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ABSTRACT

Data from mobile cellular networks has been extremely valu-
able in helping us understand traffic dynamics, monitor net-

work operations, and conceive better deployment plans. Among

these applications, trace-driven emulation is particularly in-
teresting due to its potential in enabling open, reproducible,
and cost-effective examination of innovative designs of cellu-
lar networks. Nevertheless, the inanimate nature of off-line
data restricts it from being directly used for testing inter-
active network control algorithms, which may change the
original data distribution. To address this issue, we present
the DragonEye interactive emulation framework. Dragon-
Eye combines offline network data with microscopic refin-
ing and reacting models to emulate the live interaction be-
tween mobile users and the cellular network. For demon-
stration, we implement DragonEye using session-level user
traffic logs captured from a real WLAN. This implemen-
tation is then used to test a reinforcement-learning-based
base station (BS) sleeping control algorithm. Results show
that emulated users can interactively queue and cancel re-
quests in response to dynamic sleeping operations, which
demonstrates the effectiveness of DragonEye in emulating
live interaction using offline data.
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1. INTRODUCTION

“I fear to draw their eyes. They will come alive and fly
away.” - Chinese fairy tale “Drawing the Dragon Eye”.

Mobile cellular networks are not only data pipes but also
valuable data sources themselves. Network measurements
and signaling logs have been widely used to monitor opera-
tions and diagnose problems in face of anomaly [15]. Mobile
traffic records also served as insightful lenses for observing
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Figure 1: Comparison among different testing meth-
ods and illustration for the refinement and reaction
gaps for data-driven emulation.

human behavior at the population scale [3]. Further more,
network data can be incorporated back into the planing and
operations of cellular networks for application such as re-
mote channel estimation [8], hand-off prediction [6], etc.

Amongst such applications, data-driven network testing is
particularly intriguing due to its favorable balance between
fidelity and complexity. Data-driven network testing tries to
closely imitate the behavior of a real network by modulat-
ing an emulator with data captured from the target network.
To put the advantages of this method into perspective, we
compare it with other testing methods in Fig. 1. A real-life
testbed (top-right corner) is both genuine and fully-detailed.
It does not include artificial assumptions that will undermine
the truthfulness of evaluation, and it can provide sufficiently
detailed knowledge for any algorithms being evaluated. But
since it can be quite expensive to build and and complex and
time-consuming to operate, it is often only the last step in
the evaluation of algorithms. In comparison, model-based
simulation (top-left corner) is relatively cheaper and more
tractable and is therefore a popular alternative. The ample
choice of analytical models also guarantees flexible trade-



offs between simplicity and fidelity. Nevertheless, an arti-
ficial model may deviate from reality due to the computa-
tional intractability of accurately modeling real-life and our
incomplete understanding of the modeled system. In con-
trast, data~-driven emulation (center) strikes a better balance
among the conflicting constraints. Data is the truthful pro-
jection of real world as we record them. This means a data-
driven emulator can honestly reproduce the network state
and context at the time of capture. Also, real-time data
manipulation for data-driven emulation has become feasible
and efficient enough with the help of advanced data process-
ing software. Both advantages can potentially improve the
openness, reproducibility, and cost-effectiveness in innova-
tive research on cellular networks.

However, there are two major gaps that must be addressed
in the realization of data-driven testing. The first gap is the
reaction gap. The distribution of network data depends
on the network state at the moment of capture. Thus any
network operations that may change the internal network
state are also in danger of altering the subsequent distribu-
tion of data. Examples of such dynamic operations include
base station (BS) sleeping which may cause packet delay
and loss, load balancing which may change the interference
and congestion level, scheduling that may invoke user-side
flow control, and etc. Reaction to the operations above will
cause the network trace to deviate from the captured one.
Insisting on driving the emulator with the original trace is
likely to result in biased results. The other gap is the re-
finement gap. Limited by our data capturing and storage
capability, network data is often coarse-grained, only pro-
viding summaries or aggregate statistics about the complete
network process. Datasets like this may not even meet the
minimum knowledge requirements of certain control algo-
rithms and thus unable to drive tests for them. Note in
cases where captured trace is fine-grained enough, the re-
finement gap diminishes.

