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Agricultural production has become a key factor for the stability of the world economy. The use of pes-
ticides provides a more favorable environment for the crops in agricultural production. However, the
uncontrolled and inappropriate use of pesticides affect the environment by polluting preserved areas
and damaging ecosystems. In the precision agriculture literature, several authors have proposed solutions
based on Unmanned Aerial Vehicles (UAVs) and Wireless Sensor Networks (WSNs) for developing spray-
ing processes that are safer and more precise than the use of manned agricultural aircraft. However, the
static configuration usually adopted in these proposals makes them inefficient in environments with
changing weather conditions (e.g. sudden changes of wind speed and direction). To overcome this defi-
ciency, this paper proposes a computer-based system that is able to autonomously adapt the UAV control
rules, while keeping precise pesticide deposition on the target fields. Different versions of the proposal,
with autonomously route adaptation metaheuristics based on Genetic Algorithms, Particle Swarm
Optimization, Simulated Annealing and Hill-Climbing for optimizing the intensity of route changes are
evaluated in this study. Additionally, this study evaluates the use of a ground control station and an
embedded hardware to run the route adaptation metaheuristics. Experimental results show that the pro-
posed computer-based system approach with autonomous route change metaheuristics provides more
precise changes in the UAV’s flight route, with more accurate deposition of the pesticide and less envi-
ronmental damage.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Agriculture is one of the most important activities in the world
economy, which has led to a large variety of studies with different
goals, (Baggio, 2005; Daberkow and McBride, 2003; McBratney
et al., 2005; Zhang and Kovacs, 2012; Zhang et al., 2002) including:
(i) increasing crop productivity and quality, (ii) decreasing produc-
tion costs and (iii) reducing environmental damage. The use of
technology in agriculture can be characterized as Precision Agricul-
ture (PA), as defined by Bongiovanni and Lowenberg-DeBoer
(2004): the use of information technology in all agricultural pro-
duction practices, whether to adapt the use of inputs to achieve
the desired results in specific areas, or to monitor the results
achieved in agricultural plantations. The demand for larger agricul-
tural production is often reflected in the increase in the amount of
pesticides used during cultivation (Faustino et al., 2015; Tsimbiri
et al., 2015; Walander, 2015). These products are used for pest1

control, and creation of a nearly ideal environment for the crop
growth. Pimentel (2009) estimates that 3 million metric tons of pes-
ticides are used annually worldwide, but about 40% of all crops are
destroyed. One of the main reasons for this problem is the pesticides
drift out of the targeted area. In addition to the environmental dam-
age caused by pesticide drift to neighboring areas, prolonged contact
with these products can cause various diseases to humans (Dhouib
et al., 2016), such as cancer, complications in the respiratory system
and neurological disorders.
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Pesticide spraying in agricultural crop fields is generally per-
formed in two ways (Sammons et al., 2005), namely: (i) terrestrial
and (ii) aerial. In the terrestrial way, which is largely based on
ground vehicles, paths are needed within the crop field, as the
vehicles require permanent contact with the ground during loco-
motion. The spraying system must be close the culture, which
reduces the drift of pesticides to neighboring areas. Additionally,
the terrestrial spraying is able to reach a higher accuracy of spray-
ing distribution in favorable conditions. For example, it can attend
particular demands of a specific culture. On the other hand, this
spraying approach is usually slow and has contact with the culture,
which decreases the production area and can damage healthy
plants. In contrast, the aerial spraying allows faster spraying with-
out the need for paths inside the crop field. However, the larger
distance between the spraying system and the cultivated area
increases pesticide drift to neighboring areas (Nádasi and Szabó,
2011).

The aircrafts usually employed for spraying are manned, there-
fore requiring the presence of a pilot during the spraying activity. If
there is any failure, human or mechanical, during the flight that
cause the aircraft fall, can severely harm the pilot. It is important
to observe that most of the aerial spraying occur close to the soil
(around 3 meters high), which increases the chances of accidents.
An alternative to reduce the risk of fatal accidents is to use
unmanned (autonomous or remote controlled) aircrafts, like UAVs.

Several studies on the use of tele-operated UAVs to spray pesti-
cides can be found in the PA scientific literature (Bae and Koo,
2013; Huang et al., 2009). However, the use of full or semi auton-
omous UAVs to perform the spraying operation still has not effi-
ciently addressed the problem of how to autonomously find
control parameters able to continuously adapt the flight route of
an UAV spraying pesticides in a highly dynamic environment. In
the (semi) autonomous operation, an UAV must be able to adjust
its flight route accordingly to its velocity and operation height,
the velocity and orientation of the wind, and the type of chemical
being sprayed (as it might change the size of the droplets).

In this paper, the authors investigate the use of four meta-
heuristics, two of them population based, to obtain semi-optimal
flight control parameter values. The authors believe that these
metaheuristics can efficiently search the solution space to find
good parameter values for the UAV control rules, increase the accu-
racy of the spraying process.

Hence, looking to obtain higher accuracy in pesticide spraying
and reduce the risk of human exposure to these products, this
paper proposes a system called AdEn (Adaptation to the Environ-
ment) to autonomously adjust the control rules of UAVs spraying
operation taking into account possible changes in weather condi-
tions. In the proposed system, four metaheuristics are evaluated
regarding their performance in the optimization of the control
rules, namely: (i) Genetic Algorithms, (ii) Particle Swarm Optimiza-
tion, (iii) Simulated Annealing, and (iv) Hill-Climbing. Afterwards,
this study will compare the performance obtained in pesticide
spraying by using AdEn with the same approach adopted in the lit-
erature for the optimization phase (i.e. replacing the metaheuris-
tics by a specific empirical setting of the PSO).

