Channel Selection in Multi-channel
Opportunistic Spectrum Access Networks with
Perfect Sensing

Xin Liu
University of California
Davis, CA 95616
liu@cs.ucdavis.edu

Abstract— We study optimal transmission strategies
in multi-channel opportunistic spectrum access networks
where one secondary user (SU) opportunistically accesses
multiple orthogonal channels that are owned and utilized by
primary users (PU). In dynamic spectrum access networks,
the protection of PU’s is vital, since no PU would accommo-
date SU access to its own detriment. Therefore the objective
of the problem we study is to maximize the SU throughput
while protecting PUs on all channels. At a given time, the
SU decides if it transmits and if so on which PU channel
it should transmit on in order to protect PU performance.
We use a constraint on the expected PU packet collision
probability as the protection metric. We consider a general
setting where the PUs are unslotted and may have different
idle/busy time distributions and protection requirements.
Under general idle time distributions, we determine the
form of the SU optimal access policy. We also study the
special case where PUs have independent, exponentially
distributed idle time. For this case, we formulate a linear
program that yields an optimal randomized strategy for the
secondary user, and also present a tunable heuristic which
allows for a tradeoff between complexity and throughput
performance.

I. INTRODUCTION

Cognitive Radio (CR) technology has great potential to
alleviate spectrum scarcity in wireless communications.
It allows secondary users (SUs) to opportunistically ac-
cess spectrum licensed by primary users (PUs) while
protecting PU activity. This paradigm is often referred
to as dynamic spectrum access (DSA), where users in
the system are divided into a multi-tiered hierarchy and
primary users have priority of channel access over sec-
ondary users [1]. In this paradigm, because the protection
of PU is vital, a design imperative for a SU opportunistic
access strategy is to minimize the SUs’ effect on PU
transmissions. For example, in the DARPA XG project
[2], one of the three major test criteria in a cognitive
radio prototype field test is “to cause no harm” [3].
Predictably, this is also one of the main bottlenecks of
SU performance.
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We consider in this work the case where one SU
senses multiple PU channels and can decide to transmit
on at most one that is currently idle. The SU’s goal
is to maximize its own throughput while protecting
PU performance on all channels. We consider packet
collision probability as the PU protection requirement.
Under this requirement, the SU must guarantee that the
packet collision probability of a PU packet is less than a
certain threshold specified a priori by the PU. This type
of constraint has been widely considered in the literature
[4], [5], [6], [7]. We assume that the PUs are unslotted
and may have different idle/busy time distributions and
protection requirements.

The principal contributions of this paper are two-fold.
First, we determine the form of the SU’s optimal access
policy for general idle/busy time distributions. Second,
for the special case where the idle/busy time distributions
are exponential, we present a linear program that can
compute the optimal SU strategy explicitly.

II. RELATED WORKS

In recent years, there has been an explosion of research
in cognitive radio. A large portion of this research has
been in spectrum overlay, where protocols are devised
to maximize SU spectrum utility when PUs are idle
and protect PU communication when they become busy.
Within this paradigm, there are two focuses, spatial
domain and temporal domain research [1].

In the former, SU activity is assumed to occur in a
much faster timescale than the PU activity, and hence
the spectral environment (i.e. PU channel occupancy) is
treated as static. The main problem then becomes channel
allocation among multiple SUs given certain topologies,
different channel availabilities, and interference among
SUs.

Our work falls into the latter temporal domain cate-
gory, where PU activity varies quickly in time and SUs
within interference range must devise sensing and access



schemes in concert to avoid significantly harming PU
communication. In this domain, PU protection is crucial.
Two widely used PU protection metrics are interference
temperature and collision probability. Several papers
consider interference power. For example, in [8], the
authors consider multiple SUs operating in a multi-PU
system where each PU has an average rate requirement
and outage probability constraint, both functions of the
interference power caused by SUs. Power control for
different states of PU activity is considered in [9].

