
Enhancing the Reliability of IoT Data Marketplaces
through Security Validation of IoT Devices

Yoonjong Na, Yejin Joo, and Heejo Lee
Department of Computer Science and Engineering,

Korea University
Seoul, South Korea

{nooryyaa, yjkellyjoo, heejo}@korea.ac.kr

Xiangchen Zhao, Kurian Karyakulam Sajan,
Gowri Ramachandran, and Bhaskar Krishnamachari

Viterbi School of Engineering, University of Southern California
Los Angeles, USA

{zhao115, karyakul, gsramach, bkrishna}@usc.edu

Abstract—IoT data marketplaces are being developed to help
cities and communities create large scale IoT applications. Such
data marketplaces let the IoT device owners sell their data to the
application developers. Following this application development
model, the application developers need not deploy their own
IoT devices when developing IoT applications; instead, they
can buy data from a data marketplace. In a marketplace-based
IoT application, the application developers are making critical
business and operation decisions using the data produced by
seller’s IoT devices. Under these circumstances, it is crucial to
verify and validate the security of IoT devices.

In this paper, we assess the security of IoT data marketplaces.
In particular, we discuss what kind of vulnerabilities exist in
IoT data marketplaces using the well-known STRIDE model,
and present a security assessment and certification framework
for IoT data marketplaces to help the device owners to examine
the security vulnerabilities of their devices. Most importantly,
our solution certifies the IoT devices when they connect to the
data marketplace, which helps the application developers to
make an informed decision when buying and consuming data
from a data marketplace. To demonstrate the effectiveness of
the proposed approach, we have developed a proof-of-concept
using I3 (Intelligent IoT Integrator), which is an open-source
IoT data marketplace developed at the University of Southern
California, and IoTcube, which is a vulnerability detection toolkit
developed by researchers at Korea University. Through this work,
we show that it is possible to increase the reliability of a IoT data
marketplace while not damaging the convenience of the users.

Index Terms—IoT, security, data marketplace

I. INTRODUCTION

With the advent of IoT data marketplaces, the cities and
the communities around the world can build data-driven IoT
applications involving tens of data sources [1]–[4]. Multiple
IoT device owners can make their data available for the
application developers via such IoT data marketplaces. In this
model, the device owners are responsible for managing the
hardware and software on their IoT edge devices, and let the
application developers focus only on paying for and receiving
the desired data from the marketplace.

An IoT data marketplace typically comprises of IoT end-
devices at the south end, application developers at the north
end, and the marketplace middleware in the middle [3].
Following this model, the data generated by the end-devices
flows via the marketplace middleware to the IoT applications.
As a result, the application developers have to trust the data

producers and the data marketplace to make business and
policy decisions. Therefore, security analysis of IoT data
marketplace should consider both the IoT end devices and the
marketplace middleware, and analyze how a security breach
in one component may affect the other components in a
marketplace-driven IoT ecosystem.

Although the marketplace middleware is acting as a media-
tor, the data produced by the IoT edge-devices is exceptionally
critical for the operation of data marketplaces. When the IoT
device owners fail to secure the hardware devices that generate
the data, the devices may become susceptible to cyberattacks
from malicious actors. Such attacks may compromise the
integrity of the end-device, which would, in turn, hamper
its data quality while damaging the reputation of the device
owner. Note that the application developers may also be
making critical business decisions based on the data produced
by the end-devices. Compromised devices may lead to wrong
or sub-optimal outcomes reducing the effectiveness of IoT data
marketplaces. Therefore, the security of the IoT end-devices
is essential to the operation of the marketplace, which is the
focus of this work.

In this work, we discuss the security vulnerabilities of
IoT data marketplaces and present a solution to validate the
security vulnerabilities of IoT edge devices that connect to
a marketplace. Our security analysis follows a well-known
STRIDE security assessment framework to understand the
types of threats residing in the IoT data marketplace. Besides,
we introduce mechanisms to assess the security of IoT edge
devices and issue a certificate based on the vulnerabilities
found on the devices. We have developed a proof-of-concept
using I3 data marketplace, which is an open-source IoT data
marketplace developed at the University of Southern Califor-
nia, and IoTcube, which is a vulnerability detection toolkit
developed by researchers at Korea University. Our security
assessment framework not only certifies the edge-devices but
also informs the extent of the security vulnerabilities to the
application developers when buying data from the market-
place. To the best of our knowledge, this is the first security
validation framework targeted towards IoT data marketplaces.