This paper is structured as follows: Section 2 described the
main aspects of related works. Next, Section 3 briefly presents
the proposed approach for UAVs-based pesticide spraying. In Sec-
tion 4 there is a detailed description of each component of the
approach proposed in this paper. The experimental evaluation pro-
cess used to assess the performance of the proposed approach is
described in Section 5. Finally, a summary of the main conclusions
and suggestions for future works are presented in Section 6.
2. Studies of accurate pesticide spraying

Given the benefits derived from pest control with the use of
pesticides, several studies have been conducted on how to improve
spraying accuracy (Bae and Koo, 2013; Huang et al., 2009; Nádasi
and Szabó, 2011; Pérez-Ruiz et al., 2015; Sammons et al., 2005).
According to the approach adopted, these studies can be divided
into two main groups: (i) terrestrial and (ii) aerial. The main differ-
ence between the two approaches is the vehicle used for transport-
ing the spraying system. In the terrestrial approach, the vehicles
remain in contact with the ground throughout their route (e.g.
tractors). Aerial models use aircrafts with an attached spraying sys-
tem to fly over the area of cultivation and spray the pesticide on
the plantation.
2.1. Terrestrial spraying

An alternative usually adopted for controlling the cultivation
and the conditions required for crop growth is the use of green-
houses. These structures can provide a controlled environment
whose conditions are closer to the optimum required for produc-
tion. However, the controlled environment is considered to be
harmful to the health of farm workers due to the extreme condi-
tions they are subjected to, like high temperature and humidity
(Sammons et al., 2005). Because of the small space between plant-
ing trails, pest control in these environments is often performed
with manual spraying equipment. As a result, this activity becomes
susceptible to human error and can lead to an unbalanced deposi-
tion of pesticide. In addition, despite the use of safety equipment,
the workers are exposed to the sprayed products. To overcome
these hazards and reduce the impact of pesticides on workers’
health, Sammons et al. (2005) propose the use of an autonomous
robot for pesticide spraying inside greenhouses. For such, a land
vehicle uses an auxiliary structure that guides the route of the
robot, similar to the way rails are used by trains. This auxiliary
structure is fixed between the planting tracks. When the vehicle
reaches the end of an alley, a professional enters the greenhouse
and positions the vehicle in the next alley. This procedure is con-
tinued until all the tracks are covered. The results reported by
the authors show that this solution provides a homogeneous and
consistent coverage, with an overlapping margin of 10–20%.
Despite the good results, this solution is not completely autono-
mous. Thus, workers are still exposed to the sprayed product when
they enter the greenhouse to re-position the vehicle. Furthermore,
this solution has poor scalability and high costs due to its depen-
dence on the rails.

Another form of production is the cultivation in open field
crops. This allows extensive crop fields and, hence, large scale pro-
duction. On the other hand, this alternative is the most expensive
agricultural production, since it requires a larger amount of
machinery and more workers to carry out activities in a timely
manner. However, there are limits to the working hours and pro-
ductivity of agricultural workers, preventing accomplishment of
the required tasks the over long periods of time. As a means of
overcoming the limitation of working hours and increasing the
safety of agricultural work, several studies have investigated the
use of autonomous vehicles (Pérez-Ruiz et al., 2015). This approach
has achieved good results and has been a more efficient alternative
than manned vehicles for agricultural production.

The survey by Pérez-Ruiz et al. (2015) highlighted the consider-
able progress made in this context, which includes: (i) autonomous
tractors, (ii) communication systems and the Global Positioning
System, (iii) a design for an intelligent spray bar, (iv) thermal and
mechanical systems to control weeds, and (v) an air-blast sprayer.
The good preliminary results obtained in these areas show a
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promising future for the development and use of autonomous
vehicles for precision agriculture. Despite making significant
advances, land vehicles (whether autonomous or manned) have
to use routes within the plantation and this reduces the production
area. Moreover, deviations in the route already established can
damage healthy plants and further reduce productivity, since these
machines enter the crop field several times during the production
phase.

2.2. Aerial spraying

Aircrafts equipped with a spraying system are each time more
used as an alternative to land vehicles for spraying pesticides on
crop fields. This approach does not require routes within the plan-
tation, and, therefore, does not affect healthy plants if there is devi-
ation in their flight paths. In manned vehicles, the pilot has several
equipments to carry out cross-checking of information during the
flight (Nádasi and Szabó, 2011). To ensure the accuracy of the
information provided to pilots, Nádasi and Szabó (2011) describe
the concepts necessary for the deployment of Microelectro-
MEchanical System (MEMS)-based Inertial Measurement Units
(IMU) navigation systems. The main objective of this system is to
enable the pilot to know the aircraft geographical position more
accurately than when other alternatives, such as Global Position
System (GPS), are used. However, this study does not describe
the implementation and the results achieved by the proposed sys-
tem. Regardless of how the described system is validated, it should
be noted that the quality of aerial spraying of pesticides depends
largely on the experience and skills of the pilot (Nádasi and
Szabó, 2011). This is true because, even when information is avail-
able, the pilot is still responsible for making decisions during the
flight to optimize pesticide spraying.

Regarding the use of unmanned aircraft, sprayed pesticides
using fixed-wing aircraft (for example, single-engine aircraft)
may cause drift to nearby areas that should not receive the pesti-
cides (e.g. environmental preservation areas) (Antuniassi, 2015).
While it is common to use buffer zones to mitigate the damage
caused by drift, this hazard can occur 5 to 32 km downwind
(Pimentel, 1995), which far exceeds the range of the buffer zones.
The use of UAV rotorcraft has been investigated as a safe and high-
precision alternative for spraying pesticides (Bae and Koo, 2013;
Faiçal et al., 2014a,b; Huang et al., 2009). This occurs because these
aircrafts have no pilots on board and their downwash effect2 is
directed to the plantation (Hanson, 2008). The downwash can act
as a protective tunnel for pesticide spraying. Taking advantage of
this effect, some studies use a spray system attached to an
unmanned helicopter for the application of pesticides in the crop
field (as proposed by Huang et al. (2009)).

