log, Network Weather Service probe data
for bandwidth estimation and iostat disk throughput data to
measure disk behavior) as well as multiple kinds of predictors
(mean-based, median-based, autoregressive techniques based,
and regression models based) to obtain predictions of file
transfer times between a storage system and a client. They
concluded that multivariate predictors along with several com-
binations of data sets could help to improve the accuracy
in predicting bulk data transfer time. In 2006, Guang Tan
investigated the effects of bandwidth asymmetry on short-lived
transfers by looking into different phases of TCP (Connection
Establishment Phase, the Slow Start Phase and the Steady
State Phase) and presented total transfer latency versus number
of packets during a bulk transfer [4]. In 2009, Larsen et al.
looked into the end-to-end latency between application the
standard Gb Ethernet [5]. In 2013, Gangam has presented
Approximate Latency Estimator to support analysis of real
time TCP flow (only for TCP segments at transport layer)
[6]. To the best of our knowledge we the first to identify
that the end to end file transfer time over a network can be
well-modelled as a quadratic function of the file size alone.
Moreover, we use this finding toward developing a network
profiling system (implemented as part of open source tools
for dispersed computing: DRUPE and CIRCE) to provide an
online estimation of the end-to-end file transfer latency by
periodically and systematically probing the communication
paths of a geographically distributed dispersed computing
cluster and taking into account historical data of previous file
transfer duration.

The rest of the paper is organized as follows. Section II
details the empirical findings of our measurement experiments
on a carefully chosen geographically distributed set of nodes
hosted by DigitalOcean; section III introduces the system
which we have designed for network monitoring in dispersed
computing systems. And finally, we present a concluding
discussion in section IV.

II. REAL MEASUREMENT BASED MODELING OF THE
END-TO-END FILE TRANSFER LATENCIES

In the section, we detail our experiment setup and the results
toward modeling the end to end file transfer latencies in a

dispersed computing testbed setup.

A. Testbed Setup

In our dispersed computing related experiments, we leverage
a set of carefully chosen geographically distributed machines
(droplets) hosted by DigitalOcean. For the network profiling
experiments we use three DigitalOcean droplets summarized
in Table I. The droplets are carefully chosen to be located on
three different continents to model the end of end latencies
in a truly dispersed computing platform where the compute
nodes are spread across the world.

TABLE I: List of droplets used for our experiment

Droplet’s Host Name Region
ubuntu-512mb-fra1-01 France (FRA)

ubuntu-2gb-blr1-01 Bangalore (BLR)
ubuntu-2gb-nyc2-01 New York (NYC)

B. File transfer time measurements

Method: We perform different sets of end to end file
transfer time measurement experiments as follows:

• Experiment 1 (Single Time Slot) : From each node to
every other node, we send 10 files of each of the sizes
1KB, 10KB, 100KB, 1MB, 10MB and log the time taken
in each case. We carefully schedule this so that the node
transmissions does not overlap with each other. We also
interweave the file sizes to minimize chance of correlation
bias. We perform this experiment multiple time during
different randomly chosen time of the day to account for
the temporal variability in the internet traffic with each
experiment duration being 20 minutes.

• Experiment 2 (Multiple Slots): In this experiment, we
repeat the experiment from experiment 1 once every 20
minutes for three 20 minute time slots, 4 hours apart from
each other. We also repeat this experiment over different
times of the day. This allows us to see the impact of
temporal variability of the internet traffic over a day.

We use the well-known file transfer protocol called Secure
Copy (SCP) for transferring the files. Next, we present and
analyze our findings from these experiments.

1) Single Time Slot: In Figure 1, we present the results from
Experiment 1 of pairwise file download latency measurements
experiments for different file sizes over the six directional
links among three servers located in France, New York, and
Bangalore, respectively. The results are plotted as box whisker
plots versus file size. Box whisker plot shows the lowest
extreme (the smallest value), highest extreme (the largest
value), the median (the middle value), the lower quartile (the
median value of all data below the median), and the upper
quartile (the median value of all data above the median) of
the data. We can see that there are significant differences
in the end to end performance of the communication paths
between different nodes in the geographically dispersed ex-
perimental testbed. While the end-to-end file transfer time
for FRA→NYC (closest pair of nodes) ranges from 2s for
1 KB file to 4s for 10 MB file, the file transfer time from