Of course there are operational security concerns that need
to be dealt on end-devices’ level, such as access control
loopholes, misconfiguration issues and so on, but such cases



are not in the scope of this study. According to the Software
Engineering Institute, about 90% of security issues occur due
to software vulnerabilities [5]. Therefore, we can say that this
work covers a significant pool of security concerns even if
operational security is not in the scope.

The remainder of this paper is structured as follows. Sec-
tion II provides background on data marketplace and security
validation. The security assessment of the data marketplace is
discussed in Section III. Section IV explains our security as-
sessment framework. Section V presents our proof-of-concept
implementation and evaluation results. Section VI concludes
the paper.

II. BACKGROUND ON IOT DATA MARKETPLACES, I3, AND
IOTCUBE

A. Data Marketplaces

Data marketplaces, including Intelligent IoT Integrator (I3)
[3], Ocean Protocol [6], and IOTA Data Marketplace [7], are
being developed to enhance the adoption of IoT in smart com-
munities and smart cities. Such data marketplace initiatives
focus on building “data rivers” that allow data streams from
different entities to be merged, analyzed, processed, and acted
upon as needed to support a diverse set of applications [3].
In a commercial aspect, the data marketplace allows edge
device owners to sell data streams. At the same time, different
applications can buy one or more data streams to develop
applications for smart communities. In this work, we consider
I3, which is an open-source data marketplace [8] for smart
cities developed at the University of Southern California.

B. I3: Intelligent IoT Integrator

I3 is a data marketplace developed at the University of
Southern California, in partnership with the City of Los
Angeles and a number of academic and industrial partners.
It consists of a marketplace middleware, which is responsible
for managing users, devices, and data products. Here, the edge
device owners and the application developers are considered
as the users. When the edge device owners register their data
product in the marketplace, they are required to create a hub
and manage their devices and data products under it. I3 also
allows the application developers to buy data by selecting their
desired products from the marketplace registry. Upon buying
the data product, the marketplace provides a credential to let
the buyer access the data. I3 uses MQTT as a messaging
protocol to let the seller exchange the data with the buyer.
Note that the marketplace middleware authorizes access to
MQTT for sellers and buyers based on their account status.
In the case of buyers, I3 authorizes only those who present
a valid credential. Fig. 1 shows the building blocks of the I3
data marketplace - version 1, which is the latest version of the
marketplace.

The I3 data marketplace is available as open-source software
to help the researchers and marketplace enthusiasts1. To help
the edge device owners and application developers send data

1https://github.com/ANRGUSC/I3-Core

to and receive data from the data marketplace, a software
development kit is also made available 2.

C. IoTcube

IoTcube3 is a comprehensive vulnerability testing environ-
ment offering black-box, white-box, and network testing. From
these features, white-box testing can be used for assessing
the security of IoT data marketplaces. This white-box testing
is based on a well verified vulnerable code clone detection
(VUDDY) [9] technique. Code clone is a fragment of code
that is copy-and-pasted from other software codes. Nowadays,
a lot of developers produce code clones by copying codes
into their software codes when a function they need is well
implemented in there. However, this means if the copied code
fragment contains a vulnerability, then it propagates to other
software, creating the same vulnerabilities. VUDDY solves
this problem through a simple, safe, and fast algorithm that
detects code clones and their vulnerabilities.

To mitigate such code clone vulnerabilities, analyzing well-
known vulnerability in such devices is a fast and effective
way. Several databases record what kind of vulnerabilities are
in the open-source software. CVE (Common Vulnerabilities
and Exposures) is one of the most widely used vulnerability
databases. CVE is a dictionary of publicly disclosed cyber-
security vulnerabilities and exposures that is free to search,
use, and incorporate into products and services [10]. Since
CVE is open to the public and is built through collective
intelligence by accepting vulnerability reports from various
reliable sources, it contains a lot of data.

IoTcube’s vulnerable code clone detection rapidly discovers
vulnerabilities in new versions of software code and updates
them in IoTcube’s vulnerable code database. Also, IoTcube’s
database has been double-checked and proved by credible
sources, and its detection rate has low false positives.