The low-volume spraying system proposed by Huang et al.
(2009) has four main components: (i) a metal bar with 2, 3 or 4
nozzles, (ii) a reservoir that stores the product to be sprayed (iii)
a pressure pump and (iv) an engine for controlling the operation
of the system. This system uses Pulse Width Modulation (PWM)
to regulate the pump inlet pressure, which has a linear relationship
with the spray flow. Thus, the number and type of fixed nozzles in
the metal bar and the PWM setting must be in accordance with
specific characteristics required for the spraying process. The sys-
tem may be loaded with up to 5 kg of pesticide, which is sufficient
to spray approximately 14 ha. However, this system was designed
and developed to be coupled with the UAV SR200, produced by
Rotomotion.3 This UAV has a combustion engine, which measures
2 In aeronautics, the term Downwash means changing the direction of air diverted
by the action of the aerodynamic airfoil, wing or helicopter engine in motion, as part
of the lifting process (Crane, 2012).

3 http://www.rotomotion.com/
3 m in diameter (for the main propeller) and is able to carry up to
22.7 kg of load. Even though this spraying system is integrated into
the UAV control system, which allows it to be adjusted to its geo-
graphical position, the accuracy and uniformity of the pesticide
deposition have not been evaluated. The uniformity of deposition
for unmanned helicopters was analyzed by Bae and Koo (2013),
which describes and offers a way of improving the UAV structure
to allow a uniform deposition. However, the accuracy of pesticide
deposition has not been evaluated in different flight configurations
and in dynamic weather conditions.

2.3. Different approaches of spraying

It must be observed that the terrestrial approach employs vehi-
cles that use roads within the plantation to spray the pesticide
throughout the cultivation, which can result in soil compaction.
The aerial approach, on the other hand, does not require pathways
within the plantation and enables the pesticide to be sprayed from
a larger distance (when compared to the terrestrial approach). In
the latter approach, there is an increase in the drift of pesticides
to neighboring areas (Antuniassi, 2015). The drift of pesticides into
the environment can cause serious harmful effects on flora and
fauna, by contaminating preservation areas and destroying wild-
life. Moreover, even though the pesticide is deposited within the
crop field, weather conditions can spread pesticides to other areas,
expose agricultural workers and the population (end-consumers)
to inappropriate and prolonged contact with the products, causing
serious health damages (Dhouib et al., 2016).

An architecture based on UAV and wireless sensor networks has
been investigated and proposed to reduce the risks of pesticide
drifts outside of the target area and to avoid overlapping sprayed
areas, by ensuring more precise deposition of the sprayed prod-
ucts. This approach can reduce the amount of pesticides used in
agricultural production, without damaging the crop yield.
3. Proposed approach for UAV and WSN for aerial pesticide
spraying

3.1. Overview and problem statement

Previous works have investigated the use of UAVs to improve
the quality and amount of crop production in several agricultural
activities (Huang et al., 2009; Valente et al., 2011). One of the most
important of these activities is pesticide spraying for pest control.
This activity has had a great influence on the quality and yield of
cultivated crops, since pesticides are used to create a near-
optimum environment and their inappropriate use can cause envi-
ronmental and economic damage and lead to health problems.
Fig. 1 shows the problem addressed in this paper, resulting from
inaccurate spraying pesticides. The weather conditions in the crop
field cause pesticide to drift out of the target area. This results in
extensive damage, such as overlapping pesticides, non sprayed
regions and contamination of rivers, forests and inhabited areas.

3.2. First attempt to solve the problem

In order to deal with the previously mentioned problem, Faiçal
et al. (2014b) proposed an architecture based on UAV and WSN for
aerial spraying of pesticides in agricultural fields. This architecture
enables an UAV to adjust its route to the concentration of depos-
ited pesticides. This information is obtained through a WSN
deployed in a matrix format covering the crops in the field. Accord-
ing to experimental results, this architecture makes the spraying
process more precise and safer than previous approaches com-
monly employed for aerial spraying, where a manned aircraft is

http://www.rotomotion.com/


Fig. 1. Problem statement: drift of pesticides from the target crop field in dynamic
environments (e.g. a change of wind speed and direction).

(a) The target crop field is divided into spraying tracks to guide the flight
path of the UAV. Each track is defined in order to allow pairs of sensor
nodes to be covered in its width. These spray tracks are made possible by
the WSN that is deployed within the plantation and have a matrix format.

(b) The UAV flies over each spray track, which is defined for the flight
path while the pesticides are being sprayed. During the spraying process,
the UAV checks the last covered sensors to find out the concentration of
pesticide deposited, together with the weather conditions. If the response
to the query indicates inadequate concentration (higher or lower than a
predetermined threshold), the UAV adjusts its route to balance the con-
centration in the target crop.

Fig. 2. Standard operation of the proposed architecture by Faiçal et al. (2014b).

B.S. Faiçal et al. / Computers and Electronics in Agriculture 138 (2017) 210–223 213
used without the feedback of information about pesticide
deposition.

The application scenario exploited by Faiçal et al. (2014b) is
shown in Fig. 2. In this figure, the UAV is a spraying element
equipped with a programmable trigger system. The control system
divides the crop field into parallel spraying tracks and defines a
flight path so the UAV can fly over the center of these tracks when
spraying pesticide (see Fig. 2(a)). The used architecture allows the
spraying process to be interrupted at any time for refueling or pes-
ticide recharge, and resumed at the exact same point. Each track is
positioned in a way that pairs of sensors can be placed within the
limits of its width. Thus, as the track is covered during the spraying
process, the UAV communicates with the sensors in 10 s intervals
(see Fig. 2(b)). During the communication, the sensor nodes send
information to the UAV control system, such as the concentration
of pesticides and weather conditions (wind speed and direction).
If the sensors report an imbalance in the pesticide deposition that
exceeds a fixed threshold, the UAV control system adjusts the flight
path to provide a uniform deposition.