In this paper, we use PU packet collision probability
constraint. Researchers have developed medium access
schemes for SUs under this protection requirement [4],
[5], [6]. Partially observable Markov decision process
(POMDP) has been widely used to formulate the sensing-
transmission decision problem. In [10], [11], the authors
consider a slotted PU network, and optimal sensing and
access decisions are made by considering observation
history. The POMDP framework for sensing and access
has been extended to unslotted setting in [12]. In [13],
[14], the authors consider a slotted system for a single SU
with limited sensing, and identify the conditions under
which a simple myopic policy is optimal for sensing
and access, when the PU’s channel occupancy can be
modeled as i.i.d. Markov chains. The result is extended
to the case of sensing multiple channels in [15]. In [16],
the authors adopt the quickest change detection technique
and establish a Bayesian formulation to decide which
channel to access assuming geometrically distributed
busy/idle times. In [7], the authors consider an overlay
SU network on a multi-PU network with slotted structure.
The authors use the Lyapunov optimization technique to
design an online flow control, scheduling and resource
allocation algorithm that meets the desired PU protec-
tion requirements. In comparison, these papers consider
geometrically distributed (or exponentially distributed)
idle/busy period while we consider general idle/busy time
distributions.

In [17], the authors consider learning-based sensing
schemes when the distribution of the primary user is
unknown, but belongs to a parameterized family. In [18],
an optimal sensing-transmission structure is proposed for
a PU channel with a general idle time distribution. While
these works focus on a single PU channel, we consider
multiple PU channels. In [19], sensing of multiple general
channels are considered. However, this work does not
consider PU packet collision probability, which is a
critical constraint in our case.

The most related works are [4], [20], where the authors
propose optimal access strategy for a single PU channel
with general idle/busy time distribution. In this work, we
develop the results to multiple PU channels.

III. SYSTEM MODEL :

In this section we describe the system model used
in this paper. We consider a single SU that operates
within the interference range of multiple orthogonal PU
channels.

A. Primary User Model

In our system model, we assume there are K orthogo-
nal PU channels. At each PU channel, the PU transmits
its data at will and exhibits an idle/busy usage pattern.
The individual idle (X) and busy (Y) periods are inde-
pendent. They follow distributions f#() and f/() with
means Z; and g;, respectively, where index ¢ represents
PU channel i. The PU activity on different channels are
independent.

Each PU ¢ has a packet collision probability require-
ment denoted 7;, defined as the maximum allowable
probability of collision for a packet of the ¢th PU.
Assume that each PU packet has length 1. Over a
time interval [0,7], we denote the number of packets
transmitted by the ith PU as N;, and the number of
collisions experienced by that user as N¢. The collision
probability of the ¢th PUs’ packets experiencing collision
is denoted as

p$ = Pr[packet collision of ith PU]J,

where .

pi =

)

and the PU protection requirement is thus

pf <mi, i€{l,.,K}. (1)

B. SU Model

In this paper, we consider a single SU. We assume that
the SU has knowledge of the collision constraint, and the
idle/busy time distribution, i.e. f7(-), f/(-), n; for all 4.

We assume perfect sensing by the SU, i.e. that the SU
can always detect the presence or absence of a PU on a
channel, and that sensing time is negligible. In addition,
the SU has the capability to simultaneously sensing
all channels. For instance, the SU may be equipped
with multiple radios, with one dedicated for sensing.
The sensing front-end has broadband sensing capability.
Therefore, at any given time, the SU maintains a status
vector, t, for the PUs, where £ = {t1, - ,tx}. When
channel ¢ is currently idle, ¢; is the amount of time
channel ¢ has been idle since the last channel transition
from busy to idle; and we set t; = —1 if the channel is
currently busy. This is illustrated in Figure 1. Channels 1
and 3 are idle, and ¢; and ¢3 are the amount of time they
have been idle. Channel 2 is busy, so to = —1. We use s
to denote a state that indicates which channels are idle.
Let A, be the set of available (i.e. idle) channels at state
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s. For instance, in the example illustrated in Figure 1,
As; = {1,3}. Let 7, be the probability of state s. It
can be calculated numerically using the average busy/idle
times of the PUs. For example, for the situation shown
in Figure 1, we have w3 = (Z1/(Z1 + 1)) x (Z3/(ZT3 +
¥3)) X (§2/(T2 + y2)). Let m}, be the probability of state
s given channel k is idle. We have