D. Gap

On the one hand, existing data marketplace software, in-
cluding I3, enables the device owners to register their IoT
devices and sell data products. Still, it doesn’t provide any
solutions to assess the security vulnerabilities of the IoT end-
devices. On the other hand, IoTcube delivers a tool for the IoT
application developers to check their software before the field
deployment, where the onus is on the device owners to assess
their software for security vulnerabilities independently.

There is no marketplace architecture with built-in support
for vulnerability detection and device certification, which is
the focus of this work.

III. SECURITY HAZARDS IN IOT MARKETPLACES

A. An overview of IoT Security

The IoT security has been discussed extensively in the
literature [11]–[15]. Soteria [11] discusses the security vul-
nerabilities of IoT devices and presents an automated security

2https://github.com/ANRGUSC/I3-SDK
3http://iotcube.net/



Fig. 1: Architecture of I3-v1 [8]. Contemporary data marketplaces lack support for security validation and certification. In this
work, we will extend the I3-v1 data marketplace by integrating security assessment and certification features.

analysis platform. Mavropoulos et al. [12] presents ASTo, a
tool to analyze the threats and vulnerabilities of IoT devices
and software. A security analysis testbed and an architecture
for analyzing the IoT system has been presented in [13].
All these efforts highlight the security issues in the IoT
devices, while Soteria [11] and ASTo [12] present methods
and tools to identify security issues. However, such solutions
only encourage the researchers and the practitioners in the
IoT domain to take actions to mitigate the threats imposed
by malicious attackers. Our work focuses on connecting such
security assessments to the IoT data marketplace to allow
automatic identification of security vulnerabilities and certify
devices based on the level of threat.

B. Security threats in IoT data marketplaces

To build a trusted marketplace, we have to investigate
the kind of threats that exist in it and how such threats
impact its stakeholders, including the device owners, system
administrators, and application developers. To that end, we
classify the marketplace data flows into two categories, as
shown in Fig. 2:

• Data path between the seller (that is, IoT end-devices)
and the marketplace: This data flow considers the
security issues that arise between the edge devices’ and
the marketplace middleware.

• Data path between the marketplace and the buyer:
This data flow focuses on the interaction between the data
marketplace middleware and the application developers’
devices.

Both of these data flows and the software involved in the
data exchange process could be susceptible to cyberattacks.
To study the security vulnerabilities of IoT data marketplace,
we choose the STRIDE threat model [16] for our security

analysis. We choose STRIDE threat model because the IoT
data marketplace possesses various security requirements, and
the STRIDE threat model is tailor-made for such environment.
STRIDE defines six threat categories; spoofing identity, tam-
pering with data, repudiation, information disclosure, denial
of service, the elevation of privilege [16].

C. Threat modeling

Fig. 2 shows two types of data flows and associated threats
for the IoT data marketplace. The following list explains the
security threats that may happen on IoT data marketplaces:

1. Spoofing. The device owners have to register their de-
vices at the data marketplace and get credentials to pub-
lish data. Malicious users may steal the credential from a
device and send data to a marketplace by impersonating
a device. For the flow between the seller and the market-
place, this attack could severely damage the reputation of
the device owner while disrupting the data quality and the
effectiveness of the entire data marketplace. Regarding
the data flow between the marketplace and the buyer, a
buyer could buy data sent by attacker to marketplace with
stolen credentials.

2. Tampering. Malicious users may manipulate software
services, device drivers, and other critical system ele-
ments. For the data flow between the seller and the
marketplace, an attacker could destroy the integrity of
the seller and the device by tampering with the data
and the software. Regarding the data flow between the
marketplace the buyer, the application developer may not
be able to reliably process the data if an attacker tampers
with the data, hardware, or the software.

3. Repudiation When an attack happens on a device, logs
provide activity traces through which malicious actions



Fig. 2: IoT Marketplace Threat Model

can be captured. But, malicious users may delete impor-
tant logs, including any information received from the
data marketplace.

4. Information Disclosure Malicious users may steal confi-
dential information from the device including the seller’s
and buyer’s credential to either impersonate the device
or get access to the data from the marketplace without
paying for it.