The sensor nodes have a specific hardware to capture informa-
tion used by the UAV (wind speed and direction and pesticide
deposition). To obtain wind-related information, an anemometer
can be installed above the plantation height. For the pesticide
deposition, a specific chemical sensor may be needed to detect
the presence of the active substance used in the pesticide. This is
possible because when the pulverized product approaches the
crop, the chemical sensors identify the presence of a specific active
substance and react to it. It is important to observe that the calibra-
tion of the chemical sensors depends on the model and which
active substance is used; the calibration must, therefore, be per-
formed in the actual deployment of WSN.

In addition to the WSN operation, the arrangement of sensor
nodes (in matrix format) allows the UAV’s on-board computer to
compare information from two neighboring nodes. This is possible
because the definition of the position of the nodes takes into
account the range of spraying. Thus, the width of the spray ranges
covers two neighboring nodes sensors (in parallel). Finally, regard-
ing WSN architecture, the UAV is considered a mobile node and it
is responsible for requesting information from specific fixed sen-
sors (according to their position in the crop field) at periodic time
intervals.

The route is corrected by using the route change policy based on
feedback received from the WSN, which is to move the UAV in the
opposite wind direction. Hence, if for example, the original route of
the UAV is in the center of the spray track and there is a wind
blowing toward the right of the track which is unbalancing the
deposition of the pesticide, the policy moves the UAV in the oppo-
site direction to the wind (positioning its route to the left). By this
means, although there is drift, the pesticide deposition is balanced
in the target track (Faiçal et al., 2014b).

In practice, the route correction policy uses a simple equation to
define the time taken by the aircraft to update its route moving its
direction in response to wind changes by an angle of 45 degrees
(Faiçal et al., 2014b). Finished the direction change, the UAV adapts
its route to fly in parallel with the spray track. For such, the route is
gradually corrected until the pairs of sensor nodes show a balanced
deposition. The routeChangingFactor parameter defines the inten-
sity of the route correction, which allows abrupt changes (a longer
time for route correction) or mild changes (a shorter time for route
correction).
3.3. Discussion of results

The described architecture was experimentally evaluated in dif-
ferent weather conditions. The results from Faiçal et al. (2014b)
show that the proposed architecture improved the pesticide spray-
ing accuracy, when compared with a traditional model, which does
not allow route adjustments. Despite the good results, it should be
noted that the correction of the UAV’s course is of the same inten-
sity throughout the whole spraying activity, regardless of the
weather in the plantation area. This occurs because the
routeChangingFactor parameter is set before the flight and remains
unchanged. This static behavior is inefficient in dynamic environ-
ments, where weather conditions can vary. Thus, an initially good
route intensity correction can become bad when the weather con-
dition changes..



(a) routeChangingFactor= 3.000

(b) routeChangingFactor= 6.000

(c) routeChangingFactor= 7.164

Fig. 3. As shown in Faiçal et al. (2014a), these heat maps represent the chemicals
sprayed on the crop. The green area illustrates the plantation and the red area
illustrates the concentration of the pesticide. The thin black lines show the crop
field that needs to be sprayed by pesticides. (a) and (b) Evaluations with empirical
values. (c) Evaluation with routeChangingFactor obtained by the PSO. It can be seen
that the best adjustments in the UAV track are achieved when employing the
routeChangingFactor obtained by the metaheuristic. It should be observed that when
the simulation starts with wind, the UAV always starts the dispersion of the
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This drawback was partly investigated by Faiçal et al. (2014a),
which resulted in the proposal and evaluation of new methods,
based on Particle Swarm Optimization (PSO), to optimize the
routeChangingFactor according to the current weather conditions.
According to the experimental results obtained in this study, the
use of an adjusted routeChangingFactor parameter for weather con-
ditions allows the UAV to make a better route correction. Besides,
the UAV was able to spray pesticides with a higher degree of accu-
racy. Fig. 3 shows that adapting the route correction intensity pro-
vides a more accurate measurement. However, the study in (Faiçal
et al., 2014a) only considers one type of weather condition, Con-
stant Light Wind (CLW) – which refers to a wind speed of 10 km/
h. It is not possible to infer that different weather conditions ben-
efit from the same adjusted routeChangingFactor parameter, since
this was not evaluated. In addition, Faiçal et al. (2014a) only inves-
tigate the use of a metaheuristic to optimize the routeChangingFac-
tor parameter for the weather condition; it did not study it as a
complete system. To overcome the previously mentioned limita-
tions, this paper proposes the AdEn system, a complete system to
optimize UAV flight trajectories where adjustments are made in
response to changes in the weather. It must be observed that AdEn
is evaluated in different weather conditions and with different
computing platforms.
chemicals outside the boundary. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4. The AdEn system – Adaptation to the Environment

The Adaptation to the Environment system (AdEn) is composed
by two main components: (i) Collector and Actuating (CollAct),
and (ii) OPTImization Core (OPTIC). The first component collects
weather information and updates the settings of the UAV control
system. The second component is responsible for adapting the
routeChangingFactor parameter to changes in the weather condi-
tions. It defines the required route correction.

Fig. 4 displays the main features of the AdEn system and the
computing platforms where they run, including their internal
interactions. CollAct runs on a computer system embedded in the
UAV, while OPTIC runs on the Aircraft Control Station. It is worth
pointing out that both components (CollAct and OPTIC) run above
the Operating System (OS) and in parallel with other processes in
their respective computing platforms. The AdEn system is designed
to interact with the UAV route correction system (using CollAct to
update the flight configurations), making it less dependent on
other processes and libraries.

CollAct uses an existing communication link with the WSN to
collect weather information about the crop field being sprayed.
This information is transmitted to the OPTIC element via a wireless
communication link that exists between the UAV and the Control
Station. At this time, the OPTIC element is executed and a new
value for the routeChangingFactor parameter is transmitted back
to CollAct, which updates the value of the rule-based parameter
adjustment route of the aircraft. The settings are loaded whenever
the UAV starts to spray a new subarea.

