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Abstract—For intermittently connected mobile networks such
as sparsely-deployed vehicular networks, it is of great interest to
characterize the distribution of encounter times. We consider a
very general mobility model in which each device is assumed to
be moving through a given graph following a general random
walk with arbitrary transition probabilities. We consider first the
pairwise inter-encounter time distribution for a pair of random
walkers and present a recursive polynomial-time computation
that yields the exact solution. We then consider the individual-to-
any inter-encounter time (i.e., the time between contacts of a par-
ticular walker with any of the other walkers in the population).
For this harder problem, we give an approximate computation
that is also polynomial time. We validate the accuracy of the
presented solutions using numerical simulations. We discuss how
the model can be generalized to consider multiple populations.

Index Terms—Random walk ; Encounter Distributions ; Mo-
bile Networks

I. INTRODUCTION

Intermittently connected mobile networks (ICMN) are net-
works in which communication links and contacts among
mobile nodes are not fixed but created highly dynamically
and intermittently. There may be no instantaneous end-to-end
paths for any pairs of source and destination in such a network.
Such networks are relevant for instance for peer to peer
mobile device applications and for sparsely-deployed vehicular
networks with short range vehicle to vehicle communication
links.

Modeling of ICMN aims at prediction of different pa-
rameters and features of the mobility networks in order for
proposing corresponding algorithms, enhancing performance
of routing as well as reducing total delay of data dissemination
in network of vehicles. Due to unstable links among objects
and devices, store and forward schemes are typically used in
an ICMN, in which a node keeps the data, travels and transmits
the data whenever there is a contact. If two nodes meet
each other more often, they may have a higher probability to
transmit data to each other. And if a node meets any other node
quickly after an encounter in which it received some data itself,
it can help disseminate that data faster through the network.
Therefore, among other metrics, inter encounter times are a
crucial key metric characterizing information dissemination
and routing in such opportunistic networks.
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We consider in this work a general model of multiple
random walkers (representing the mobile devices) travelling
with a random movement pattern in a network represented by
a graph. All of the walkers make movement decision every
time slot; each walker follows a transition probability matrix
staying at its original location or moving from one vertex to
another. We consider two important random variables relate
to the encounter process: the Pairwise Encounter Time (PET),
the inter-encounter time between any pairs of walkers, and the
Inter-Any Encounter Time (IAET), the inter-encounter time
between a particular walker and any of the other walkers in
the network.

The following are our key contributions:
• We present the first exact computations for the PET

distribution that are polynomial in the number of walkers,
the size of the graph, and the support of the distribution.

• We present the first approximate-computation for the
IAET distribution on a general connected graph and show
through numerical simulations that this approximation is
quite accurate.

• For greater generality, we further extend our results
from a single community case (all walkers follow the
same movement pattern) to multiple communities case
(multiple groups of walkers in the network, wherein the
walkers within each group follow the same movement
pattern but different groups have different patterns.) For
this generalization also the complexity of our computa-
tions remains polynomial. In addition, we validate this
extension through numerical simulations.

The rest of this paper is organized as follows: section II lists
related work; section III describes the problem formulation
and its corresponding complexity; section IV presents our
approach to computing encounter distributions; V extends
the model to consider multiple communities. And finally, we
present a concluding discussion in section VI.

II. RELATED WORK

Inter-contact time has been of interest to scientists and
researchers working on intermittently connected mobile net-
works because of its critical importance in developing store-
and-forwarding algorithms and their practical validity. Numer-
ous empirical studies have tried to reveal characteristics of
inter-contact time in various categories of wireless networks.



Investigations into wireless local area network (WLAN) users
encounters based on USC WLAN traces have shown BiPareto
distribution, and connectivity richness enables potential in
information flooding without infra-structure [1]. Passarella
et al. have provided a statistical analysis of pairwise inter-
contact patterns in 3 different Delay Tolerant Network data
set (Dartmouth, iMote and MIT) and have proven the well-
fitness of log-normal distribution and exponential curves to the
inter-contact time distribution [2] while the researchers have
investigated the characteristics of inter-contact time of Mobile
Ad-hoc Networks through empirical observation of taxis and
buses traces in Shanghai [3]. They have concluded that the
inter-contact time has an exponential tail which contrasts with
prior results based on other forms of mobility indicating power
law distribution [4].

