EDISON: A Blockchain-based Secure and
Auditable Orchestration Framework for
Multi-domain Software Defined Networks

Chandrasekar Balachandran, Puneet A.C, Gowri Ramachandran, and Bhaskar Krishnamachari
Viterbi School of Engineering, University of Southern California, Los Angeles, USA
{cbalacha, puneetac, gsramach, bkrishna} @usc.edu

Abstract—The emerging networking standards such as 5G
and 6G, coupled with technologies like Software Defined Net-
works (SDN) and Network Function Virtualization (NFV), are
increasingly moving towards a multi-tenant and multi-vendor
deployment model. Under these circumstances, the hardware
vendors rent their networking and computation resources to
multiple service providers and application developers. Such a
deployment model lets various vendors collaboratively offer
networking services to the tenants and the end-users at far
greater efficiency and better affordability. However, the issues
around trust, ownership, and data security become a concern
for tenants and vendors in such multi-tenant and multi-vendor
setting. In particular, the centralized nature of SDN controllers,
together with the limitations of the contemporary authentication
and access control mechanisms, make multi-stakeholder SDN
deployments susceptible to several Sybil and trust-related ex-
ploits. We present EDISON, a blockchain-based authentication
and access control framework, for multi-stakeholder SDN in-
frastructure that adheres to the Zero-trust security model. It
allows the network vendors and third-party service providers
to securely set up a service-level agreement while enabling the
concerned stakeholders to audit the network operations through
an end-to-end encrypted tamper-proof ledger. EDISON creates
an ecosystem structured on smart contracts, wherein the network
elements rented and used by the tenants interact with the services
deployed in the form of contracts to enable decentralized and
transparent orchestration.

Index Terms—Authentication, Zero-trust, SDN, Decentralized
5G, NFYV, Blockchain, SD-WAN

I. INTRODUCTION

The software-defined networks (SDN) are at the forefront of
emerging 5G and 6G technologies, managing the configuration
and control operations of networking elements such as routers,
switches, and other physical hardware via software abstraction.
Through such “softwarization”, SDN separates the control
and the data plane, wherein the former manages the network
and handles issues such as congestion control and packet
losses, while the latter is responsible for application data
transmission [1]. Such a SDN model branched out of data
centers into more distributed and broader networks, leading to
the inception of Software-Defined Wide Area Networks [2],
that are now considered to be the backbone of the 5G and 6G
networks.

SDN creates multiple layers of network abstraction over
the physical hardware-based network elements like switches
and routers to run multiple virtualized services for different

vendors and tenants. Network component virtualization, com-
monly referred to as Network Function Virtualization (NFV),
is used in concert with SDN to create virtual networks through
overlays. These technologies allow for service-aware network
slicing that is hardware agnostic across multi-vendor, multi-
tenant based network services chain.

The challenge of orchestrating businesses that involve mul-
tiple parties whose individual intent may lead to undesir-
able consequences others is an issue often faced by many
industries, including those adopting SD-WAN [3]. Many so-
lutions for decentralized, trust-less execution, and operation
have been proposed. Still, few have gained as much traction
and widespread adoption as those built using blockchain and
digital ledger technologies. Such systems allow the formation
and maintenance of consensus about the existence, status,
progression of a set of shared facts, and even code/logic
execution without any centralized authority.

These resulting trustless and auditable systems closely
resemble the characteristics of zero-trust-based systems [4].
Such systems have grown in adoption with cloud and service-
based operations to guarantee better security and reduction
in breaches caused due to exploits in implicit trust models.
zero-trust implies “trust no one implicitly” and this model
relies on three core principles: Mandatory authentication for
accessing any resource, adopt default least privilege access
control, and always have secure, auditable log of events.
Such an approach provides an advantage over traditional
perimeter security, as the smaller segments present reduced
attack vectors for malicious actors and allow for quicker
breach detection. Various SDN and NFV features enable agile
network packet processing, global view of network state,
dynamic policy installation, and validation, to simplify the
implementation of zero-trust micro-segmentation.

However, most of the prior mentioned solutions only aim to
provide enhanced security to the vendor and instill little to no
confidence within the network’s end tenants, wherein tenants
have zero visibility to the network management layer. Though
Service Level Agreements (SLA) may be created, there are
no methods for the end tenants to verify and validate the
networks’ actual behavior controlled by the vendors’ SDN
management layer. Hence, the end tenants are forced into
an uneven handshake and thus require to implicitly trust the
vendors completely, making them vulnerable to Sybil and

collusion-based attacks and breach in contracts with no simple
means of detection and enforcement [5], [6]. Hence the need
for a decentralized software defined network with the ability
to provide secure audit trails within a zero-trust-based multi-
vendor, multi-tenant network. Existing solutions either focus
on logging transactions on the blockchain [7], [8] or consider
resource orchestration in non-adversarial settings [9], [10].

We present, EDISON, (coined from “sEcure, Decentralized,
and audItable Sdn OrchestratioN”), a blockchain-based orches-
tration framework to allow the SDN clients and vendors to
create, manage and execute services through an auditable and
zero-trust based solution. EDISON aims to use cryptographic
key exchange that ensures forward secrecy, coupled with an
identity-based authentication approach to provide control to
the end tenants of a network owned and operated by multiple
vendors within an adversarial setting. The system aims to re-
establish this control through tenant side authentication and
key generation performed through blockchain-based architec-
ture.

II. GAP AND REQUIREMENTS

The emerging networking standards such as 5G and 6G are
increasingly managed and controlled by software through SDN
and NFV while operating in a multi-tenant and multi-vendor
setting. As the demand for network increases, multiple services
are expected to rely on SD-WAN. Developing a reliable
and trustworthy network framework following a centralized
orchestration framework is challenging due to reliance on fixed
central points of operation.