DragonEye mitigates the gaps above by introducing micro-
scopic traffic refining and interactive reacting models
into the data-driven modulation process. The traffic refin-
ing model generates fine-grained traffic information from the
coarse-grained dataset. For example, the captured dataset
may only tell how many requests a user sent in total. By
imposing a model for the request generation process, we can
extend our knowledge to the exact issuing time of each re-
quest. The interactive reacting model maintains internal
states of the network and governs the state transition under
dynamic interactions. For example, if a BS choose to queue
a user request, the model will tell us whether the user will
wait or simply give up. With these two models, network data
can be reused to test algorithms which may cause a network
process realization that is different from the captured one.
Indeed, the emulation will become partially synthetic after
introducing the two models. This is equivalent to sacrific-
ing truthfulness for more detailed knowledge, and will cause
the final system to drift left-wards while moving up in the
quadrature of Fig. 1. But it is important to note that mod-
eling microscopic behavior is often easier than macroscopic
behavior. Microscopic models will also preserve the domi-
nating influence of the captured data. Hence, data-driven
emulation is likely to be closer to real-life testbed than pure
model-based simulation provided that the captured data is

/Syste;;acih

ice R
Service Reward e . Operation Cost

\:’/ Agent C

\
\
\

\‘1 Observation

Environment

- Control Command
sﬁafﬁc/—__’j
Service
Figure 2: Components of DragonEye and their in-

teraction. E: Traffic emulator, S: traffic server, C:
controller.

of proper quality.

The rest of this article is organized as follows. In Section 2
we describe the structure and operation of the DragonEye
framework. In Section 3 we show how to implement Dragon-
Eye using data collected from a campus wireless local-area
network (WLAN). The implemented emulator is then tested
against a BS sleeping algorithm in Section 4. Related work
is reviewed in Section 5. And the paper is concluded in
Section 6.

2. FRAMEWORK OVERVIEW
2.1 System Structure

DragonEye consists of three components: a traffic emula-
tor (E) which imitates the behavior of a collection of traffic
sources such as mobile devices, a traffic server (S) which
serves as the data plane of the network and processes traf-
fic, as well as a controller (C) which is the control plane
of the network and directs the operation of the data plane.
The interaction among these components is illustrated in
Fig. 2: E generates traffic for S, which receives the traffic
and provide certain services under the (full or partial) direc-
tion of C. To issue commands wisely, C makes observations
through S about the traffic and system states. Depending on
the services provided, the received traffic may be accepted,
delayed, or denied. E and S will then emit a scalar metric
to depict the quality of interaction: E emits a scalar to mea-
sure the service quality while S a scalar to quantify the cost
of services. These rewards are summarized and passed back
to C, which then evaluates its current policy and improves
it towards higher rewards.

2.2 Interfaces and Operation Flow

We define a set of interface methods for the three compo-
nents in DragonEye. Actual implementation should mate-
rialize these interfaces irrespective of the system under test
and the data used. Their invocation flow during emulation
is shown in Fig. 3. Emulation starts with E. At the start of
each epoch, the generate_traffic() method of E is called
to get a detailed description of the generated traffic. If no
more traffic can be generated, the emulation will terminate;
otherwise, the generated traffic is fed to S as the argument
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of observe(traffic). Inside this method, S summarizes
the current traffic information and system states and return
the summary as an observation vector. The observation vec-
tor is then passed on to C as the first argument of the ob-
serve_and_control (observation,last_reward) method. C
will decide the control command under current observation
based on certain operation policy. The control command is
fed back to S through get_service_and_cost(control), in
which S processes the traffic and prepares a service descrip-
tion for E. At the same time, it will also quantify how expen-
sive the services are using a scalar cost. E receives the service
description in serve_and_reward(service). It modifies its
internal states based on the services provided and emits a
scalar to quantify its satisfaction level. The service reward
and operational cost are combined and buffered for the next
epoch as the second argument of observe_and_control(
observation, last_reward). C can use the combined re-
ward to evaluate and improve its current policy.