As previously mentioned, AdEN uses a track structure to guide
the UAV’s flight path. AdEN creates sequential sub-areas (regions
of interest), forming logical divisions at the spray tracks This divi-
sion defines the regions that will have sensor nodes, which can be
queried for weather information and where each optimized value
(adjusted intensity) is employed. In the spraying of each track,
while a sub-area is sprayed (with the standard operation – spray-
ing and course correction with an intensity set at the beginning of
the sub-area), the intensity adjustment (AdEn system) uses
weather information from the next sub-area. This process runs
sequentially for each sub-area of the track until the end of the
spraying process. The spraying of a crop field is concluded after
all the tracks are sprayed by the UAV. Fig. 5 shows the logical divi-
sions of the spray tracks, which create sub-areas of interest, and
the rest of the crop field in tracks (those without divisions to make
it easier to understand the process).

The routeChangingFactor parameter is updated during the tran-
sition between the current sprayed sub-area and the subsequent
sub-area. A procedure based on space-time between the UAV and
the crop field was used by the AdEN system to synchronize the
UAV activities. Fig. 6 shows the sequence of steps executed by
the AdEn system while spraying a track. These steps are performed
in parallel with the operation of the architecture proposed by
Faiçal et al. (2014b). Thus, the AdEn system runs in parallel with
the original architecture, by adapting its route adjustment policy
to environmental weather conditions without the route correction
system being aware of this process.

Hence, the activities of the proposed system can be summarized
as follows: (i) collecting the weather information about the next
target sub-area; (ii) optimizing the parameter for the weather
and; (iii) updating the parameter value of the routeChangingFactor
when setting the route adjustment policy. As shown in Fig. 6, the
three activities are carried out sequentially to obtain a new param-
eter value of the routeChangingFactorwhich can be used in the next
sub-area. However, in the first sub-area of the spray track, AdEn
performs all the activities before starting the spraying. In this case,
the UAV control system receives a signal to wait for the
routeChangingFactor parameter to be updated.
4.1. Querying weather information and updating the route adjustment
policy

Querying the sensor nodes located in the next sub-area is per-
formed throughout the wireless communication between UAV
and WSN. The querying process executed by the AdEn system for
nodes in the WSN, is performed by giving information of the geo-
graphic coordinates that define the next target sub-area. Since the
sensor nodes have information about their locations, the ones that
are deployed within the next sub-area are able to respond to the
requests sent by AdEn. Response messages sent by the sensor
nodes are destined to the AdEn embedded system in the UAV
and have the weather information of the sub-area. This informa-



Fig. 4. Elements of the AdEn system (CollAct and OPTIC) in their respective computing platforms, together with the components of the architecture proposed by Faiçal et al.
(2014b).

Fig. 5. The spray track is divided into sub-areas of interest, which define the node
sensors that will be queried for weather information and the area where each
intensity is used. The current sprayed area is highlighted in the whole area to be
sprayed. The wireless communication symbols represent the queries about the
deposition of the pesticide. Although the query about the weather, used to adjust
the intensity of the correction, is not shown (to keep the picture more clear), it is
performed with the sensor nodes in the next sub-area to be sprayed.
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tion might be the average of the previously acquired sensor data.
On receiving these messages, the AdEn system calculates the aver-
age weather condition of the sub-area and transmits this informa-
tion to the OPTIC element in the Control Station.

After sending the information to the OPTIC element, CollAct
remains on standby. This state is changed when it receives a mes-
sage from OPTIC with a new value for the routeChangingFactor
parameter or in case of a timeout, which can be set according to
how long the UAV will take to arrive at the end of the current
sub-area. In the event of a failure that prevents a message sent
by the OPTIC element (e.g. signal loss from the telemetry system)
from being received, two backup settings can be used, (i) keep
Fig. 6. Spatio-temporal representation of actions taken by AdEn. It is important to observ
which the processing steps are executed (e.g.. the result of the 1st processing is used in th
area by asking about the weather. It then sends this information to the OPTIC element in
best value is transmitted back to CollAct (in the UAV). Finally, CollAct updates the route
the last received value and use it for the next sub-areas until the
problem has been fixed or (ii) set a default value to be used as a
routeChangingFactor parameter until a message from the OPTIC ele-
ment is received.

Finally, the adaptation ends when the UAV reaches the end of
the target sub-area and CollAct updates the value of the
routeChangingFactor parameter in the UAV route correction system.
This value is used in the next sub-area to be sprayed, while another
intensity adjustment cycle is executed in the next sub-area.
4.2. Optimization of the routeChangingFactor parameter to weather
conditions

As previously described, the optimization of the intensity of
route correction is carried out by the OPTIC element, which runs
in the control station while the previous sub-area was being
sprayed. Although the spraying architecture executes the course
correction autonomously, the Control Station enables a human
operator to take control of the aircraft at any time. Moreover, as
previously explained, the control station can also be used as an
additional computing platform for processing the decision-
making of the UAV control system.

In order to achieve an accurate global spraying, the evaluation
of the pulverization accuracy was divided into several sub-
problems, each one concerned with the evaluation of the accuracy
of the deposition into a sub-area. The combination of adjustments
performed in each sub-area allows a better solution to the large
(global) problem, which is the adjustment of the intensity of route
e that the best route correction intensity found is used in the following sub-area, in
e 1st sub-area). Initially, the CollAct element queries the sensors from the next sub-
the Control Station. After the optimization of the routeChangingFactor parameter, the
adjustment policy with the received value.



Fig. 7. Execution of OPTIC element in the Control Station to optimize the
routeChangingFactor parameter for weather measured by the WSN.
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correction during the complete spraying of the agricultural field.
Even if the pulverization in each sub-area is highly accurate, it is
still possible to achieve a globally accurate spraying. The use of
sub-areas to evaluate the spraying accuracy can reduce the overall
computational cost, making the proposed solution computation-
ally efficient during the online processing.