s { Ltk ke A,
= Lk
k 0
b

k¢ As
where Zj/(Zp + §x) is the probability that channel &
is idle. Let t; = {t1, -+ ,tp—1,th+1, - ,tx }. Abusing

notations a little bit, we denote ¢ = {f7,#;}.

We assume any overlapping transmission between the
SU and the PU cause collision to both of them. This is
a conservative assumption. In practice, collision depends
on many other factors, such as distance between trans-
mitter/receiver and transmission power. To address such
possibilities, one can factor in capture effect on both SU
and PU sides. Because of the perfect sensing assumption,
collisions happen only in the following scenario: the SU
started transmission when the PU channel is idle, and the
PU returns before the SU finishes its transmission.

The decision variable of the SU is its transmission
probability on a given channel, in particular, pq(k,1) is
the probability of transmitting on channel k at state s
given £. Without loss of generality, we let

ps(k, 1) =0, ifs¢ A,.

In other words, the SU only transmits on a channel if it
is sensed idle.

The SU packet length is denoted A, and we assume
that A < 1 (1 is the length of a PU packet). Therefore,
if a SU packet starts transmission at time ¢; on channel
k, its collision probability with the PU is

th+A
/ Jr(tr)dt.

Ly

In this paper, we study the extreme case where A — 0.

We assume that even a very small portion of overlapping
results in a collision with PU. This assumption allows
us to maintain the quantification of the (negative) impact
of SU transmission on the PU. Note that as A decrease,
the collision probability of a single SU packet decreases.
However, the SU needs to transmit more packets to
achieve the same time capacity, and thus the collision
probability remains the same. Having A — 0 alleviates
tedious technical details while allowing us to provide
insights on how a single SU should access multiple PU
channels. In [4], it is shown that this results in the best SU
capacity if no overhead is considered. With overhead, one
can use similar techniques to decide the optimal packet
length [4].

When SU uses transmission policy p, the average
number of collisions PU k observes in each idle-busy
period is

St [ 0 ]

In the above equation, [/ ps (k,) fr (ty) dty is the
probability of collision in one idle-busy period. Because
the policy depends on s and t_}c, the average number of
collisions is taken expectation over s and t_;;,. Note that
collision can only happen in the beginning of the PU busy
period and the SU transmission collides with at most one
PU packet because of the perfect sensing assumption and
that a SU packet is smaller than that of a PU packet.
Normalized over the number of packets in each PU
busy period ¥, we have the PU collision probability.
Equivalently, defining 7, = 79, the constraint on PU
channel k is

ZWJSCE{% {/0 Ds (kﬂf} T (te) dtr | <y )

The SU’s performance metric is the time capacity, the
percentage of time that the SU can transmit success-
fully.This metric is defined as:

C. = lim SU’s successful access time in [O,T]. 3)
T—o00 T

To elaborate, if a SU packet takes ¢ unit of time to
transmit and if the transmission of the SU packet has
no overlapping with the transmission of a PU packet, we
consider the SU to have successfully access the channel
for § unit of time. Taking 6 — zero, under SU policy p,
the SU’s average transmission time in an idle-busy period




on channel k£ is

Gs(k,p)

- ES:WZE;k UOOO (/OTps (k,t) dtk) fk(T)dT} "
- XS:WZEF,; {/Ooops (k. f) (1 Fk(tk))dtk:| :

Normalizing over the length of an idle-busy period, the
time capacity (throughput), i.e., the percentage of SU
transmission time, on channel k is thus

Gs(k,
Culk,p) = M )