Requirements: We list down the requirements for a reliable
and trustworthy orchestration framework for SDNs:

« R1: Decentralized Authentication and Access Control.
In a software-defined network, all the hardware resources
responsible for providing the networking services are
managed and configured by the software. It is crucial
to validate identities of network elements within the
vast network whilst simultaneously prevent single point
failures in authentication chains.

e R2: SLA Adherence. Infrastructure vendors rent their
resources such as switches and routers to tenants by
creating a service-level agreement. It is important to
monitor the services during run-time to ensure that all
parties adhere to the SLAs. Furthermore, due to the size
and nature of packets logged, it is imperative that there
exists a mechanism to autonomously validate and audit
records to detect violations.

« R3: Transparent and Secure Logging. When handling
issues around SLA violation and network breaches, it is
important to have a transparent and decentralized logging
infrastructure to audit the network reliably.

« R4: Micro-segmentation. Due to the vast and complex
nature of SD-WAN topologies, it is important to main-
tain fine grained control of individual network elements
indeed to ensure no implicit trust is granted to any com-
ponent of the network element that may be compromised.

III. RELATED WORK

Traditionally, most SDN security efforts are targeted to-
wards the “fortification of the network™ to defend against
attacks such as malicious/highjacked controllers, interception
and corruption of packets (Man in the Middle), northbound
Application Programming Interfaces (API) exploitation, south
Distributed Denial of Services (DDoS) attacks, Packet sniffing,
Address Resolution Protocol (ARP) spoofing and poisoning,
traffic, and southbound DDoS [5], [6].

Multiple articles have addressed trust issues for SDN in
multi-stakeholder settings. Vilalta et al. [9] presents a hierar-
chical architecture for orchestrating controllers, switches, and
routers, but it relies on a centralized network orchestrator at
the top level in the hierarchy, which could be breached. BSec-
NFVO [7] is a blockchain-based SDN orchestration framework
that enables auditability for the clients requesting services
from tenants. The transactions between tenants and vendors
pass through a consensus process and stored in an immutable
ledger to ensure auditability. This solution provides transparent
and secure logging, but it does not discuss how the authenti-
cation and access control is handled. DISCO [10] presents a
distributed architecture for SDNs that can operate in a multi-
domain environment. Although DISCO offers scalability and
fault-tolerance, it does not describe any approaches to handle
Byzantine Fault Tolerant (BFT) operation.

Qiu et al. [8] presents a blockchain-based approach to dis-
tribute SDN controllers, wherein the application logic executed
by the controllers are verified through a consensus algorithm. It
does not explicitly address SLA adherence and how the tenants
can participate and log their transactions. DistBlockNet [11]
introduces a distributed blockchain-based architecture for IoT,
wherein a blockchain platform is used to create and modify
flow tables for application traffic transparently and securely.
The architecture of DistBlockNet is tailored towards flow-
based security verification, which accepts or rejects flow based
on the policies defined by the application, and it does not
address how the nodes are authenticated and authorized. Bic-
zok et al. [12] presents SGEX, which is a service orchestration
framework for multi-domain SDN, but it does not explain how
5GEx can handle adversarial scenarios.

Existing solutions either focus on logging transactions
on the blockchain, consider resource orchestration in non-
adversarial settings, or present a solution to a subset of
requirements listed in Section II. Additionally, we also dis-
cuss how EDISON can mitigate various security attacks in
Section V, which is also one of the significant advantages of
our architecture. EDISON aims to develop an orchestration
framework that can tolerate Byzantine behaviors through the
use of blockchain technology, while guaranteeing zero-trust
security model in multi-vendor and multi-tenant SD-WAN
deployments.

A. Motivation

In light of the requirements listed in Section II, a new archi-
tecture based on a distributed Public Key Infrastructure (PKI)
with Kerberos authentication technique is needed to mutually

Blockchain Key Request Broker Encrypted Packet Logging Agent

Display error

Fig. 1: Modules of the Embedded Blockchain Client Package:
Left - Blockchain key request broker flow, Right - Encrypted
packet logging agent flow.

authenticate and audit virtual network elements created by
the vendors’ hypervisor. It can be achieved by auditing the
activity of the key distribution center (KDC). PKI-Kerberos
hybrid designs apply the lightweight symmetric key encryption
style of Advanced Encryption Standard AES, coupled with
the ease and convenience of digital certificates provided by
the public key infrastructure. A solution based purely on PKI
and Kerberos is susceptible to attacks by a malicious vendor
at the deployment level, which could cause other issues, such
as SLA deviations, QoS issues, and potential for data theft
through packet fingerprint sniffing. All of the prior mentioned
challenges now have to be handled in a multi-stakeholder
environment; wherein each stakeholder may have their agendas
that do not entirely align with other parties or the overall well-
being of the network.

IV. EDISON
A. System Description

In SD-WAN:S, overlays allow for multi-tenant network us-
age, which spurs new avenues for conflicting interests between
competing services and applications. The network stakeholders
can broadly be divided into: 1) The vendors who provide
the network infrastructure service, 2) The tenants who use
these services to host and provide application services, and
3) mutually interested third parties. More often than not, the

network tenants have little to no visibility to the underlying
orchestration of the network that the vendors own and manage.
Such an operational model creates a blind trust-based system
that could potentially grow to be an adversarial environment
as control is not distributed equally and transparently to all
network stakeholders. Thus, leading to a tenant vs. vendor
trust and control imbalance that EDISON aims to solve.