2.3 Integrating Reinforcement Learning

Our data-driven emulator is designed to enable open, re-
producible, and cost-effective testing of network control al-
gorithms. In this regard, we have to clarify how control
algorithms can be integrated into this system. Here we are
interested in the general task of learning the optimal control
policy. Reinforcement learning [14] is an effective frame-
work for tackling this task. A reinforcement learning agent
can learn an optimal policy that maximizes the accumulated
rewards by continuously interacting with an environment
and gradually improving its policy. To apply reinforcement
learning, we must first define the agent, the environment,
and their interfaces. The correspondence between the rein-
forcement learning agent and the controller C is quite ob-
vious, as they both serve the role of learning through trial
and error. Meanwhile, the environment is not a single com-
ponent in our system. Instead, it is the collection of E, S,
as well as the reward combiner as shown in Fig. 2.

Cﬁg:;n Explanation Example

uid Unique ID for each user 41117355
bldn Name of the building. Dining Hall 1
start Session start time (Unix). 1409500812697
dur Session duration (ms). 295551
dmns Domain list. [a.com, b.net]
prvdr Provider of each domain. [Tencent, Apple]
types Type of each domain. [Portal, Shopping]
bytes bytes/domain. [8500, 341]
reqs HTTP requests/domain. [5, 1]

Table 1: Explanation and example for dataset record
columns.

3. IMPLEMENTATION EXAMPLE

In this section, we implement! the proposed DragonEye
framework using a realistic WLAN dataset. We will de-
scribe the dataset, the goal and gaps towards data-driven
emulation, and the refining and reacting models used.

3.1 Dataset Description

The dataset we use is captured from a campus WLAN from
September 2014 through January 2015. It contains the session-
level HTTP traffic summaries of around 20, 000 users. Here
“session” is defined as the period in which a user generates
HTTP requests and pauses for less than 5 minutes each time.
If the user pauses longer, the subsequent requests will be
summarized into the following session.

Each record summarizes the per-domain HTTP activity of
each user during each session with the following fields: ses-
sion ID, user ID, building name?, start time (UNIX time),
duration (milli-seconds), list of the domains requested, the
corresponding provider, domain type, as well as the total
number of HTTP requests and bytes requested at each do-
main. Explanations and examples for these columns are
summarized in Table 1.

3.2 Emulation Goal and the Gaps

Goal: Traffic in wireless networks is known to be highly
nonuniform in both space and time. As a result, most BSs
are under-utilized for a large portion of the time [13]. To
avoid wasting energy in such situations, BS sleeping opera-
tions turn down under-utilized BSs in low-traffic periods and
wake them up when the traffic becomes heavy again. How-
ever, user traffic issued during sleeping periods will need to
be either queued or dropped, causing delay or loss respec-
tively. This raises the fundamental energy-delay/loss trade-
off of BS sleeping operations. Existing literature has studied
this problem using analytical models [16]. But the models
used are generally limited, such as Poisson models, and may
not closely approximate the true dynamics of realistic traffic.
The goal of data-driven emulation in this case is to study
different sleeping policies in realistic traffic conditions.

Tmplementation is hosted on  Github: https:
//github.com/zaxliu/dgndwirelesscontrol/tree/
master/sleep_control

2More granular knowledge of user location (access point
(AP) level) is hidden to preserve user privacy.



Refinement gap: the minimum knowledge detail require-
ment for this particular application is knowing the exact
issuing time, location, and meta-info, e.g. bytes and tar-
get domain, of each user request. However, since such fine-
grained information is aggregated into session summaries
in the dataset, the exact information of each individual re-
quests is unknown to us. Another problem arises with spa-
tial aggregation. The exact access point (AP) location of
each session is aggregated to the physical-building level for
privacy reasons. Therefore we do not know the true associ-
ation between user sessions and APs.

Reaction gap: the dynamic nature of BS sleeping opera-
tions is quite obvious. Networking service will be unavailable
during sleeping periods, therefore the user requests that are
issued then will have to be either queued or dropped. On the
user side, the flow control and retransmission mechanisms
are likely to be invoked in response, causing the transmis-
sion schedule of subsequent requests to deviate from the one
captured in the dataset. On the network side, the queu-
ing of new requests may also influence how the BS schedule
subsequent transmissions.

3.3 Refining and Reacting Models

To mitigate the gaps above, we assume the following refining
and reacting models. Besides, we also define the rewarding
mechanism to reflect the trade-off between energy consump-
tion and delay/cost.