The optimization problem addressed by the AdEn system
(specifically the OPTIC element) is to find non-optimal values of
intensity to adjust the route of the UAV in order to minimize the
function:

Fitness ¼
X

#�
X

m

where
P

# is the sum of all the pesticide sprayed and
P
m is the

sum of pesticide deposited in the correct region. Thus, this function
calculates the amount of pesticide deposited outside the target area.
Consequently, the optimal route correction intensity is the one that
minimize this objective function (the lower the value, the better the
fitness).

In practice, the intensity of the route adjustment is a value
inside a search space that allows for different settings (e.g. abrupt,
smooth and moderate). The search space is defined by:

routeChangingFactor ¼ fx 2 Rj1:0 6 x 6 10:0g
Fig. 7 shows the operations of OPTIC in the Control Station, with

the interactions between its components (Core, Computer Model of
the Environment and Metaheuristic). Initially, the Core receives
weather information collected by CollAct through the communica-
tion link between the Control Station and the UAV (Step 1). Next, it
incorporates this information in a computer model that is specifi-
cally designed for the given environment (Step 2) and runs a meta-
heuristic (Step 3). The metaheuristic evaluates various solutions in
the computational model (Step 4) to find a route correction inten-
sity value that is close to ideal. The best value found (non-optimal)
by the metaheuristic is sent to the Core (Step 5), which sends the
value to CollAct (Step 6) by the same communication link used
to receive the weather information.

The computer model used by OPTIC was first described in Faiçal
et al. (2014b), where it was used to evaluate the accuracy of the
platform for route adjustment. However, this model was adapted
to run without the occurrence of stochastic interference between
the evaluations carried out during the execution of the metaheuris-
tic. This behavior allows a fair comparison between the tested
intensities. Yet, the computational model used considers the pesti-
cide spraying architecture without the AdEn system, as this is exe-
cuted transparently and in parallel with the original architecture.

OMNeT++4 was used to implement the computational model. This
software is a simulator of discrete events based on the C++ language
to model networks, multiprocessors and other distributed and paral-
lel systems (Varga, 2010). OMNeT++ can be used to model several
types of networks (for example, networks of queues, wireless and
peer-to-peer types) (Wehrle and Mesut Günes, 2005). Because of
its generic design, OMNeT++ has several frameworks established
for specific networks, such as Mixim5 for modeling wireless net-
works. This framework provides detailed models for wireless chan-
nels, wireless connections, mobility models, models for dealing
with obstacles and several communication protocols, especially for
MAC (Köpke et al., 2008) layer.

Additionally, the computational model used allows the use of
different dispersion models to calculate the physical process of
transport and transformation of the product until it reaches the
culture. This modular structure allows assessments to be carried
out continuously to make it increasingly accurate against the real
4 OMNeT++ Network Simulation Framework, http://www.omnetpp.org.
5 MiXiM project, http://mixim.sourceforge.net
process without losing deployments ever undertaken. In the cur-
rent implementation, the Chemical Dispersion Module calculates
the fall of the chemical through the position and time of fall of each
drop. This chemical dispersion is based on a simplified model of
pollutants, which consider (1) the initial velocity vector of the par-
ticle, when sprayed; (2) the wind speed vector; and (3) gravity. Cal-
culations are performed for all instants of time for each drop of the
pulverized product until reaching the culture (Faiçal et al., 2014b).
This dispersion model, although simple, is satisfactory at this stage
because the goal is to optimize UAV route. However, it is important
to note that the dispersion model can be exchanged for more accu-
rate models according to future research needs.

Each solution found by the metaheuristic used is evaluating
according to the quality its associated route. The quality of a solu-
tion is inversely proportional to the amount of pesticide deposited
outside the target region. Thus, the lower the amount of pesticide
outside the target area, the better the quality of the route. A com-
putational model uses an objective function to evaluate the inten-
sity of route changes and return the best value found for the
current weather. The following sections describe the methodology
used to assess the effectiveness of the AdEn system.

5. Setting the metaheuristic and evaluating the AdEn system

The optimization of the routeChangingFactor parameter is essen-
tial for the adaptation of the route correction of the original archi-
tecture (proposed by Faiçal et al., 2014b) to the weather
conditions. Several metaheuristic were investigated to select the
most efficient for this task. The progress made in the use of the
route correction intensity adapted to the weather conditions in dif-
ferent scenarios was also evaluated. Due to the short time available
for transmitting weather information (Faiçal et al., 2014b) and the
need to concentrate on the behavior of the evaluated metaheuris-
tics, it is assumed that the weather information was already incor-
porated in the environmental computer model. The main focus of
this article is on assessing the performance of the metaheuristics.
This scenario is similar to that employed in Faiçal et al. (2014a),
used here as a benchmark to show the progress achieved in this
study.

The experiments are divided into three complementary phases.
Initially, Grid Search is used to tune the main parameters of the
metaheuristic (see Table 2). Grid search is used to improve the con-
vergence rate of the metaheuristic. In the second phase, the best
settings for each metaheuristic is executed on an embedded com-
puting platform. The performance of the metaheuristics in a UAV
equipped with embedded hardware is assesses and compared with

http://www.omnetpp.org
http://mixim.sourceforge.net


Table 1
The configuration adopted was defined to provide a fair comparison between the
evaluated metaheuristics and the solution in the previous work, when the AdEn
system was developed. It must be observed that the Wind Speed parameter had a
value of 20 km/h in the proposed system. Now two values (10 and 20 km/h) are used
in the evaluation. The UAV’s flight height was defined based on related works (Ozeki,
2011; Salvador, 2011).

Element Information Value

UAV Horizontal Position Middle
UAV Height 20 m
UAV Speed 15 m/s
UAV Direction East
UAV Acceleration 0 m/s2

UAV and WSN Time between communication 10 s
Crop Field Target Sub-area Dimension 1000 m � 50 m
Weather Wind Speed 10 and 20 km/h
Weather Wind Direction North

Table 2
Parameters and limits of the search space used by the Grid Search for configuring the
metaheuristics.