BLR→NYC (farthest pair of nodes) is ≥ 3s for 1 KB file
and ≈ 7s for 10 MB file. This suggests that the physical
separation of the nodes significantly impacts the end to end
file transfer time. Moreover, Figure 1 show that BLR→NYC
communication has higher variability in end to end delay
compared to the reversed link i.e., NYC→BLR. This suggests
that the file transfer performance varies with the direction of
communication between two compute nodes. Therefore, the
direction of communication should be taken into account as
well for optimal dispersed scheduling of a DAG based task
graph.
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Fig. 1: File transfer time (single time slot)

2) Multiple 4 Hours Apart Time Slots: We obtain the aggre-
gated average transfer time during different 20 minutes time
slots of Experiment 2. Figure 2 presents the corresponding
results for the first and third time slots. Yet again, the trend
of significant difference in end to end file transfer delay
performance due to geographical diversity and direction of
communication among the testbed nodes is observed. And we
observe that there is some temporal variation, particularly with
respect to tail latencies.

All these experiments prove that for a truly geographically
distributed set of nodes in a dispersed computing platform, the
file transfer end-to-end delay performance varies significantly
based on the relative geographic location of the pair of commu-
nicating nodes as well as the direction of the communication,
and thus need to be accounted for optimal scheduling of
pipelined/networked jobs in a dispersed computing system.

C. Other Network Characteristics

In Section II-B, we presented the end to end file transfer
characteristics of a geographically distributed set of nodes. In

this section, we present our results regarding other network
characteristics such as round trip time (RTT) and maximum
TCP bandwidth. To this end, we employ the following tools.

• IPERF: A tool to measure maximum TCP bandwidth,
allowing the tuning of various parameters and UDP char-
acteristics. Iperf reports bandwidth, delay jitter, datagram
loss.

• PING: A tool to estimate Round Trip Time (RTT)
• OWAMP: A command line client application and a policy

daemon used to determine one way latency between
hosts.

For a concise presentation, we summarize the outcomes of
these experiments in Table II. Table II clearly shows that the
bandwidth (BW) mean, variance, and jitter are significantly
different for different links in our test environments. The BW
Mean is highest between FRA-NYC node pair and lowest
between BLR-NYC node pair. This is justified as FRA-NYC
node pair is the geographically closest pair of nodes and
NYC-BLR is the geographically farthest pair of nodes in
our experiment testbed. There is no loss of data in any of
the tests which is justified by the use of TCP [7] as the
transport layer protocol for the file transfers. The round-trip
times between each pairs of nodes e.g., NYC→BLR and
BLR→NYC, are identical for obvious reasons. However, one-
way latency, bandwidth mean and jitter of a link is different
from the reverse link (i.e, the link with switched origin and
destination). This verifies that the direction of communication
is indeed an important optimizing parameter in a dispersed
computing setup where the a set of tasks are connected via a
directional flow of data between them.

TABLE II: Network statistics results

IPERF BLR (Server) NYC (Server) FRA (Server)

N/A

BW Mean: 49.52 Mbps BW-Mean: 94.0 Mbps
BLR BW Std: 13.11 BW std: 25.068
(Client) Jitter: 0.026 ms Jitter: 0.915 ms

Loss: 0% Loss: : 0%
BW Mean: 59.68 Mbps

N/A

BW-Mean: 108.18 Mbps
NYC BW Std: 14.44 BW std: 31.78
(Client) Jitter: 0.033 ms Jitter: 1.327 ms

Loss: 0% Loss: : 0%
BW Mean: 93.94 Mbps BW-Mean: 120.55 Mbps

N/AFRA BW Std: 19.95 BW std: 26.65
(Client) Jitter: 0.047 ms Jitter: 0.053 ms

Loss: 0% Loss: : 0%

PING(RTT) BLR (Server) NYC (Server) FRA (Server)

BLR N/A 220.254 ms 145.819 ms(Client)
NYC 221.039 ms N/A 85.544(Client)
FRA 145.869 ms 85.526 ms N/A(Client)

OWPING BLR (Server) NYC (Server) FRA (Server)

BLR N/A Median delay = 112 ms Median delay = 96.4ms
(Client) Jitter = 0.2 ms Jitter = 1.1 ms
NYC Median delay = 95.6 ms N/A Median delay = 38.2 ms
(Client) Jitter = 0.2 ms Jitter = 2.2 ms
FRA Median delay = 53.2 ms Median delay = 44.9 ms N/A(Client) Jitter = 0.1 ms Jitter = 0.4 ms