5. Denial of Service Malicious users may make the device
unavailable preventing the seller from sending data to the
marketplace by exploiting network and software vulner-
abilities.

6. Elevation of Privilege Malicious users may take over the
device and do actions such as read, write, or access to
systems or resources that they should not be accessing
to.

As shown in this threat model, the security vulnerabilities
of the devices may affect buyers, sellers and also the data
marketplace. Most importantly, these threats heavily affect the
edge devices owned by the sellers. Therefore, we focus on
assessing the security of the edge devices in this work.

D. Examples of Security Vulnerabilities

In this section, we review some examples of security vul-
nerabilities that could affect the IoT devices, which could,
in turn, impact the IoT data marketplaces. BlueBorne is a
type of security vulnerability in Bluetooth protocol. If an IoT
device uses an old version of the operating system or Bluetooth
protocol that is vulnerable to BlueBorne, a malicious user
may access, leak information, eavesdrop data, and do many
other unauthorized actions from the device. If we apply this
vulnerability to the IoT data marketplace, a malicious user may
access data that is published to the marketplace. DirtyCow
is another type of security vulnerability from old versions
of the Linux kernel that allows a malicious user to gain a
higher level of system authority. If an IoT device has both
BlueBorne and DirtyCow vulnerabilities, a malicious user may
access the device and execute DirtyCow exploit code using
BlueBorne vulnerability and gain higher level permissions on

the device. Eventually, the malicious user can destroy the
device, modify the application running on the device, make
the device inaccessible, and many other things.

It is crucial to identify what kinds of vulnerabilities reside
in devices to mitigate such threats. By knowing this, the device
owner or the application developer can prevent malicious users
from exploiting their devices. If there is a device using an
old version of Linux kernel, for example, there exists both
BlueBorne and DirtyCow vulnerabilities. The application de-
veloper or device owner may not know about the vulnerability.
However, by analyzing device vulnerabilities when registering
it to the data marketplace, they may find the vulnerabilities
that reside in the device and then patch the device with the
stable version of the software. However, finding unknown
vulnerabilities from the device takes not only time but also
lots of efforts that may discourage developers. Thus using
vulnerable code clone detection tools such as VUDDY is
useful for finding vulnerabilities from devices. By using such
tools, the device owners can easily find known vulnerabilities.

IV. ENHANCING MARKETPLACE SECURITY THROUGH
VULNERABILITY DETECTION

From section III, it is clear that the IoT data marketplace
must provide support for security validation of the devices.
In particular, securing the IoT end-devices becomes critical
to protect the integrity of the devices while encouraging
the application developers to trust the data provided by the
marketplace. In this section, we will discuss our security
assessment and certification mechanisms.

A. Selling and Buying Process in a Data Marketplace

For the integration of security assessment mechanisms, it
is essential to understand how the sellers and buyers interact
with the data marketplace. A seller will have to register and
sell their data using the data marketplace, while a buyer
will have to register and pay for the wanted product. The
interaction process described below is based on the I3-v1 data
marketplace [8], but closely resembles other commercial data
marketplaces, including Streamr and Terbine.io.

From sellers’ point of view, they have to



Fig. 3: Data Flow in the IoT Marketplace and its Vulnerability
Validation

S-1) identify a data marketplace platform that helps them sell
data. Here, the assumption is that a local community or
city administration deploys and manages a marketplace
middleware to help the device owners connect with the
application developers.

S-2) register the device by creating a hub for their organiza-
tion.

S-3) register their device under their hub. In this phase, the
seller can select between password-based and public-
key based authentication mechanism to establish a secure
connection with the marketplace middleware.

S-4) create the data product associated with the device. During
the product registration phase, the seller is required to
enter information about the data product, including what
type of data it produces, where the device is physically
deployed by entering its GPS coordinates, and the price
of the data.

At the end of the product registration phase, the device owner
will receive credentials to start publishing data from his/her
device to the marketplace middleware.

From the buyers’ point of view, they have to:

B-1) identify a data marketplace platform just like a seller
does.

B-2) browse through the products uploaded by various sellers.

B-3) buy the desired data product by paying the price set by
the user.

After making a payment for the data, the buyer will receive a
credential to establish a data connection with the marketplace
middleware to start receiving the data from the seller’s device.