Metaheuristic Parameters Lower Limit Upper Limit

GA Individuals and Generations 1 120
PSO Particles and Interactions 1 120
HC Mutations and Jumps 1 120
SA Disorders and Iterations 1 120
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the performance achieved by the same metaheuristics in a com-
puter platform used in the Control Station. Finally, the accuracy
of the spraying is evaluated to assess if these metaheuristics can
be used in different weather conditions (winds of 10 and 20 km/h).

The following metaheuristics were investigated for this study:
(i) Particle Swarm Optimization – PSO (Eberhart et al., 2001;
Engelbrecht, 2006; Faiçal et al., 2014a); (ii) Genetic Algorithm –
GA (Faiçal et al., 2014; Holland John, 1975); (iii) Hill Climbing with
the Next-Ascent strategy – NAHC (Forrest and Mitchell, 1993;
Muhlenbein, 1991); and (iv) Simulated Annealing – SA
(Kirkpatrick and Vecchi, 1983). These metaheuristics are widely
used in the optimization literature with good results in several
applications. It must be emphasized that the implementation of
the metaheuristics was based on the article where they were pub-
lished and their source codes are available at http://goo.gl/tT6qsf.
Additional information on the flight conditions of the UAV and
about the environment for the development and evaluation of
AdEn system can be seen in Table 1.

The main results illustrating the progress made in this work are
described next. The results obtained by the GA are highlighted,
because, together with the PSO results, they were the best results
achieved. PSO was used in the experiments reported in Faiçal
et al. (2014a). It is important to notice that two PSO configurations
were used in the experiments, (i) exactly as proposed in our previ-
ous work and; (ii) with the same implementation, but modified
according to improvements seen in the experiments. All the results
are available in https://goo.gl/fiSlcQ.
Fig. 8. Scanning in the search space made by the Grid Search to define the
configuration of each metaheuristic. An important feature of this implementation of
the Grid Search is the convergence and concentration of assessments in a promising
region of the search space. The movement of Grid Search is represented by
numbered grids listed in the order in which the cycle was analyzed (for example, 1�
for the first cycle). The grid formed around a vertex with previous values indicates
that this setting resulted in the best performance of the previous cycle.
5.1. Evaluation of metaheuristics used for the optimization of the
routeChangingFactor parameter

Metaheuristics have been successfully employed in combinato-
rial problems to efficiently find non-optimal solutions. The param-
eter values used in these metaheuristics can influence the quality
of the solutions found. The Grid Search Technique is used to reduce
the impact of an empirical configuration, searching for parameter
values able to improve the performance of the metaheuristics
investigated. Table 2 shows the parameters that need to be config-
ured and the limits of the search space covered by Grid Search.

For all metaheuristics, the grid starts with the same uniform
positions in the search space. The configuration (indicated by one
of the vertices) with the best performance in each cycle, defines
the grid’s center vertex in the next evaluation cycle. The distance
between each pair of vertices is linearly decremented for each eval-
uation cycle, starting with a distance of thirty units and ending
with a distance of five units. Fig. 8 illustrates the execution of
the Grid Search. Each assessment cycle of the Grid Search is per-
formed as follows: initially, the settings specified by the vertices
are incorporated in the configuration metaheuristic. Next, the
metaheuristic performs an optimization of the routeChangingFactor
parameter ten times using the computational model and assuming
an environment with a constant wind of 20 km/h. After 10 runs for
the nine settings indicated by the grid, a few statistics are calcu-
lated: (i) the Convergence Rate for the lowest overall Fitness (con-
sidered in this study to be the lowest Fitness found for all the
settings in the evaluation cycle), (ii) the Mean Execution Time of
the metaheuristic for each configuration, and (iii) the Total Num-
ber of Evaluations provided by the configuration. This information
is used to guide the movement of the technique in the search
space, named here ‘‘search heuristics”. Thus, the search heuristic
uses the previously described information to indicate a setting that
can provide the maximum possible number of ratings for the meta-
heuristic without exceeding the maximum execution time (the
spraying time of a target subarea) and a convergence rate for the
best global Fitness larger than 80%.
A virtual computing platform was used to improve the manage-
ment and control during the experiments. This computing plat-
form has 1 single-core processor at 2.27 GHz, 1 GB of RAM, 10 GB
Hard Disk and Ubutu 9.04 operating system. This is the minimum
required for the execution of the OPTIC element in the AdEn sys-
tem. The best configuration found in the evaluation cycle (among
the nine tested) is seen as the central vertex of the grid in the next
evaluation cycle. In the last evaluation cycle, the best vertex is the
final configuration that will be chosen.

Four classes were created to discretize the behavior displayed
by the settings evaluated with each metaheuristic, which are: (i)
Very Poor; (ii) Poor; (iii) Average; and (iv) Good. These classes rep-
resent a behavioral pattern for each setting, which is shown and
described in Table 3. Fig. 9(a) and (b) shows the configuration of
PSO and GA by Grid Search, with the quality of each configuration
evaluated. Initially, the grid starts at the same position for both
metaheuristic, but the search direction is different for each meta-
heuristic. In the fourth round of evaluations, Grid Search converges

http://goo.gl/tT6qsf
http://https://goo.gl/fiSlcQ


Table 3
Discretization of the performance of metaheuristics using the settings evaluated by
the Grid Search.

Symbol Name Description

Very Poor
(VP)

Average Runtime higher than available for optimizing
the parameter

Poor (P) Appropriate Average Runtime; Convergence Rate less
than 0.5

Average
(A)

Appropriate Average Runtime; Convergence Rate
between 0.5 and 0.8

� Good (G) Appropriate Average Runtime; Convergence Rate
higher than 0.8

(a) Search for configuring the PSO.