The time capacity on all channels is thus

K
Ci(p) =Y Cu(k,p).
k=1

We note that there are idealized assumptions in this
paper, including perfect sensing, infinitely small packet
size, and no overhead. Under these assumptions, the SU
performance is the benchmark performance and the (ide-
alized) SU access scheme can provide insights/guidelines
on the SU access for a more realistic scenario. We note
that packet size and overhead can be addressed relatively
easily, as in [4]. Assuming perfect sensing allows us
to focus on investigating optimal capacity. Imperfect
sensing was considered in [4], and similar approaches
can be used here as well. The assumption that the SU has
the perfect knowledge on all PU channels is the strongest
assumption. There has been a significant amount of work
in the literature that studies which channel to sense and
access given history information (that does not provide
complete current state information on channels) (e.g.,
in [13], [16]), mostly assuming geometric/exponential
idle time distribution. It is our future work to generalize
it to imperfect sensing and imperfect information on all
channels.

Main notations used in the paper are summarized in
Table I for easy reference.

IV. PROBLEM FORMULATION

The problem is formulated as maximizing the SU per-
formance given the PU collision probability constraint.
Formally, we have

m;xx Z Cs(p)
k

s 0
k=1,.. K,
ps (k1) € €

TABLE I 4

NOTATIONS.
i collision prob. constraint of channel ¢
n; normalized collision prob. constraint
s state
A, set of idle channels in state s
s probability of state s
T prob. of state s given channel & idle
t t={t1, - ,tx}
ps(i,t) | transmission probability
T; avg. length of a PU idle period on chnl. ¢
Ui avg. length of a PU busy period on chnl. ¢

where € : {ps(k,fﬂ Zleps(k,{) < 17ps(ka{> > O}-

Proposition 1: The following policy is optimal:

1, k= argmax (1fF’“(f’°) - A fkftk))
iCA. Tr+Yk Yk
p:(k,f} = & 1=Fln) 5y Fute)
Ttue ke

0, otherwise.
) (7)
where A = {\y,--- , Ak} is chosen such that, Vk
) A >0,
i) 3. mi By (o ps (B 2) fi (t) dte] <
i) If 3, m B [fo~ ps (K,T) fi (tr) dte] < nf, then
A = 0.



Proof: Consider any other policy p that satisfies the
collision probability constraints on all channels. We have

Cs (ﬁ)

:Zk: T, iﬂk XS:WZEF% u)ooﬁs (k) (1~ Fk(tk))dtk} = ;WSEF [P {(

(@) R 1— Fi(tr) }
< v Er s (k1) ————=dt
721;2527% K [/0 B (k1) e

K )
- Z A X (Z By, [/ s (k. ©) fr (t) dtk] - U%‘}?ere
k=1 s 0

Next, we consider the existence of the above policy.
We define

Ptie
1 - F
- Ic(_tk) _)\kfkgtk) _ Z)
Tk + Yk Yk
A <1Fj(tj) o Bit) Z)
Tj+yj Yj

NNk # 5},

—Fi(t:) A\, fi(ti)

. 1
> 1*Fk(tk) z—m_m( — — i — >
= B s(kt) [ ——————=— A tr) | dt g Ti + Yi i
Zk:zs:ﬂk G Uo e 7( Zx + U kfk(k)) ’“l‘ ! !

K
+ Z Ak
k=1

0 o T 1= Fylty)
< Xk:zs:ﬂ-kEt}; [/0 i (k1) (mk 0 /\kfk(tk-)>

K
+ Z)\kn;c
k=1
s . 1 — Fp(ty) ]
= E- k,t) ————=dt
Zk:zszﬂk ‘e [/0 ps( 7_) Tk + Uk y
K oo
— Z Ap X (Z W;Ef‘;‘ |:/ p: (k,{) fk (tk) dtk:|
k=1 s ) 0

-,

In other words, py;. is the probability of a tie in choosing
the minimum value in policy p*.