EDISON presents a novel approach that uses Kerberos and
PKTI’s strength to authenticate SDN network elements and
secure northbound and southbound APIs of the vSD-WAN.
At the same time, it holds vendors accountable to tenants
through audit trails on cryptographically secure, immutable,
and append-only ledger.

B. Building Blocks of EDISON

The EDISON framework relies on a blockchain platform
with support for immutable ledger, smart contracts, and Byzan-
tine fault-tolerance/sybil-resistant consensus algorithm. Our
architecture is blockchain-agnostic and it exposes APIs for
accessing services from the blockchain platform. The actual
services/functionalities could be implemented on any platform.

In order to implement autonomous orchestration and oper-
ation from within the network, we would need to embed cer-
tain features and functionalities within the network elements
themselves so that they are capable of acting and participating
within the EDISON network. For this purpose, we propose
a light-weight module called the Embedded Blockchain SDN
Client Package (EBSCP) that comprises of the capability to
perform secure key exchange along with creating encrypted
audit logs. The certificate and signed binaries provided by the
participating clients are installed by the vendors within the
network elements at the time of deployment. Such a trusted
module allows for the clients to interface with the network
devices with the assurance of tamper resistant operation.

Another critical building block of the EDISON framework
is the use of smart contracts and Decentralized Applications
(DApp) to provide services such as: 1) node identification
and authentication, 2) key/token generation and validation,
3) SLA verification based on the request of the Embedded
Blockchain SDN Client Packages (EBSCP) in each of the
network elements of the decentralized SD-WAN network. The
decentralization of such services assures fault tolerance along
with the distribution of responsibility and stake of the network.
Each DApp implementation relies on a smart contract running
on the blockchain. These smart contracts are executed on
demand by the network elements via defined endpoints such
as Representational State Transfer (REST) or Simple Object
Access Protocol (SOAP) - based interfaces exposed by the
registered DApps. Some of the contracts are responsible for
data creation whilst others are intended for data retrieval and
validation. All contracts require some form of Byzantine fault
tolerance and consensus in order to ensure zero-trust based
operation. The ecosystem of these DApps and their run time
environments are described in Figure 3. The following lists
their features and functionalities:

1) Embedded Blockchain SDN Client Package (EBSCP):
The client packages and signs the binaries (EBSCP) to be
installed by the vendors into the network elements at the time
of deployment. The EBSCP allows for means of validation and
authentication when connecting to the consortium of network
users through the use of PKI and checksums. This client is
considered to be honest, passive and act on behalf of the
network users to orchestrate, monitor, and validate behavior
of vendor’s network elements. The key functionality of the
EBSCP modules as illustrated in Figure 1 is explained in detail
here: The BKRB is a blockchain client that acts as the module
that performs all key exchange operations on behalf of the
network element and is responsible for managing the shared
key store that is used by the network elements. The BKRB acts
as the interfacing broker that enables a traditional network ele-
ment or virtual network element to communicate with different
parties on a peer to peer network as a passive light-weight
client that does not store a ledger/blockchain within itself,
locally. The BKRB initially has access to the public/private
key of each network element created by the vendor, along with
the MAC address (or other id) of the element and the required
network elements that are to be connected. This client also
holds information with regard to connection information of
the different blockchain networks/channels it would need to
interface with. The Encrypted Packet Logging Agent (EPLA)
captures all ingress and egress packets from a network element
by scanning packets on all ports of the network device. It
then uses the embedded certificate to sign the encrypted data
blocks and publishes it to a ledger/data store. This enables
the EPLA to create secure and tamper resistant audit logs of
network events by scanning, collecting, and signing encrypted
transactions and network packets and publishing them to a
targeted storage zone for further analysis by tenants, vendors
and other third parties.

2) EDISON Smart contracts and Decentralized Application
Services: Decentralized Application Services: As part of
the EDISON framework, 3 key services are needed to ensure
complete functioning of the blockchain client with the various
tenant and vendors nodes of the network. These DApps essen-
tially function as interfaces to underlying smart contracts that
abstract out implementation specific variances. This ensures
that once the EBSCP are installed within the SDN elements,
the packages will still be able to interact and perform core
operation with the EDISON network even if the underlying
business logic is revamped to adjust to changing demands.
Such a modular design allows for loosely coupled, platform
agnostic interfacing by leveraging the power of Decentralized
applications and smart contracts.

Smart Contract: The smart contracts act as the primary
means of interacting with the underlying blockchain. All reads
and writes to the blockchain are performed through the smart
contracts. This ensures that all operations are securely logged
providing for a comprehensive audit trail and is generally con-
sidered to be a good practice when implementing a blockchain
system.

The following sections describe the core DApps and their

underlying smart contracts needed for the EBSCP to function
as illustrated in Figure 3.

Authentication DApp: The BKRB client needs an authen-
tication token (Auth token) to interact with all the DApps.
The Auth token is provided by the Authentication server
by looking up the ID and private key signature within the
distributed Active Directory [13]. The DApp is responsible
for generation of a unique Auth key and its registration in the
Active Directory, for the client to use for all further secure
communication with other DApps to maintain forward secrecy.

Session Management DApp: Once the BKRB client gains
its initial Auth token, it then requests for a list of network
elements with which it is expected to interact. The Session
management DApp performs a lookup using the topology
validation contract to determine sessions needed to be created
for the requesting network elements. The DApp then generates
a new key using the key generation contract, updates the
Active Directory using the Distributed Hash Table (DHT)
key contract and finally provides the BKRB with the ability
to securely establish sessions with the corresponding pre-
authenticated network element. Further Session management
DApp also preforms simple look ups in order to validate
session tokens on behalf of other DApp requests and tracks
all illegal and invalidated sessions.