This whole process is illustrated in Fig. 3. It shows that
the device owners are not providing any information to assess
the security of the device and the data. At the buyer end, the
application developers are buying the data without verifying
the security of the device that produces the data.

B. Design Choices

The marketplace architecture presented in Fig. 1 indicates
the absence of a security assessment and certification mech-
anism. In this section, we will go through the details of how
security validation can be done by the seller, buyer, and the
marketplace administrator.

a) seller: If vulnerability validation is done on the
seller’s side, the seller would have to validate their devices
on their own before registration. This job will be very trou-
blesome for them, thereby elevating the entrance barrier to the
marketplace. On top of that, the validation will be done only
at the moment of registration, leaving them exposed to newly
occurring vulnerabilities, or the sellers are required to validate
the security of their devices frequently.

b) buyer: On the other hand, if vulnerability validation
is done on the buyer’s side, the buyer would have to assess for
security on their own before buying a product. And, the buyer
needs information such as the operating systems, software
services, device drivers, and other software that the seller is
running on his/her device to assess the security vulnerability
reliably. The seller may not be willing to share this information
with the buyers due to privacy concerns, or it may help a
malicious buyer to exploit the seller’s device by exploiting the
known vulnerabilities.

c) administrator: If the system administrator does vul-
nerability validation, all of the above troubles would be solved,
given that the assessment process is not too big nor heavy
for the administrator’s system. And, the seller is already
trusting the data marketplace. Besides, the marketplace alerts
the seller whenever new vulnerabilities are reported to the
public databases such as CVE.

When considering these pros and cons, the security vali-
dation process should be handled by the administrator. We
explain our architecture in the next section.

C. Validating the Security of IoT Devices in IoT Data Mar-
ketplaces

Our security validation feature extends the marketplace
interaction process presented in section IV-A. In particular, we
extend the device registration process with additional fields,
wherein the device owner is required to enter their device
model and kernel versions. Recall from the device registration

Fig. 4: Integration of Security Assessment and Certification
Engine to a Data Marketplace



process described in section IV-A that the device owner only
selects the authentication mechanism during the registration
process.

Fig. 4 shows the architecture of the proposed security
assessment and certification feature for the IoT data market-
places. During the device registration phase, device owners are
required to select the desired validation scheme and provide
information about the operating system and kernel versions.
The security assessment engine then connects with a third-
party tool such as IoTcube to verify the security vulnerabil-
ities. Based on the outcome of the security assessment, the
certification scheme issues a certificate following the rules
presented in TABLE I. Since forcing the security analysis
to users may make them dither over joining the marketplace,
user-friendly UI and easy-to-follow guidelines are essential to
help the sellers adopt this security assessment feature (Fig. 5
shows how this can be implemented in a data marketplace).
The security analysis is divided into two parts, as follows:

1. Weak Validation. Validate security only with some es-
sential information, including the device model and the
kernel version.

2. Strong Validation. Validate security by providing the
source code.

For the first method, weak validation, users who want to
enroll their device to the marketplace provides the information
on two things: OS kernel version and device model. Then, the
marketplace middleware will provide a preprocessed security
analysis report with the information provided. One drawback
of using this method is that there is a higher chance of false-
positiveness. But this method is valid for users who cannot
furnish the source code of the device or who think code level
analysis is a nuisance. Also, if the user wants a deeper level
of vulnerability scan after the weak validation, they may go
through the strong validation, which is explained below.

For the second method, strong validation, users need to
provide their devices’ source code for a more in-depth scan.
Here, vulnerability detection tools can provide more in-depth
scan results of vulnerabilities. This method is valid for users
who want a deeper level of vulnerability scan and who want
to know more specifically about the vulnerabilities currently
residing in their devices.