Proposition 2: The policy defined in Proposition 1
existg if Py = 0.

dtkTPmof: The existence of the Lagrangian multiplier
vector follows the Strong Duality Theorem (e.g., Propo-
sition 5.3.1 in [21]). Note here Lagrangian multiplier is
defined as follows: a vector is said to be a Lagrangian
multiplier for the primal problem if it is nonnegative and
the minimum value of the primal problem equals to the
infimum of the corresponding Lagrangian function.

The problem defined in Eq. (6) is a convex optimiza-
tion problem with a finite value of the objective function
(< 1). In addition, if p = 0, all collision probabilities are

© 1 s <.
= E T + On E WkE{k [ /0 Ps (ka {) (1 = Fy(tr))dtr equal to zero, and therefore satisfy the constraint 7, with
k s

=Cs(p®)
3

In the above equation, (a) holds because p is a feasible
policy that satisfies the collision probability constraints
on all channels, (b) holds by the definition of p*, and (c)
holds because of the complimentary slackness condition
in (iii). ]

The intuition of the optimal policy p* is as follows:
the SU should choose a PU channel that has the small-
est weighted conditional collision probability. Note that
fi(tr)/(1 — Fg(tx)) can be considered as the conditional
collision probability. And glgfjg:) W fk‘;zk)) is a
weighted form reflecting con itional collision probability.
The weight \; (the Lagrangian Multiplier for channel
k’s PU protection constraint) reflects the impact of
PU £’s collision probability constraint 7. In addition,
if none of the idle channels are good enough (i.e.,
Fet) /(1= Fi(ti) > 5/ (@ + gi) M for all k), then
the SU does not transmit. The policy clearly indicates
the “opportunistic” nature of the SU transmission: SU
transmits when the collision probability is relatively low
both among users and across time.

strict inequality, i.e. the interior point condition (Slater)
is satisfied. Therefore, by the Strong Duality Theorem,
there exists at least one Lagrangian multiplier vector,
denoted as .

By the definition of the Lagrangian multiplier, optimal
solutions can be obtained in minimizing the Lagrangian
function. Since the probability of tie is zero, p* min-
imizes the Lagrangian function and thus is an optimal
solution of the primal problem. Because (A,p*) is a

Lagrangian-primal pair, the three conditions are satisfied.
|

Note: At least one Lagrangian multiplier exists for
the problem presented in the problem defined in Eq. (6).
In addition, at least one optimal policy exists that mini-
mizes the Lagrangian. However, for a given Lagrangian
multiplier, there could be multiple solutions (p) that
minimizes the Lagrange function and not all of them
are optimal solutions. Therefore, when there are ties in
Eq. (7) (with non-zero measure), we need to decide which
one is optimal that satisfies the collision probability
constraints. When there are ties, randomized policies
may be necessary. Exponential distribution is one such
example, as discussed in detail next.



V. EXPONENTIAL CASE

In this section, we study a special case of the general
problem where the PUs’ have exponentially distributed
idle times. In this case, ties always happen and one cannot
rely on the Lagrange duality-based approach described in
the previous section to find an optimal policy.

Because of the memoryless property of the expo-
nential distribution [22], time becomes irrelevant. Due
to the memoryless property, it also suffices to find a
stationary transmit probability for each idle channel that
depends only on the current state. We denote this time-
independent policy by the simple notation ps (k).

The general optimization then simplifies naturally to
the following linear program (LP):

K
max ZFSZpS (k)
J2
s k=1

s.t. Zw,ips (k) <mnp, k=1,...K,

s ©

K
Zps(k) <1, Vs
k=1

Vs, k.

We explicitly point out that ps(k) =0 if k ¢ As. We
note that exponential distribution results in the worst case
SU capacity among all idle time distributions assuming
the same average idle time and collision probability
constraint. The explanation is as follows. The problem
defined in Eq. (9) provides an optimal solution on SU
capacity assuming exponentially distribution idle time. If
we apply this (randomized) policy to a general idle time
distribution, the policy results in the same SU capacity
as in the exponential case. However, the policy defined
in Prop. 1 is an optimal policy under the general idle
time distribution, which, by definition, results in higher
or equal SU capacity compared to the randomized policy.
Therefore, exponential distribution results in the worst
case SU capacity among all idle time distributions. Last,
we note that we can use the randomized policy defined
in Eq. (9) as a feasible randomized policy when we do
not have knowledge on PU distributions or .