Key generation Contract: This contract is executed on any
one of the tenant nodes to invoke a Pseudo-Random Number
Generator (PRNG) in order to create a desired bit length
symmetric key for the requesting network element. Keys for
the same request may be generated by one or more nodes at the
same time but the first to publish to the key generation channel
and gain endorsement of the required tenant and vendor nodes
will be considered valid for the session. This endorsed key is
then passed into the DHT key store contract for mapping and
assignment to the network element.

DHT key store Contract: This contract updates and main-
tains a global distributed hash table that contains entries to
every session of every network element within the EDISON
framework. This table essentially functions as a distributed
Active Directory. Every read and write operation to the table
requires a transaction to be endorsed by all stakeholders in the
authentication cycle including vendors and tenants.

Authentication and Session validation Contract: This
contract accesses the Active Directory to verify and validate
authentication or session tokens given to it. Furthermore, the
contract registers every requesting validation to a channel in
order to facilitate better auditing.

Topology validation Contract: This contract accesses the
SLA to topology mapping store which maintains a dictionary
of lists detailing what each network element is connected
to within the SD-WAN. This contract is directly accessed
by the topology configuration DApp to service request of
elements for their topology configuration. This contract is
also responsible for adding, updating and logging any network
element mapping when requested by a vendor or tenant node
after getting consensus from all stakeholders on the same.

SLA validation Contract: This contract maintains and

Ven
Hypervisor

or
SLA validation

Network NEL-PrK
Element

Authentication DApp

Authentication request '—D
E L... NE1-PuK
o p Authentication Key
;'E -— = NE1-TGS-5K

TGS~ Rddr

 INEL-TGS-SK L) Puk-TG
[

O

Topology Validation

Session Management DApp

Topology Configuration
=

Session request
v

Smart Contract Modules

m

I

Authentication and Session

Key Generation
Validation

DHT Key Identity Store

He

i
«l}

Wl

:

Pre-Authenticated Network

Element Secure Lnggmg DApp

—

o) NE1-TGS-SK & NE2.TGS-5K
P NEINEZSK [ASNETHER S
=15, Aadr “TET=T0 Raar

Topology Discovery and
Session Authentication (3,4,5,6) Authentication (1,2)

@

()

.| NE1-NE2-SK .| NE2-TGS-SK
'7 A— NE1-NE2-SK
@ challengeText lY ~ prprr

Encrypted

o | NE1-NE2-SK
@ Challenge Text & ACK

Network Traffic (7)

 FlowTables, Feedback,etc. 7

bl
NE1-ST-5K

o\ NE1-ST-sK .| ST-TGS-5K
y - | A NE1-ST-SK
@ challene Text It~

Ack + Metadata

Logging Session
Authentication (3,9)

Encrypted
Packet Logging (10)

FlowTables, Feedback,etc. 6

Packet Block Log

Block Hash
Timestamp
Metadata

Fig. 2: The Key exchange sequence of the new network element using BKRB to the Authentication server, requesting session
to desired network elements. Encrypted packet logging blocks sent between EPLA and secure logging DApp. The flow is

described in detail in Section IV-C.

accesses a store of SLA key performance indicators (KPI) such
as throughput and network jitter rate that have been derived
using various SLA to KPI mapping techniques based on the
tenant vendor negotiations. The contract is invoked to validate
logged network packets captured by the EPLA during analysis
and audit phase [14].

Secure logging DApp : This DApp is the primary interface
that the EPLA uses to publish its captured encrypted packets
to a permanent data store for analysis and auditing. This DApp
can be implemented in a variety of ways based on policies and
performance constraints.

DHT packet store Contract: This contract logs and stores
signed packet blocks constructed by the EPLA. This contract is
accessed directly by the Secure logging DApp to service write

requests of each network elements EPLA after establishing its
session validity. The underlying data store may vary from an
actual blockchain, to a peer to peer data store like a distributed
hash table, to a simple distributed data store like Amazon S3
or even a central private data store.

C. Operation Flow

This section describes the different steps and messages ex-
changed within the EDISON system, as described in Figure 2.

1) BKRB Authentication Request sent from Network ele-
ment 1 (NE1) to Authentication DApp encrypted using
Network element’s private key-NE1Prk

2) Authentication = DApp response Authentication
token(NE1-TGS-SK) encrypted with NE1’s public

key- NE1PuK

3) NEI session request to session management DApp using
challenge text encrypted in NEI-TGS-SK and identity
validation messaged encrypted using PuK-TG

4) Session Management DApp response to NE1 with session
tokens NE1-NE2-SK encrypted with key NE1-TGS-SK
and NE2-TGS-SK for NE1 and Pre-Authenticated Net-
work element-2 (NE2) respectively.

5) NEI sends session request message containing challenge
text signed with NE1-NE2-SK along with forwarding ses-
sion token of NE2 encrypted by the Session management
DApp with NE2-TGS-SK.

6) NE2 retrieves session token: NEI-NE2-SK, after de-
cryption using NE2-TGS-SK which validates challenge
text sent by NEI using said session token and sends
acknowledgment with NE1-NE2-SK.

7) NEI and NE2 now preform secure communication using
NE1-NE2-SK for the remainder of the session.

8) EPLA Auth and session request to Secure Logging
DApp(SLD) using stored key NE1-ST-SK for challenge
text and ST-TGS-SK for validation token holding client
information - gained through Authentication and Session
DApp (not shown in figure).

9) SLD decrypts token to get NEI-ST-SK token and val-
idates credentials of requesting client. Sends acknowl-
edgement and metadata configuration encrypted using
NEI1-ST-SK to the client.