Virtual large cell: to cope with the uncertainty of user
location at sub-building level, we assume all the users in a
physical building are served by a large-coverage BS instead
of multiple small-coverage APs. This assumption is inspired
by the fact that the actual geographical layout of the build-
ings involved are rather far apart and the size of a single
building matches the coverage size of a typical cell in cellu-
lar communication systems.

Byte and epoch allocation: we assume a uniform byte
and epoch allocation model to translate coarse session-level
summary to fine-grained request description®. According to
this model, each byte in a session belongs to a request in
that session with equal probability, and each request be-
longs to an epoch within that session with equal probabil-
ity too. This essentially results in a multinomial byte-per-
request and request-per-epoch probability distribution.

User and network state machines: we model the re-
action of users and the network using state machines. At
the user side, the transmission of each request follows the
state machine shown in Fig. 4. All requests are initialized
as “pending” and remain there before being transmitted. If
a request should be sent out in a particular epoch, its state
is modified to “waiting” and start transition according to
the service received: if this request is successfully served,
its state is then changed to “served” and transition is termi-
nated; if otherwise it is queued, its state remains at “wait-
ing”; if it is rejected from service, its state will be switched
back to “pending” with probability p and re-allocated to one
of the epochs left in this session with uniform probability,
or tagged as “failed” with probability 1 — p and terminate

3Note that any other distribution could also be used.
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Figure 4: Request generation state machine

further transition. All “pending” and “waiting” requests are
also tagged as “failed” after the last epoch of a session.

The network-side state machine is relatively simple. In each
epoch, S first puts all incoming requests in a request queue.
If the control command received is “serve”, then all queued
requests will be served and queue cleared; otherwise if the
command is “queue”, the queued requests remain in the
queue for the next epoch.

Rewarding mechanism: we apply the following reward-
ing scheme to reflect our favor for immediate service and
sleeping in low-traffic periods. For each “waiting” request,
E emits R as service reward if this request is served, Ry if
queued or retransmitted, and Ry if it fails. In each epoch,
S emits C; as the operational cost if it is turned on and Cy
if it sleeps.

4. EVALUATION RESULTS

We evaluate the operation of our implementation using a BS
sleeping algorithm based on deep Q learning [10]. The goal
is to show that the algorithm can learn a reasonable sleep-
ing policy with the traffic generated by our emulator and
that the internal state of our emulator can by dynamically
modified in reaction to different control commands. The pa-
rameters used are: R; =1, Ry = —1, Ry = —10, p = 0.7,
Ci =1, Co = 0. Fig. 5 shows the number of sessions and
requests issued during the test. As can be seen, the peaks
and valleys in the two time series match with each other,
which is the expected result because we want the generated
traffic to be mainly modulated by the captured dataset.

To illustrate the learning process of the controlling agent, we
show the percentage of waken epochs as well as the number
of generated requests in each 5-minute period in Fig. 6. As
can be seen, the agent’s control actions does not make much
sense at the beginning. At the beginning, it wakes up and
sleeps equally randomly. A while later, it grabs an appar-
ently sub-optimal policy by which it stays up regard less of
the traffic. The agent then spends the first 50 minute im-
proving its policy. After the first hour, the agent gradually
grasps a reasonably good policy and start to make sensible
moves, i.e. sleep with high probability when the traffic is
low and turn on itself when the traffic becomes heavy.

To illustrate users’ reactions to BS sleeping, we show in
Fig. 7 the total number of waiting and failed requests in
each 5-minute period. As can be seen, the number of wait-
ing requests is high in low-traffic periods and low in high-
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traffic periods. This is expected as the BS will sleep more
in low-traffic periods and more users will choose to wait in
response, while the BS is likely to stay on in peak hour to
immediately serve all incoming traffic. Also, notice a small
portion of request will time out and fail in low-traffic periods
due to long waiting time.

S. RELATED WORK

The notion “network testing” actually entails two comple-
mentary aspects: the emulation of the network functions
and the generation of traffic. Each of the two have a few
different methods with different level of trade-off among fi-
delity, reproducibility, and cost-effectiveness. The choice of
combination is often based on the primary goal and avail-
able resource in each testing task. In this section we briefly
review related work in both aspects and compare with our
proposal.