While any linear program can be solved in polynomial
time with respect to the input size, in this case the number
of states, and therefore the number of variables p,(k), is
exponential in the number of channels. To handle settings
with larger numbers of channels, therefore, we propose
a heuristic algorithm that reduces the computational
complexity of the LP formulation.

The idea behind the heuristic we propose is simple.
When the number of idle PU channels is small, the re-
source is scarce and the SU doesn’t have many alternative

ps(k) >0,

choices. In this case, we can solve the exact LP problen?
to obtain the optimal policy. When the number of idle
PU channels is large, the resource is plentiful and the
SU has relatively greater flexibility on channel selection.
In this case, we can handle the policy more coarsely to
reduce the number of variables. Formally, the heuristic
algorithm can be expressed as follows.

Let 1 < G < K represent a pre-defined granularity
parameter for the heuristic. Let b, denote the number of
idle channels at state s.

o For the currently busy channel k, ps(k) = 0.
o For currently idle channel k, there are two subcases.

— For the states s where b, > G,

1
pe(k) = mln(?anz)

— For the states s where b, < G,

K
ps(k) = argmax Z T Zps (k)
k=1

S
subject to the same constraints as shown in (9).

Note that compared to K2X variables in the linear
program given in (9) that yields the optimal solution, this
heuristic solves a smaller LP with the number of variables
reduced to ZZG:1 i-C(K,i). When G is small compared
to K, this reduction in complexity could be substantial
(albeit at the expense of potentially worse performance
due to the decreased granularity).

VI. SIMULATION RESULTS

The heuristic algorithm reduces the computational
complexity of the original linear programming at the
expense of throughput performance. However, we have
found empirically through various simulations that
the heuristic algorithm can generally obtain expected
throughput close to optimal for reasonable low values
of G. In this section, we present some representative
simulation data for 4 channels and G = 2.

We use the bpmpd solver at the NEOS optimization
server [23] to compute both the optimization solution
for the linear programming and the sub-optimal solution
for the heuristic algorithm. We present the expected
throughput comparison for ten representative cases in
table II. We can see that in most cases, the heuristic
algorithm performs close to the optimal solution in terms
of expected throughput. The cases where it gives poor
performance, such as case 8, have the feature that there
are multiple channels that have both a high probability
of being idle and strict constraints.

While we have evaluated the heuristic only for a
relatively small number of channels, we should note
that unless primary user occupancy and the interference
constraint are also scaled to be correspondingly stricter,



TABLE I 7
COMPARISON OF THROUGHPUT OBTAINED BY THE OPTIMAL AND HEURISTIC SCHEMES

Case Number ifwl i1=1{1,2,3,4} (01, mhs M5, 1) Optimal | Heuristic | Ratio
1 (1/3,2/3,2/3,1/3) (0.2,0.2,0.2,0.2) 04 04 1
2 (1/3,2/3.2/3,1/3) | (0.2,0.2,0.2,0.25) 0.42 0.42 1
3 (1/3,2/3,2/3,1/3) | (0.2,0.2,0.25,0.25) | 045 0.45 i
4 (1/3,2/3,2/3,1/3) | (0.2,0.25,0.25,0.25) | 0.48 0.48 1
5 (1/3,2/3,2/3,1/3) | (0.25,0.25,0.25,0.25) | 0.5 05 1
6 (1/9,8/9,8/9,1/9) (0.1,0.8,0.8,0.1) 0.99 0.95 0.96
7 (1/9,8/9,8/9,1/9) (0.1,0.8,0.1,0.8) 0.9 086 | 0.96
8 (1/9,8/9,8/9,1/9) (0.8,0.1,0.1,0.8) 0.36 028 | 0.78
9 (1/9,8/9,8/9,1/9) (0.8,0.8,0.8,0.1) 0.99 097 | 098
10 (1/9,8/9,8/9,1/9) (0.1,0.1,0.1,0.8) 0.28 024 | 0.86

the throughput performance of the heuristic will in fact
improve as more channels become available.