10) Encrypted logging messages between NE1 and NE2 are
sent from EPLA to SLD with relevant block hash, time-
stamp and other metadata packaged and encrypted with
NEI1-ST-SK.

D. Operation Phases

The overall operation of the EDISON framework can be
broken down into two phases, as indicated in Figure 2: Phase
1 - the Topology validation and authentication phase and
Phase 2 - the Encrypted packet logging and auditing phase.
We describe the two phases assuming a network of multiple
vendors and tenants hosting the DApps and smart contracts,
and the BKRB and EPLA blockchain packages are installed
on the vendors’ network elements in the initial set up phase.

1) Phase 1: Blockchain Key Request Broker Authentication:
The initial bootstrapping process involves configuring the SLA
and KPI data structures by the vendor and tenant nodes. The
SLA KPI mapping and network topology dictionary list are
constructed after having gained the consensus of all relevant
stakeholders using the topology and SLA validation contracts
and the storage of initial public keys to identify all pre-
authenticated network elements.

After the bootstrapping phase, the BKRB is linked with
the tenant’s network elements to begin the validation pro-
cess illustrated in Figure 2. Each network element’s BKRB
broadcasts an authentication request to all tenants (nodes)
hosting the Authentication DApp (functioning as the active
authentication directory). Tenant nodes are responsible for
validating the authentication request by utilizing the authenti-

cation and session validation contract. If successful, the tenant
node broadcasts the successful authentication and generation
of a secret Ticket Granting Ticket (TGT) session token (used to
communicate with the session management DApp), using the
Key generation contract, on a private channel to all the network
user nodes. Subsequently, all nodes update their directories
with the network element’s status as authenticated and register
the key using the DHT key store contract. This information is
shared only amongst the tenant nodes in a private channel,
and it is not shared with the vendors for security and to
maintain secure audits against the vendors. After the tenant
nodes have updated the newly authenticated network element’s
status in their distributed ledger, they reply to the BKRB with
the agreed Auth TGT key. This process is seen from stages 1
to 2 of the basic PKI Auth in Figure 2.

The BKRB then creates a request for the required network
elements that it needs to establish sessions with and broadcasts
the request to all the nodes that host the Session management
DApp. The requests are encrypted/signed with the active au-
thentication (TGT) token, are illustrated in stage 3 of the topol-
ogy discovery and session authentication phase. The nodes
will validate the request via the Authentication and Session
Validation contract. If the request is successfully validated,
the corresponding list of network elements associated with the
requesting element is retrieved using the topology validation
contract. A set of session tokens are generated for each of
these element pairs using the key generation contract and the
DHT key Identity contract. Once consensus is reached, the
nodes will reply to the requesting BKRB with the session’s
key package as seen in stage 4 of the session authentication
phase. These session keys would allow the BKRB to connect
with the destination network elements’ BKRB and perform
the session key exchange. If the destination BKRB approves
the session key exchange, the destination network elements
shared key store is updated with the appropriate session key.
This is seen from stages 5 to 6 of the Session authentication
phase. Thus, a secure connection can begin between the two
network elements directly without a broker’s need any longer.

2) Phase 2: Encrypted Packet logging and Auditing: Dur-
ing the SDN operation, all interactions between the network
elements will occur using the session keys generated through
the authentication channels between the BKRB and the tenant
nodes in Phase 1. Another tenant referred to as the Encrypted
Packet Logging Agent (EPLA) captures all ingress and egress
packets from a network element that it is embedded to and
posts this data as blocks to a public ledger. The EPLA would
broadcast the signed block of captured encrypted packets with
the session tokens to the nodes hosting the Secure Logging
DApp. The key and signature are validated by nodes of the
vendor and the tenants as seen in stage 8 to 9 of Figure 2.
Once a session is established between the DApp and the
EPLA of the network element, continuous blocks of signed,
encrypted packets are sent between the two (as seen in stage
10) till the session expires. Thus creating an immutable time-
bound sequence of encrypted packets that can be audited to
verify any network elements behavior within the network and

EDISON DApp Framework

Authentication

DApp
Decentralized App that
validates identities
and generates tokens

Hostedon |

A Tenant and

Nodes

',A\ Hosted on
(| Tenant
LA o

- Smart Contracts

° \\ SLA to network mapping contract

Auth/ Session token validation contract
Topology Mapping lookup contract
Session Key generation contract
Management DApp DHT key store contract
Decentralized app that
validates
Network element topology
request

Packet store contract

Fig. 3: The various Smart contracts used by the 3 decentralized
applications within the system. A depiction of which DApp
services are owned and run on which set of network nodes.

can be used to cross-validate said behavior against the SLAs
agreed upon by different parties of the network. These packets
are passed back into a virtual network device to re-stimulate
behavior logged during the analysis phase. This behavior is
then measured and compared with the SLAs via the SLA
validation contract to verify appropriate behavior. Hence, this
allows for an automated validation mechanism to check for the
proper operation and orchestration of each network element
after decorating the packets with the associated session keys
and hence enabling for zero-trust-based automated auditing
and operation of the entire SDN network in a multi-vendor
multi-client environment.

V. SECURITY AND TRUST ANALYSIS

This section discusses the security features and abilities of
the EDISON framework against common SD-WAN related
issues in a multi-vendor multi-tenant environment.

Central Certifying Authority (CA) corruption: Tradi-
tional PKIs require Centralized, trusted Certifying authorities
to issue and validate certificates [15]. When the CA is sub-
verted, the entire PKI collapses. In the EDISON framework,
we use PKIs for the initial phase of authentication and switch
to session keys issued by the Authentication and Session man-
agement DApps, thus preventing any single point of failure.