Beyond works focused on statistical analysis of real/realistic
traces, there have also been theoretical studies that have tried
to mathematically characterize mobility characteristics of such
opportunistic networks. Because of its tractable mathematical
analysis, random walk and its various types have become
widely used for modeling random movement simulation of
mobile nodes in Wireless Ad-hoc Sensor Network [5], in
Vehicular Ad hoc Networks [6] and in Delay Tolerant Net-
work [7]. Kalay in [8] studied the statistics (including mean
and variance) of the first passage time (the time such that
a specific node encounters its target) in a finite 1D lattice
partitioned into domains and a 2D lattice for a single random
walker and an immobile target. Furthermore, first passage time
distribution for the prior case was presented. Moreover, Colin
Cooper et al. gave precise results of cover time (the time to
broadcast a piece of information to all of the particles given
that they can communicate with each other when meeting at a
vertex) by using multiple random walkers on a random regular
graphs under different scenarios [9]. Furthermore, James et al.
investigated the encounter probability for individual pair of
random walkers in 1D, 2D and 3D lattices [10] while another
analytical model looked into aggregated inter-encounter time
given that distribution of individual pair inter-contact time is
known in advance for both unified and general heterogeneous
network (when not all pairs contact patterns are the same) [11].
Finally, Sanders in [12] provided the exact mean time of a
given particle in a system of multiple particles undergoing
random walks and indicated that:

“the full probability distribution of encounter times,
and the effect of different network structures on
those results are subjects for future studies”

While all of previous works presented statistical results includ-
ing mean and variance of first hitting time, mean of cover time,
individual pair’s encounter probability, mean of inter-contact
time and distribution of aggregated pair inter-contact time with
prior knowledge of individual pair inter-contact time, our work
presents for the first-time a method to numerically calculate
aggregated pairwise inter-encounter time and approximate the
inter-any encounter time distribution for a particular walker
with other walkers in a general graph given their movement

patterns.

III. PROBLEM FORMULATION

Assume that we have a road network scenario as described
in Figure 1. There are total 4 areas A1, A2.A3, A4 identified
by the 4 squares in the map. There are also 3 car paths color-
coded as red, blue and purple along with timestamp specifying
their current corresponding position (current corresponding
area A1, A2, A3 or A4) at the time. From the real world
road network scenario, we can consider each area as a node,
and each car as a random walker (meaning that any two cars at
the same node at a given time slot are considered encountering
each other). Every car can make decision to move to another
area or continue staying at the same area in the next time slot.
Transition probability matrix is used to capture the movements
of the vehicles in the system. Having all their positions at all
the time slot, we could proceed to calculate the corresponding
Pairwise Encounter time (PET), and Inter-any encounter time
(IAET) in Figure 2 for the given scenarios. We collect all PET
for any pairs of cars and all IAET for any car in the network
to estimate the corresponding distribution.

We formulate the problem as a random walk model, in
which vehicles are random walkers walking on a general
connected graph. There are total N walkers walking on the
connected graph characterized by V vertexes and S edges.
given the connected graph, a walker starting from a vertex
can choose any of its neighbour vertexes or choose to stay
at that vertex following a transition probability matrix P.
The available location set of one single walker is A =
{1, 2, 3, .., |V |}. The available location set of all pairs is
B = {(1, 1), (1, 2), (1, 3), ..., (|V |, |V |)}.

We want to study PET and IAET in this network. Con-
cretely, in the following subsections, we will show how
to exactly compute the PET distribution and approximately
calculate the IAET distribution.

Fig. 1: Real world scenario

A. Computation of distribution of PET

PET is the inter-encounter time for aggregated pair of
walkers 1. We use DTMC to analyze the PET distribution,
in which the states are pairs of [location of walker 1,location

1Since all walkers follow the same transition probability matrix P, inter-
encounter time for aggregated pairs are the same as for any individual pairs.