VII. DISCUSSIONS

Throughout the paper, we have assumed that there
exists one SU. In fact, all results in the paper can be ex-
tended to the case with M coordinated SUs and the case
that one SU can transmit on M channels simultaneously.
In particular, we simply need to change the constraint to
Sy ps(k, ) < 1to Zi{:l ps(k,t) < M, and include
an additional constraint 0 < ps(kf) < 1. We avoid the
detailed formulation due to notation complexity.

We also note that in the case of general distributions,
although a threshold policy is presented in a clear form.
It is somewhat difficult to find the policy numerically,
because it depends not only on the state s, but also on
t. Even when the optimal policy is found, its application
depends on the perfect information on ¢. Therefore, it will
be of practical value to find good heuristics to implement
this policy. There are following options.

The first possibility is to degenerate the optimal policy
that depends on ¢ to randomized policies as those devel-
oped in the exponential case. The randomized policies do
not depend on the values of 7 and thus are much easier in
practice. In addition, it does not require information on
idle/busy distribution. The only information needed is the
average idle/busy time, which is much easier to obtain.
The randomized policy balances the transmission among
multiple channels, and thus is opportunistic among mul-
tiple channels. On the other hand, the randomized policy
is not opportunistic across time (i.e., to select relatively
good time to transmit) because it is not a function of
time.

The second option is to simplify the selection among
channels. Consider the single channel case (i.e., K = 1).
It is shown in [20], as well as in Prop. 1 by having K =1,
that the optimal policy is a threshold policy. In other
words, if the conditional collision probability is smaller

than a threshold, the SU should transmit. Otherwise, the
SU should not transmit. The threshold can be found
using simple stochastic approximation techniques, even
in the case without prior knowledge of PU idle/busy
distributions [20]. To extend the results to multiple PU
channels, we can allow each PU channel to have its
own threshold. A channel is considered favorable if
the conditional transmission probability is smaller than
the threshold. The SU can then randomly choose a
favorable PU channel to transmit if available. Note that
this threshold depends on the number of PU channels.
To obtain the threshold for each channel, one can again
apply stochastic approximation techniques. Intuitively, if
the collision probability observed on the channel is higher
than the PU constraint, one increases the threshold for
the channel. If the collision probability is lower, one can
decrease the threshold.

VIII. CONCLUSION

In this paper, we study optimal transmission strategies
in multi-channel cognitive radio networks where one
secondary user (SU) opportunistically accesses multiple
orthogonal channels. We derived optimal access poli-
cies for a single SU under general PU idle-busy time
distributions. The optimal policy clearly indicates the
“opportunistic” nature of the SU transmission: SU trans-
mits when the collision probability is relatively low both
among users and across time. On the other hand, when
PU channels have independent exponentially distributed
idle time, the opportunistic nature of the SU transmission
disappears because all opportunities are equal. For this
case, we formulate a linear program that yields an opti-
mal randomized strategy for the secondary user as well as
a tunable-granularity heuristic. We note that exponential
distribution results in the worst-case SU capacity among
all distributions assuming the same average idle time and
collision probability constraint.



We note that there are idealized assumptions in this
paper, including perfect sensing, infinitely small packet
size, and no overhead. Under these assumptions, the SU
performance is the benchmark performance and the (ide-
alized) SU access scheme can provide insights/guidelines
on the SU access for a more realistic scenario. Certain
assumptions are easy to address, including overhead and
packet size. The assumption that the SU has the perfect
knowledge on all PU channels is the most challenging
assumption. It is our future work to generalize it to imper-
fect sensing and imperfect information on all channels.
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