The simulation or emulation of network function is the first
pillar of network testing. Simulation and emulation is of-
ten combined to form a meta emulation system: emulation
is used to abstract the interface of the network functions,
while simulation is used to simplify the process by generating
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Figure 7: Number of waiting and failed requests dur-
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the aggregate behavior of network functions using models.
An example is the evaluation of rate-adaption algorithms
in wireless networks. The phenomenons related to wireless
propagation and physical-layer network functions are imple-
mented using analytical models. Their collective behavior
is then wrapped up following the function interface speci-
fications and interact with the algorithm under test. Our
approach for network emulation is following the same gen-
eral framework, despite that the integration of reinforcement
learning requires us to separately implement a control plane
(D) and a data plane (S). We will not dive deep into this
topic. For interested readers, a thorough review of network
simulation and emulation is presented in [9].

Existing traffic generators can be roughly classified as ei-
ther model-based or trace-based [11]. Model-based genera-
tors generate traffic using predefined analytical models such
as periodical and Poisson. There exist a number of well-
developed software packages, e.g. TG* and MGEN®. Many
widely used network emulation platforms also have embed-
ded module for this purpose. However, it is often hard to de-
velop an analytical or computationally tractable model that
closely fit to real traffic sources. Trace-based generators, on
the other hand, solves this problem by modulating the traffic
generation process with realistic traffic traces collected from
real networks. This is achieved by either replaying captured
traffic traces or first distilling traffic model parameters from
the collected trace and then synthesizing a new trace follow-
ing the parameterized model.

The biggest problem with trace-driven methods is the reac-
tion gap as described previously. Different manifestations of
this problem has been independently identified and attacked
in various fields. For Internet traffic generation, Hong et al.
[5] first proposed in TCPopera to emulate a full TCP proto-
col stack when generating traffic. In this way, trace packets
that breaks TCP sementics (such as “ghost” packets) can be
filtered out. Also, if the packet drop rate or delay of the test-

4By ISI of USC. http://www.postel.org/tg/
°By Naval Research Laboratory (NRL) PROTocol Engi-
neering Advanced Networking (PROTEAN) group. http:
//www.nrl.navy.mil/itd/ncs/products/mgen



ing network is different from that of collection, the emulated
retransmission and congestion control functions will dynam-
ically adjust the transmitting schedule to interactively react
to the changing environment. For wireless networsk, a state-
machine-based method is proposed in [7] to coordinate the
generated WLAN traffic with environmental effects such as
fading and noise. For System-on-Chip (SoC) networking,
the problem is centered around how to generate traffic at the
right pace if the target emulation system has different clock
frequency [4]. For application-layer Internet traffic, the goal
is to identify and adjust session-depended information fields
such as host-name and cookie. Two different approaches are
proposed in [2] and [12] to modify those fields according to
the network context.

The problems in generating WLAN, SoC, and application-
layer traffic are however static in nature: no dynamic control
for the replaying process is required. In this sense, the pro-
belm we try to solve is more related to the one dealt in [5, 1].
Still, one major difference lies in that we try to model the
response of users while the two pieces of work emulates the
response of the protocol machinery. This piece of difference
also makes our work complimentary to previous work, be-
cause by jointly modeling the response of both human and
machinery, the traffic generation process can achieve even
higher realism. Besides, there are also two minor differ-
ences: our proposal emits rewards in real-time in response
to network control decisions, which is a required for test-
ing reinforcement learning algorithms; also, none of these
previous works uses application-level traces collected from a
wireless network.

6. CONCLUSIONS

In this paper, we propose a data-driven interactive net-
work emulation framework called DragonEye. It is designed
to enable interactive data-driven tests for network control
algorithms, especially the ones that fit into the reinforce-
ment learning formulation, for cellular networks. We dis-
cuss the problems with naive trace replaying and summa-
rize them as the refinement and reaction gaps. DragonEye
mitigates these two gaps by combining data-modulated em-
ulation with microscopic refining and reacting models. We
describe the components and operation of DragonEye and
implement it using real dataset collected from a campus
WLAN. Then we evaluate this implementation by testing
a deep-Q-learning-based BS sleeping agent. Results show
that the emulation process is indeed reactive to the dynamic
sleeping operations of the serving BS, which demonstrates
the effectiveness of DragonEye in emulating live interaction
using offline data.
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