Central Authentication and Active Directory Vulnerabil-
ities: Most Single Sign-On systems rely on a central Active
Directory to be maintained by an Authentication server, which
authenticates all users of the system [16]. This Centralized
Directory is vulnerable to DDoS and other common single
point failure exploits. The EDISON framework employs a
DHT hosted across multiple tenant nodes to store and operate
as a distributed Active Directory with high availability and
resilience. Thus satisfying the requirement of Decentralized
authentication and access control (R1 of Section II).

SLA violation and manipulation: Traditional SLA viola-
tions are uncovered through long audit trails that take several
man-hours to perform and are rarely real-time [17]. In the
case of EDISON, due to the EPLA tracking every packet

of all network elements, it allows for simple automated re-
runs of packets within test networks for asserting network
element behavior. Furthermore, due to hash values and time
stamps, the logs are both immutable and verifiable. Lastly, the
SLA validation services made available through DApps on
the network allow any node that owns the correct set of keys
to decrypt, re-run, and cross-validate packets automatically.
Hence, creating a real-time feedback loop for tamper detection.
Thus EDISON allows for the fulfillment of SLA adherence
(R2 of Section II).

Log and Audit trail tampering: As the Vendor holds
complete control of the Network element in traditional deploy-
ments, they can alter and manipulate the resulting logs gener-
ated with no chance for cross-validation by tenants [18]. The
EDISON EPLA module captures all ingress and egress packets
of the network element. It publishes these secure signed blocks
of packets with Hash values, timestamps, and other relevant
metadata to a Datastore DApp. In turn, this DApp stores and
accumulates all network element management layer packets
within a ledger for further automated analysis. This allows
EDISON to ensure transparent and secure logging (R3 of
Section II).

Log Analysis attacks: Logs hold complete information
regarding the configuration and operation of the network. This
often exposes sensitive operational information to attackers to
exploit [19]. The EDISON framework’s EPLA captures and
tracks only encrypted packets which can only be decrepitude
by the tenants who own the secret key.

Forward Secrecy: Key agreement and exchange protocols
need to give assurances that session keys and data encrypted
by it will remain secure even if the private key of the
network element is compromised at some stage in the future.
In EDISON each of the authentication and session tokens is
generated and distributed over authentication cycles and prior
session keys are never recycled. Hence, preventing future key
compromises for affected previous session-related data.

Man in the middle attack: In this type of attack, the
attacker can eavesdrop all the transactions between nodes. It
is caused by some instances, such as ARP spoofing, DNS
spoofing, or vulnerable access points [20]. The EDISON
framework provides the ability to micro-segment and manage
each individual network element thus monitoring and logging
suspicious activities and rejecting sessions accordingly (R4 of
Section II).

VI. IMPLEMENTATION AND EVALUATION

Our evaluation aims to understand the timing overhead
introduced by EDISON when creating a secure network con-
nection between two network elements, which broadly spans
from steps 1 to 7 of Figure 2. The benchmark for testing is
a simple SDN controller to switch connection and flow table
installation without encryption. We create a test case which is
subdivided into three categories:

1) Setting up of a full authentication using existing secure
socket layer (SSL)-PKI authentication with a centralized

<

11

¢ —¢c ¢

AL

\,_\,_\,_‘

1 I

|

Fig. 4: Mininet topology for a 3 vendor - multi remote
controller environment running across 12 switches with 24
hosts.

CA. Here we are performing only the first two steps, as
mentioned in Figure 2.

2) Full authentication cycle to authenticate network elements
and establish a secure session between two authenticated
network elements, which covers all the steps given in
Figure 2.

3) Renewing expired session on existing authenticated net-
work elements to create a new secure session between
the two network elements, which corresponds to steps
starting from the fifth step in Figure 2.

Setup: To simulate the SDN, we used the Mininet net-
work (see Figure 4) emulator [21] inside a Ubuntu 18.04
virtual machine with 8GB of RAM and a four-core processor.
The switches and controllers in Mininet support OpenFlow
protocol, which is a standard communication protocol for
SDNs. OpenDaylight controller is used for monitoring and to
induce flows in the network. The system has interconnected
controllers and switches which best depict the networks in
5G/6G. Then we are using Open vSwitch to create a set of self-
signed certificates for controllers and switches. Each switch
was configured separately to use SSL over TCP. The network
flows were induced manually using Open vSwitch to test the
key exchange.

For the second and third parts of the test case, we automated
the key exchange processes using a Python script to initialize
the network and send messages. With the help of the PyCrypto
library in Python, we implemented AES and RSA algorithms
to pass messages. We are using RSA-2048 bit encryption for
the session key transfer. Once the MAC IDs are validated, a
session key is issued, then we use AES-128 encryption to pass
the token keys, as seen in Phase 1 of Section c.

Tendermint BFT as a Blockchain Platform: Tendermint
BFT is an open-source blockchain platform with support
for Byzantine fault tolerance consensus. To understand the
overhead added by the consensus process, we have set up
a Raspberry Pi testbed with five Tendermint BFT nodes. In
particular, our evaluation focused on understanding how much
do the nodes to come to a consensus. The packet transfer and
network delays are recorded using Wireshark packet capture.

The following are the key findings from our evaluation:

e Our benchmark evaluation cases consider Open flow
without any encryption seen in Figure 5 (Top-Left)

showing the minimum latency. Each data frame and
acknowledgement packet’s average packet size is around
150 Bytes and 70 Bytes, respectively.