Fig. 2: Corresponding encounters

of walker 2]. Let’s illustrate M(x,y)(x′,y′) as the probability for
walker 1 to move from x to x′, and walker 2 to move from
y to y′ in one time step. Therefore, we can always derive
the corresponding transition matrix M for the above defined
DTMC. Let P (x, y, t) be the probability given that the walker
1 initially stays at vertex x, walker 2 initially stays at vertex
y, they can first meet after t time steps. We can generate a
recursive set of equations:

P (x, x, 0) = 1,∀x ∈ A
P (x, y, 0) = 0,∀x, y ∈ A, x 6= y

P (x, y, 1) =
∑
z∈A

M(x,y)(z,z), (x, y) ∈ B

P (x, y, t) =
∑

(x,y)∈B
(x′,y′)∈B

x′ 6=y′

P (x′, y′, t− 1) ·M(x,y)(x′,y′)∀t ≥ 2

(1)

From the constructed DTMC, πx is the steady distribution
for a walker to be at location x; πxy is the steady distribution
such that a pair of walkers stay at vertex [x, y] (x, y ∈ A):
πxy = πx · πy . Therefore, πzz is the steady distribution of a
pair meeting at location z, z ∈ A. The probability that the pair
meet at location z, z ∈ A is denoted as π̃z:

π̃z =
πzz∑
y

πyy
(2)

Therefore, the PET distribution is calculated in the follow-
ing equation:

PPET (t) =
∑
z∈A

P (z, z, t) · π̃z (3)

For the time horizon T , the time complexity of the above
procedure is O(T |V |2). Moreover, there will be V 2 available
positions for a pair of walkers. Therefore, it takes O(V 4) to
compute transition probability matrix M .

B. Approximation of IAET distribution

Based on the PET modelling, we can proceed on computa-
tionally approximating IAET, the inter-encounter time between
a particular walker and any other walkers on the graph. To
approximate IAET, we assume that in the beginning, the

particular walker meets only one of the remaining walkers,
and all of the others are distributed following their steady state
distribution. We already compute P (x, y, t), the probability
any two walkers meet after t time slots given initial location
at x, y respectively, following the equation set (1). Based on
P (x, y, t), we can compute P (x, y, t), the probability that with
the same initial location profile, the pair hasn’t met for t time
slots:

P (x, y, t) = P (x, y, t− 1)− P (x, y, t), x ∈ A, y ∈ A (4)

Initially, N walkers start with an initial location profile L =
(l1, l2, ..., lN ), li ∈ A. Without loss of generality, we denote
the particular walker as the walker at location z, z ∈ A. All
walkers move independently on the graph. Therefore, meeting
any other walkers is independent for the particular walker.The
probability, denoted as P (Lz, t), that the particular walker
hasn’t met any other walkers since then up to time slot t
starting with such an initial profile Lz = (z, l2, ..., lN ):

P (Lz, t) =

N∏
i=2

P (z, li, t) (5)

The distribution of such an initial profile, li ∈ A for
i = 2, 3.., N , is in fact very difficult to obtain; P̂ (z, t), the
probability that the particular walker meet one of remaining
walkers at location z and hasn’t met any other walkers since
then up to time slot t can be approximated as 2:

P̂ (z, t) =

∑
Lz

P (Lz, t)

|V |N−2
(6)

However, we can rewrite P̂ (z, t) according to the next equa-
tion:

P̂ (z, t) = P (z, z, t) ·
(
|V |∑
i=1

P (z, li, t))
|N |−2

|V |N−2
(7)

Because the initial meeting location can be any of |V | vertexes,
and the meeting probability is calculated following equation 2,
P IAET (t),the probability that the particular walker meet one
of remaining walkers and hasn’t met any other walkers since
then up to time slot t:

P IAET (t) =
∑
z∈A

P̂ (z, t) · πz (8)

Therefore, the IAET distribution is calculated in the following
equation:

PIAET (t) = P IAET (t− 1)− P IAET (t) (9)

For the time horizon T , the total complexity of the above
procedure is O(TN |V |2 + |V |4)

2We will show numerically that this approximation still yields accurate
results



IV. SIMULATION RESULTS

A. Walkers on a circular strip:

We consider N walkers walking through the circular strip
having M cells. In every time step, one walker can move right
or move left or stay in the same cell with probability 1/3.
Figure 3 demonstrates the distribution of PET and IAET for
M=24 and N=7:

Fig. 3: Circular strip : M=24, N=7

B. Walkers on a general connected graph:

Given number of vertexes V and number of walkers N , we
vary number of edges S and generate a random connected
graph (characterized by V and S) as well as a random
transition probability matrix P on the corresponding graph. We
follow the proposed computation for PET and IAET. Figure 4
reports PET and IAET distributions when the walkers follow
a random transition probability matrix.