D. Quadratic regression in profiling network communication

In this section, we use the collected data to find a mapping
function between the file size and the end to end file transfer
delay. To this end, we employ three different classes of
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Fig. 2: File transfer time over multiple 4 hours apart time slots

TABLE III: Regression error (Mean Square Error - MSE (in ms2) & Mean Absolute Percentage Error - MAPE)

Error Type BLR → NYC NYC → BLR BLR → FRA FRA → BLR FRA → NYC NYC → FRA
MSE - Linear 178643.1 135661.1 70302.0 77093.8 27790.5 34521.1

MSE - Quadratic 85012.3 53971.8 27434.1 24075.2 11007.0 17850.1
MAPE - Linear 9.2 % 8.35 % 8.14 % 8.75 % 8.3 % 9.2 %

MAPE - Quadratic 5.4 % 4.7 % 4.79 % 4.6 % 4.97 % 5.4 %

regression lines. The first class of regression lines are linear
with respect to the file size (f ) and the bandwidth as follows:
t = x+y+f/z where t is the transfer time, x is the constant
overhead, y represents the measured mean RTT, and z is the
measured average end-to-end bandwidth. The second class
also uses linear regression but with the file size (f ) as the
only variable: t = a + b · f where a and b are empirically
determined constants. Lastly, we employ a quadratic regression
with respect to the file size (f ): t = p + q · f + r · f2 where
p, q, r are empirically determined constants. In Figure 3, we
plot the empirical file transfer time versus file size and their
corresponding linear and quadratic regression line for given
file size, or combination of bandwidth and file size. Figure 3
clearly shows that the quadratic regression offers the best fit
to approximate file transfer time for varying file sizes.

Table III summarizes the regression error for linear and
quadratic cases. The results in Table III demonstrate clear im-
provement in error statistics when we use quadratic regression
over the linear approach.

III. DRUPE NETWORK MONITORING TOOL

Based on our empirical findings on how to represent file
transfer latency as a function of file size, we have designed a
system for centrally collecting information about the pairwise

end to end network performance for a set of dispersed comput-
ing points. A naive system may simply determine a single end
to end latency metric that is independent of file size. A slightly
more sophisticated system would implement a linear latency
function by assuming a deterministic average bandwidth for
the end to end link so that the file transfer latency would be
modeled as being linearly proportional to the file size divided
by that average bandwidth. However, as we have shown in the
above, empirically a better approach is to model the end to
end file transfer latency as a quadratic function of file size.

In the system, described below in more detail, each worker
compute node of the dispersed computing system calculates
the parameters of the best fit quadratic curve over a given
window of measurements to each other node:

• Central node:
– It performs profiler initialization and scheduling in the

worker nodes
– It periodically collects and stores all updated quadratic

parameters information of all the nodes in the local
database server in a circular buffer.

– It has an on-demand function to query the local
database server and calculate the expected latency for
a given pair of worker/compute nodes and a file size.

• Worker/Compute Nodes:
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Fig. 3: File transfer time prediction

– Measurement process: Each worker node periodically
(with a time period τ which we choose to be 1 minute)
transfers a file of a random size from a range of fmin−
fmax (we choose fmin and fmax to be 1KB and 10MB,
respectively) to every other worker node, and logs how
long it takes to transfer that size file in a circular buffer
of max size k.

– Regression process: A worker node looks at the last
k measurements (or up to the last k measurements at
the start when there are not enough measurements) and
calculate the parameters of the best fit quadratic curve
and sends those parameters to the central node.

We have implemented our network measurement system as
the key part of an open source dispersed computing profiler
called DRUPE as well as a dispersed computing scheduler
called CIRCE.

IV. CONCLUSION

In this paper, we demonstrated via a set of real world
measurement experiments that the end to end file transfer time
in a dispersed computing environment can be modelled as a
quadratic function of the file size. Based on this finding, we
developed a network profiler (implemented as part of open
source tools called DRUPE and CIRCE) that perform periodic
profiling of the communication links in a dispersed computing
cluster and performs a quadratic fit of the data and sends the
information back to a scheduler. In future work, we would
like to investigate and verify our conjecture that there is an

additional penalty incurred by larger files because over longer
time-spans the transport layer is more likely to see severe
loss events resulting in lower average effective bandwidth.
If that conjecture does not hold, we will consider alternative
possibilities including implementation limitations particular to
SCP. Further, we will perform a large scale experiments to
substantiate our findings further.
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