For the first case, we are checking the delays induced
by using SSL over TCP. With the help of Open vSwitch,
we are setting up a controller that issues keys for secure
communication. We are generating self-signed certificates
that have SHA-2 with RSA encryption, as shown in
Figure 5 (Top-Right). Public and private keys are issued
to both switch and the controller. After configuring the
switches, we begin communicating over the network. The
handshaking shows more significant spikes in time and
more propagation delay per message. The handshaking
has a delay of 500 milliseconds where the data frames
are of length 250 Bytes on average.

Figure 5 (Bottom-Right) shows the overhead added by
the consensus process, wherein five Tendermint nodes are
validating a transaction and storing it on the blockchain.
Here, the overhead represents the cost of authentication
cycles.

Next, we observe the EDISON framework’s packet flow,
as seen in Figure 5(Bottom-Left). We implement all the
parts mentioned earlier for phase 1 with the addition
of session management and topology lookup. At a time
close to 0 seconds, the first spike depicts the initial Auth
request, where RSA 2048 encryption is used. A delay
of approximately 1 second is caused by the BKRB to
validate the keys. The second spike depicts the session
key phase, where AES-128 encryption is used, repre-
senting the third and fourth steps in Figure 5. Once the
sender and the receiver have the session key, they must
be validated and update their directories. This includes
the new topology validation and flow table update. This
whole process takes approximately 1 second. After this,
a third spike shows that the connection is established and
that the network elements can now begin servicing any
application. This last phase depicts the steps 5 and 6 in
the Figure 2. In step 7, all the flow tables are updated,
bringing the authentication phase to an end. Due to the
various types of encryption used, the packet size becomes
significantly large. Thus the typical handshake messages
are around 1500 Bytes while echo frames/ ack frames are
about 140 Bytes.

In the third part of the test case, as the two hosts are
already authenticated (steps 1 and 2, as shown in Figure 2
have been completed), then the communication occurs
after passing new keys. This case illustrates the packet
transfer when the sender and receiver have already set
up the connection line. The latency shows the new token
keys generation and validation. Since only AES-128 is
used for token key passing, the overall packet size and
delays are less than the previous setup.

We repeat the above tests for messages passing between
all the hosts in the network and for various lengths of
messages. As shown in Figure 6, we see a distribution of
overheads caused by each of the phases in the process.

Time in MS

No_SSL
1800 =

1600 A
3 1400 A
>
£ 1200 A
g
% 1000 4
©
Q
~ 800
k]
£ 600 A
(=
c
3 400
1T T
04— T T ' .
0 1 2 3 4 5
Time(s)
EDISON
1800
1600 4
3 1400 1
>
21200 A
g
% 1000
©
Q
~ 800 A
k]
£ 600 A
o
[=4
3 400
200 A
04— ' : ' !
0 1 2 3 4 5
Time(s)

SSL
1800

1600

—
o
o
S)

1200 1

1000

®

o

o
s

600 -

Length of 1 packet (bytes)

400

0 T T T T T
0 1 2 3 4 5
Time(s)

Latency Observed during round trip

2000

1500

1000

Latency (in Milliseconds)

500

T =

: ==

Auth REQ

Session ACK Token REQ Token ACK Establish Connection

Fig. 5: Top: Packet size and arrival rate comparison created by the test rig to install a secure flow table: (left) The base
line test case of flow installation without any encryption (right) Simple SSL-based encryption with self signed keys. Bottom:
(Left)Packet size and arrival rate for EDISON authentication cycle and flow installation .(Right) Mean and average time taken
for each process in the authentication cycle of the blockchain based authentication and key exchange.

Authentication and Flow installation Time
4000

3000

1000
No Auth PKI-SSL Full Hybrid BLockchain Auth Session Hybrid Blockcahin
auth

~
Q
=]
=]

B Auth Handshake ~ m First flow installation

Fig. 6: Comparative evaluation of overhead caused by authen-
tication cycles and differentiating between full and session
refresh authentication cycle timings.

o In summary, the results show the delay introduced by
blockchain and transaction validation is not significant

for BFT blockchain, and that the messages are end to
end encrypted, validated, and logged as seen in Figure 6.
Further, EDISON’s flexible authentication scheme allows
for full and session authentication cycles to be carried out
based on tenant set policies.

A. Blockchain Throughput Analysis

As shown in Figure 5 (Bottom-Right), the Tendermint BFT
platform adds one second on average to achieve among five
nodes. Multiple transactions are injected onto the blockchain
network throughout EDISON’s authentication and logging
operations. These transactions may take on average 1 second,
according to Figure 5 (Bottom-Right). When the number of
consensus nodes increases, the consensus delay may also
increase, as reported in [22].

Note that EDISON’s architecture is blockchain-agnostic;
therefore, the application developers could choose any ca-
pable platform, including Hyperledger Fabric and Ethereum.
Thakkar [23] reports that the Hyperledger Fabric can handle
tens of transactions per second if the block size is increased to
50 transactions per block. Bez et al. [24] shows that Ethereum
supports 15 transactions/second, which may hamper the real-
time performance of EDISON. Zheng et al. [25] evaluate the
performance of well-known blockchain platforms that support
smart contracts.

As reported in [25], the smart contracts with loop opera-
tions, which leads to multiple back-and-forth interactions be-
tween clients and the contract, tend to have limited throughput
(2 transactions per second). The permissioned blockchain plat-
forms with faster consensus protocol tend to outperform PoW-
based public blockchain platforms such as Ethereum [25].
Therefore, we let the application developers choose the desired
blockchain platform for their deployments based on their
requirements.