TABLE I: Certificate level criteria for weak validation and
strong validation

Certificate
Level Weak Validation Strong Validation

Level 5 - No severe vulnerabilities
and named vulnerabilities

Level 4 No severe vulnerabilities
and named vulnerabilities

Either severe vulnerabilities
or named vulnerabilities

Level 3 Either severe vulnerabilities
or named vulnerabilities

Both severe vulnerabilities
and named vulnerabilities

Level 2 Both severe vulnerabilities
and named vulnerabilities -

Level 1 Device not analyzed

Fig. 5: Implementation of Security Validation During Device
Enrollment Phase

After the security validation process, the marketplace mid-
dleware issues a certificate attesting the security level of
the device, based on the information provided by the device
owner. TABLE I shows the certificate levels. As shown on
the table, we gave more incentives to strong validation than
weak validation. The vulnerability has been considered severe
if the Common Vulnerability Scoring System (CVSS) score
for the vulnerability was higher than 7.0. CVSS is measured
and given to most of CVE entrances, thereby giving a good
reference point for the level of severity. Named vulnerabilities
are vulnerabilities that affected a wide range of computer
systems with high impact that a name has been given. The
vulnerabilities mentioned in section III-D are such vulnera-
bilities.

V. PROOF OF CONCEPT IMPLEMENTATION AND
EVALUATION

We have developed a proof-of-concept implementation us-
ing I3 (see section II-B), and IoTcube (see section II-C).

As shown in Fig. 5, we extended the I3 data marketplace’s
frontend to let the device owner enter his operating system
and kernel version during the device registration phase. Upon
receiving the necessary information, if the device owner opted
for a weak validation, the marketplace middleware provides
vulnerability information based on preprocessed assessment
data through IoTcube. In the case of strong validation, the
seller will be required to download and use hmark, which is a
vulnerability detection tool provided by IoTcube. This tool will
process the seller’s source code and produce a file hashes of
the source code in hidx format. The marketplace middleware
will receive this hidx file from the seller, which will be sent
to the IoTcube’s security validation engine through its REST-
API. The engine will then run a check against its database and
return the known vulnerabilities.

The marketplace middleware generates a security certificate
based on the number of vulnerabilities identified in the device.
When a buyer browses through the marketplace, he/she can
make a decision based on the security level.



TABLE II: Performance Evaluation on 6 Popular IoT Operat-
ing Systems

OS Name Version LoCa Time 1 Hidx size Analysis
time

Raspbian rpi-4.1.y 14,448,394 110m39s 32M 0.9322s
rpi-4.19.y 18,127,058 139m6s 41M 1.0688s

RIOT 2017.01 177,663 3m28s 488K 0.0909s
2020.01 372,754 6m43s 1.1M 0.1023s

TizenRT 1.1 P Rb 1,291,458 13m18s 3.3M 0.1462s
3.0 GBM 2,533,436 26m34s 6.5M 0.1966s

Huawei LiteOS 1.1.1 13,916 13s 28K 0.0807s
c50B039 599,624 8m1s 1.2M 0.1009s

ARM Mbed OS 5.2.0 1,671,606 7m13s 3.1M 0.1295s
5.15.1 3,686,895 31m16s 7.7M 0.2085s

Contiki release-3.0 283,285 2m12s 529K 0.0921s
release-v4.4 257,168 1m48s 478K 0.0908s

We use IoTcube-based vulnerability detection method be-
cause it is easy to use, lightweight, and fast. To further explain,
the detection tool can be used in any common environment
settings, available for Windows, Linux, and OSX. It is also
very light: about 100MB for Windows and about 10MB for
Linux and OSX. Since it is easy to use, it solves the problem
of high entrance barrier. On top of that, as it is light, it allows
the marketplace platform to handle a lot more jobs. Details on
the evidence of fastness will be explained in the section V-B.

A. Evaluation

Here, we analyzed and evaluated the performance and effec-
tiveness of the implementation described in section IV-C. This
evaluation was done with six popular IoT devices’ operating
systems: Raspbian, RIOT, TizenRT, Huawei LiteOS, ARM
Mbed OS, and Contiki. The most recent stable version and
one of the older versions from more than two years back have
been selected. As for the environment, a machine with Intel(R)
Core(TM) i5-6600 CPU @ 3.30GHz and 16GB RAM running
Ubuntu 18.04.4 LTS was used.