V. PET-IAET COMPUTATION OF MULTIPLE COMMUNITIES
ON GENERAL CONNECTED GRAPHS

So far, we only considered one single transition prob-
ability matrix P , which means all of the walkers in the
system move in the same manner. To extend our results,
let’s say the system has total C communities indexed by
1, 2, ..., C, and walkers for each communities follow its own
transition probability matrix. Moreover, there are C tran-
sition probability matrix P1, P2, ..., PC for C communities
correspondingly. Moreover, there area Ni walkers in com-
munities i and total N walkers. We can say that there are
total C · (C − 1)/2 types of encountering pair indexed by
11, 12, ..., CC. Using the same approach in III-A, we compute
PPET (11, t), PPET (12, t), ..., PPET (CC, t) for all types of
encountering pair. Moreover, proportion for a pair coming
from the same community i denoted as αii and is calculated
following the equation:

αii =

(
Ni

2

)(
N
2

) (10)

Similarly, the proportion for a pair coming from two different
communities i and j is:

αij =
Ni ·Nj(

N
2

) (11)

Finally, the PET distribution is calculated:

PPET (t) =

i=C,j=C∑
i=1,j=1

PPET (ij, t) · αij (12)

To analyze IAET for multiple communities, without loss of
generality, let’s consider the particular walker is the first person
coming from community s, and he meets the first walker
from community d at location z initially (s = 1, 2, ..., C,d =
1, 2, ..., C). Additionally, we denote lij is the location of jth
person from community i. All walkers move independently
on the graph. Therefore, meeting any other walkers is inde-
pendent for the particular walker. The probability, denoted as
P (Ls,d,z, t), that the particular walker hasn’t met any other
walkers from all of the communities since then up to time
slot t starting with such an initial profile:

Ls,d,z = (z, l11, ..., l1N1, ls2, ..., lsNs, ld2, ..., ldNd, ..., lCNC
)

(13)

Psd(Lz, t) =

N1∏
i=1

P (z, l1i, t)...

Ns∏
i=2

P (z, lsi, t)...

.

Nd∏
i=2

P (z, ldi, t)...

NC∏
i=1

P (z, lCi, t)

(14)

Because we assume again a uniform distribution of such an
initial profile, lij ∈ A for i = 1, 2, 3.., C, j = 1, 2, ..., Ni

accordingly, P̂ (s, d, t) is the approximated probability that the
particular walker from community s meet one of walkers from
community d at location z and hasn’t met any other walkers
since then up to time slot t:

P̂ (s, d, t) =

∑
Ls,d,z

P (Ls,d,z, t)

|V |N−2
(15)

However, we have to consider the proportion of com-
munities from which the initially meeting pair is coming.
Furthermore, proportion for the particular walker and another
walker coming from the same community i denoted as βii:

βss =
Ns · (Ns − 1)

N · (N − 1)
(16)

Proportion for the particular walker and another walker coming
from two different communities s and d:

βsd =
Ns ·Nd

N · (N − 1)
(17)

Finally, the approximated IAET distribution is calculated as:

PIAET (t) =

s=C,d=C∑
s=1,d=1

PIAET (s, d, t) · βsd (18)

Figure 5 shows the result for a 3-community case of large
input case with N1 = 12, N2 = 12, N3 = 12, V = 36.

In general,we will assume a community of N walkers
waking on a general connected graph with V vertexes, and
each of them follows his own transition pattern, the complexity
of the above procedure is O(TN2|V |2). The time complexity
for C communities is O(TCN2|V |2).



Fig. 4: PET and IAET analysis of a general connected graph, V=12, N=6
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Fig. 5: PET and IAET for a 3-communities network
(N1=12,N2=12,N3=12)

VI. CONCLUSION

Modeling of opportunistic networks in general and ICMN
specifically aims at characterizing patterns of movement and
predicting future encounters to reduce data dissemination
delay as well as improve routing algorithms performance
in network of vehicles. To study the crucial inter encounter
times in such networks, we considered an encounter mobility
model utilizing simple random walks to numerically calculate
Pairwise Encounter Time (PET) as well as approximate inter-
any encounter time (IAET) distributions for all the nodes in
the network in polynomial time. In the future, we would like
to validate the model using real world data traces. Modeling
of a network protocol or application utilizing the computed
encounter distributions is also of interest in future work.
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