VII. CONCLUSION

The SDN technology is set to change the future of con-
nectivity, however, like most bleeding edge systems, it is
still plagued by several security vulnerabilities. In this paper,
we have proposed a Secure and Auditable Decentralized
SDN Orchestration (EDISON) framework to provide greater
authentication and auditing capabilities to tenants over the
vendor’s network elements. We have shown how EDISON
achieves decentralized orchestration by using a peer-to-peer
network comprising of tenant and vendors’ nodes that host
decentralized applications leveraging smart contracts. In ad-
dition, our implementation gives network elements the ability
to capture encrypted packets and publish them as blocks to a
secure logging DApp. We have also performed a comparative
analysis on simulation environments to evaluate EDISON’s
performance against no-authentication and PKI-SSL and found
that EDISON’s flexible authentication scheme allows it to
be both secure and performant, based on the needs of the
network. The security analysis section also provided credence
to the use case and showed how EDISON mitigates several
security vulnerabilities of the SD-WAN system in adversarial
environments.

ACKNOWLEDGMENT

This work was supported by the USC Viterbi Center for
Cyber-Physical Systems and the Internet of Things (CCI).

REFERENCES

[1] M. Shafi, A. E. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “Sg: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE journal
on selected areas in communications, vol. 35, no. 6, pp. 1201-1221,
2017.

[2] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide
area network (sd-wan): Architecture, advances and opportunities,” in
2019 28th International Conference on Computer Communication and
Networks (ICCCN), 2019, pp. 1-9.

[3] T. Hewa, G. Giir, A. Kalla, M. Ylianttila, A. Bracken, and M. Liyanage,
“The role of blockchain in 6g: Challenges, opportunities and research
directions,” in 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp.
1-5.

[4] E. Gilman and D. Barth, Zero Trust Networks.
Incorporated, 2017.

O’Reilly Media,

[5] “Security challenges with network functions virtualiza-
tion,” Future Generation Computer Systems, vol. 67,
Pp- 315 - 324, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X16302321

[6] W. Jia-si, W. Jian, L. Jian-an, and Z. Yue, “Secure software-defined
networking based on blockchain,” 2019.

[71 G. A. E Rebello, I. D. Alvarenga, I. J. Sanz, and O. C. M. B.
Duarte, “Bsec-nfvo: A blockchain-based security for network function
virtualization orchestration,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), 2019, pp. 1-6.

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

C. Qiu, F. R. Yu, FE. Xu, H. Yao, and C. Zhao, “Permissioned blockchain-
based distributed software-defined industrial internet of things,” in 2018
IEEE Globecom Workshops (GC Wkshps), 2018, pp. 1-7.

R. Vilalta, A. Mayoral, R. Muifioz, R. Casellas, and R. Martinez,
“Hierarchical sdn orchestration for multi-technology multi-domain net-
works with hierarchical abno,” in 2015 European Conference on Optical
Communication (ECOC), 2015, pp. 1-3.

K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed sdn con-
trollers in a multi-domain environment,” in 2014 IEEE Network Oper-
ations and Management Symposium (NOMS), 2014, pp. 1-2.

P. K. Sharma, S. Singh, Y. Jeong, and J. H. Park, “Distblocknet: A
distributed blockchains-based secure sdn architecture for iot networks,”
IEEE Communications Magazine, vol. 55, no. 9, pp. 78-85, 2017.

G. Biczok, M. Dramitinos, L. Toka, P. E. Heegaard, and H. Lonsethagen,
“Manufactured by software: Sdn-enabled multi-operator composite ser-
vices with the 5g exchange,” IEEE Communications Magazine, vol. 55,
no. 4, pp. 80-86, 2017.

R. Wang, J. He, C. Liu, Q. Li, W. Tsai, and E. Deng, “A privacy-
aware pki system based on permissioned blockchains,” in 2018 IEEE 9th
International Conference on Software Engineering and Service Science
(ICSESS), 2018, pp. 928-931.

E. Kapassa, M. Touloupou, A. Mavrogiorgou, and D. Kyriazis, “5g
slas: Automated proposition and management of agreements towards
qos enforcement,” in 2018 21st Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), 2018, pp. 1-5.

J. A. Berkowsky and T. Hayajneh, “Security issues with certificate au-
thorities,” in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics
and Mobile Communication Conference (UEMCON), 2017, pp. 449—
455.

G. Wang, J. Yu, and Q. Xie, “Security analysis of a single sign-on
mechanism for distributed computer networks,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 294-302, 2013.

I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertesz,
and G. Kecskemeti, “Laysi: A layered approach for sla-violation prop-
agation in self-manageable cloud infrastructures,” in 2010 IEEE 34th
Annual Computer Software and Applications Conference Workshops,
2010, pp. 365-370.

D. Sandler, K. Derr, S. Crosby, and D. S. Wallach, “Finding the
evidence in tamper-evident logs,” in 2008 Third International Workshop
on Systematic Approaches to Digital Forensic Engineering, 2008, pp.
69-75.

K. Kowalski and M. Beheshti, “Analysis of log files intersections for se-
curity enhancement,” in Third International Conference on Information
Technology: New Generations (ITNG’06), 2006, pp. 452-457.

M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp.
2027-2051, 2016.

R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM). 1EEE, 2014, pp. 1-6.

G. S. Ramachandran, K. Wright, L. Zheng, P. Navaney, M. Naveed,
B. Krishnamachari, and J. Dhaliwal, “Trinity: A byzantine fault-tolerant
distributed publish-subscribe system with immutable blockchain-based
persistence,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019, pp. 227-235.

P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking
and optimizing hyperledger fabric blockchain platform,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2018, pp.
264-276.

M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of
ethereum: An initial quantitative analysis,” in 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE), 2019, pp.
167-176.

P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed and
real-time performance monitoring framework for blockchain systems,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering: Software Engineering in Practice Track (ICSE-SEIP), 2018,
pp. 134-143.