B. Performance

As explained in section V, the security analysis is done
when the seller enrolls his/her device, and it can be done in
two ways: weak and strong. In the case of weak validation,
it does not take any time to show the validation results. It
is because the OS versions and device models’ vulnerability
information is already evaluated by IoTcube and saved in the
marketplace middelware, ready to show as soon as the device
is enrolled. To evaluate the time it takes for strong validation,
we need to consider the following two sections:

1. Time 1: time to convert source code into hidx,

2. Time 2: time to send the hidx file through IoTcube API
and get the result back.

Time 1 can be evaluated by calculating the time hmark
conversion tool takes. Time 2 depends on the size of the hidx

aShort for Lines of Code
bShort for Public Release
cAbridged ”V200R001”

Fig. 6: Vulnerabilities in 6 Popular IoT Operating Systems
This bar graph shows that the number of CVEs tend to reduce
when the version is more recent. However, there are some
exceptions.

file and the time it takes for IoTcube to analyze the received
hidx. The results are shown in the following TABLE II.

From the results, we can conclude that the validation process
is swift overall. This fact has also been proven through the
comparison with other existing tools in VUDDY’s Evaluation
section [9]. On top of that, as explained in section V, our
proof-of-concept security validation method is easy to use
and lightweight. Such factors have a decisive effect on user
experience.

C. Effectiveness

Here, we will check the effectiveness of weak and strong
validations. The Fig. 6 shows the number of CVEs detected
from analyzing the test subjects with IoTcube’s white-box
testing. The results show that, in general, the more recent
versions have fewer vulnerabilities. The newer versions come
out with security fixes on previously reported vulnerabilities,
thereby reducing flaws in the latest release versions.

However, there are some singularities to this tendency.
In the case of Raspbian, the number of CVEs decrease
dramatically. As the version name implies, Raspbian uses
Linux Kernel. Code similarity analysis provided by IoTcube
proves this, showing that rpi-4.1.y version of Raspbian (A)
and 4.1 version of Linux Kernel (B) are almost the same
software, showing similarity level of (A∩B)/A = 97.93% and
(B ∩ A)/B = 99.23%. Since Linux Kernel is a widely used
open source operating system kernel, thousands of vulnerabil-
ities have been reported and recorded in the CVE database.
As one of the oldest open source project, tens of thousands of
developers have been contributing to this project for more than
a decade, discovering and fixing issues. On top of that, fatal
vulnerabilities directly affecting the kernel such as DirtyCow
and BlueBorne broke out in 2016 and 2017 consecutively,
raising the alarm of big security loophole issues for the kernel



developers. For such reasons, Linux kernel continues to get
more secure as years go by, thus explaining the dramatic drop
of number of CVEs in Raspbian.

In the case of TizenRT, it keeps its number of CVEs. The
first thing to note is that all of their vulnerabilities come
from third-party libraries, meaning they are all code clone
vulnerabilities. When looking into them in detail, we found out
that one of the vulnerabilities from version 1.1 Public Release
had been fixed in version 3.0 GBM. Still, a new vulnerabil-
ity appeared from another third party library. More specifi-
cally, the fixed vulnerability from version 1.1 Public Release
was from Jouni Malinen’s hostapd library’s wps common.c
code. In version 3.0 GBM this vulnerability is fixed, but
a new vulnerability appears in nghttp2 external library, in
nghttp2 frame.c code.

In the case of Huawei LiteOS, no vulnerabilities have been
detected in either versions. In the earlier version 1.1.1, as it
is shown by the Lines of Code in TABLE II, the OS is still
at an early stage of building, and does not use any third-party
libraries. In the V200R00150B039 version, the volume has
increased, but we found out that this version still used only
two third-party libraries. This means unlike other open source
projects, Huawei LiteOS does not use much of code clones.
Furthermore, no vulnerabilities from Huawei LiteOS itself had
been reported into CVE database. Such are the reasons why
no vulnerabilities have been detected in either versions.

The overall evaluation shows that checking through weak
validation is effective and the results are much more accurate
when the current source code the seller is using is assessed
for vulnerabilities. From here we can conclude that code clone
detection fits well with IoT data marketplaces for real world
implementation both in performance and effectiveness aspect.

VI. CONCLUSION

IoT data marketplaces are gaining traction in the context
of smart cities. The community-driven operational model of
the IoT data marketplace allows the device owners to sell
their data to the application developers. In this work, we have
analyzed the security of IoT data marketplaces and shown that
the security of the IoT devices is one of the critical determi-
nants of trust in a marketplace-based application. Besides, a
vulnerability detection solution has been presented to inform
the security vulnerabilities of IoT end-devices to the sellers.
We have also presented a proof-of-concept implementation by
integrating I3, which is an open-source IoT data marketplace
developed by the University of Southern California, with
IoTcube, which is a well-known vulnerability detection tool
developed by the Korea University.

Furthermore, we have also shown how our proof-of-concept
implementation verifies the software used by the IoT de-
vices and provide a security certificate based on the number
of vulnerabilities and their severity levels. To understand
the overhead added by our software validation process, we
have carried out evaluations using well-known IoT operating
systems, including Contiki and RIOT. We have shown that
our proof-of-concept analyzes the security vulnerabilities in

hundreds of milliseconds while helping the device owners and
application developers to make an informed decision and that
our security model and proof-of-concept is applicable in real
world IoT device marketplace.

ACKNOWLEDGMENT

This work is supported by Institute of Information & com-
munications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) (No.2019-0-01697,
Development of Automated Vulnerability Discovery Technolo-
gies for Blockchain Platform Security and No.2019-0-01343,
Regional strategic industry convergence security core talent
training business) and the USC Viterbi Center for Cyber-
Physical Systems and the Internet of Things (CCI).

REFERENCES

[1] G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari, “To-
wards a decentralized data marketplace for smart cities,” in 2018 IEEE
International Smart Cities Conference (ISC2), pp. 1–8.

[2] K. R. Özyilmaz, M. Doğan, and A. Yurdakul, “Idmob: Iot data market-
place on blockchain,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT), pp. 11–19.

[3] B. Krishnamachari, J. Power, S. H. Kim, and C. Shahabi, “I3: An iot
marketplace for smart communities,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys, 2018, pp. 498–499.

[4] C. Perera, “Sensing as a service (s2aas): Buying and selling iot data,”
arXiv preprint arXiv:1702.02380, 2017.

[5] U.S. Department of Homeland Security, “Software Assurance,” [On-
line]. Available: https://www.us-cert.gov/sites/default/files/publications/
infosheet SoftwareAssurance.pdf, accessed on June 2020.

[6] Ocean Protocol Foundation, “Ocean Protocol: A Decentralized Substrate
for AI Data and Services,” [Online]. Available: https://oceanprotocol.
com/, bigchainDB GmbH and DEX Pte. Ltd, Tech. Rep., March 2018.

[7] IOTA Foundation, “IOTA Data Marketplace,” [Online]. Available: https:
//data.iota.org, accessed on September 2019.

[8] X. Zhao, K. Karyakulam Sajan, G. Ramachandran, and B. Krishna-
machari, “Demo abstract: The intelligent iot integrator data marketplace
— version 1,” in Proceedings of the 5th ACM/IEEE Conference on
Internet of Things Design and Implementation, ser. IoTDI, 2020.

[9] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP), pp. 595–614.

[10] “Common Vulnerabilities and Exposures (CVE).” [Online]. Available:
https://cve.mitre.org/

[11] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in 2018 USENIX Annual Technical Conference
(USENIX ATC), Jul., pp. 147–158.

[12] O. Mavropoulos, H. Mouratidis, A. Fish, and E. Panaousis, “Asto: A
tool for security analysis of iot systems,” in 2017 IEEE 15th Interna-
tional Conference on Software Engineering Research, Management and
Applications (SERA), pp. 395–400.

[13] V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, and
Y. Elovici, “Let the cat out of the bag: A holistic approach towards
security analysis of the internet of things,” in Proceedings of the 3rd
ACM International Workshop on IoT Privacy, Trust, and Security, ser.
IoTPTS, 2017, p. 3–10.

[14] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating critical
security issues of the iot world: Present and future challenges,” IEEE
Internet of Things Journal, vol. 5, no. 4, pp. 2483–2495, 2018.

[15] F. M. Tabrizi and K. Pattabiraman, “Design-level and code-level security
analysis of iot devices,” ACM Trans. Embed. Comput. Syst., vol. 18,
no. 3, May 2019.

[16] M. Howard and S. Lipner, The security development lifecycle. Microsoft
Press Redmond, 2006, vol. 8.

https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://oceanprotocol.com/
https://oceanprotocol.com/
https://data.iota.org
https://data.iota.org
https://cve.mitre.org/