(b) Search for configuring the GA.

Fig. 9. Search performed by the Grid Search for configuring the GA and PSO,
evaluated to optimize routeChangingFactor parameter.
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to a promising region of the search space. returning good parame-
ter values for the metaheuristics (indicated by Good class).

Grid Search indicated settings with ‘‘Good” class for both meta-
heuristics, two for PSO and three for GA. These settings are shown
in Fig. 9(a) and (b) and marked with �. It is possible to see the
behavior of the five settings in Table 4, which are: (i) for the PSO,
PARTX_ITEY, where X is the number of particles that compose
the swarm and Y is the total number of iterations; and (ii) for
the GA, INDX_GENY, where X is to the number of individuals that
comprise the population and Y is to the total number of
generations.

Although all the settings in Table 4 comply with the criteria set
out in the search heuristics and can be classified as ‘‘Good”, the
PART45_ITE5 settings for PSO, and IND10_GEN25, for GA, were bet-
ter than the other settings. This can be explained by the fact that
they have the best convergence rates and further evaluations were
conducted during the execution of their metaheuristics. Even
tough, these settings keep a reasonable Mean Execution Time.
Given the characteristics of environment and flight, the Mean Exe-
cution Time is assumed to be reasonable if it is below 66.667 s. The
maximum time (D) that the execution of the metaheuristic can
take is obtained by the Equation:
D ¼ a
m

where a is the length of the sub-area in meters and m is the UAV
speed in meters per second.

Another investigated approach explores the search space and
look for settings similar to those highlighted in Table 4, which
are later evaluated. To find these new settings, it is necessary to
define which numerical combinations of the two parameters of
each metaheuristic (PSO and GA) result in the same number of
evaluations as the best settings found by Grid Search. To find the
new configurations that result in the same amount of evaluations,
a procedure calculates fi; jg where i� j ¼¼ OverallEvaluation. In this
case, OverallEvaluation is the maximum number of evaluations
allowed for the new settings and i and j represent the metaheuris-
tic parameters. When a numerical combination satisfies this condi-
tion, the result is validated. In this study, a blind search for new
combinations was carried out, without examining the suitability
of each setting in the corresponding metaheuristics. Before the
combinations have their feasibility assessed, they must allow a
group of elements and evolution cycles with a minimum value
equal to five. This prevents the metaheuristic from being sup-
pressed by inadequate settings and being rendered inefficient;
for example, using 250 individuals for 1 evolving generation in
the GA.

In the experiments, five new settings were found for the PSO
and 4 for the GA. These settings, and their respective behavior,
are detailed in Table 5. Additionally, the location of each setting
in the search space, and the quality class it belongs to, can be seen
in Fig. 10. The best settings obtained by Grid Search for each meta-
heuristic were re-executed together with the new settings that
were evaluated to check the stability of their executions. Setting
PART45_ITE5, indicated by the Grid Search for the PSO increased
its Convergence Rate.

This increase may be due to a potential instability in the execu-
tion of the PSO with this parameter values. Consequently, the PAR-
T15_ITE15 setting is considered the best found for the PSO, with a
Convergence Rate of 0.8 and an appropriate Mean Execution Time.
Although other settings have the same behavior, this setting had
the lowest Mean Execution Time. For the GA, the setting IND10_-
GEN25, indicated by the Grid Search, maintained its Convergence
Rate (1.0) and Mean Execution Time at appropriate level for the
application. This behavior indicates a possible pattern of stable
execution for optimizing the parameter routeChangingFactor. Based
on these results, the settings used for the next steps are: PAR-
T15_ITE15 for the PSO and IND10_GEN25 for the GA. These settings
are called PSO-PART15_ITE15 and GA-IND10_GEN25 respectively,
in the next experiments.
5.2. The embedded hardware

The single-board raspberry Pi computer was used in the embed-
ded hardware. This computer has the electronic components nec-
essary for the UAV computer system (Vujovic and Maksimovic,
2014). This system requires low power and has a reduced physical
size, which makes it easy to use in robotic systems. In light of these
characteristics, The PSO-PART15_ITE15 and GA-IND10_GEN25
metaheuristics were executed on the Raspberry pi to evaluate if
it can be used for the optimization of the routeChangingFactor
parameter in the UAV embedded system. This can reduce the
UAV communication rate with the Control Station during spraying.

A Raspberry Pi Model B (see Fig. 11) and a virtualized computer
(described in Section 5.1), which represented the control station as
the computing platforms, were used in the experiments. The hard-
ware used has the following features: Processor Broadcom
BCM2835 ARMv6 (700 MHz), 512 MB SDRAM, two USB Ports,



Table 4
Behavior of the ‘‘Good” class settings found by Grid Search. The highlighted lines refer to the best settings found for each metaheuristic.

Metaheuristic Settings Average Runtime (s) Convergence Rate Total Ratings

PSO PART40_ITE5 54.132 0.8 200
PSO PART45_ITE5 61.369 0.9 225
GA IND5_GEN30 30.992 0.8 150
GA IND10_GEN20 46.614 0.8 200
GA IND10_GEN25 57.785 1.0 250

Table 5
Parameter values evaluated in the complementary approach.

Characteristics

Metaheuristic Settings Average Runtime (s) Convergence Rate Total Ratings

PSO PART5_ITE45 63.156 0.8 225
PSO PART9_ITE25 63.311 0.8 225
PSO PART15_ITE15 63.112 0.8 225
PSO PART25_ITE9 63.148 0.6 225
PSO PART45_ITE5 62.401 0.7 225
GA IND5_GEN50 53.018 1.0 250
GA IND10_GEN25 59.637 1.0 250
GA IND25_GEN10 63.698 1.0 250
GA IND50_GEN5 65.139 0.9 250

(a) Settings of the PSO that was evaluated.

(b) Settings of the GA that was evaluated.

Fig. 10. Locations and quality classes for the new settings evaluated in the
complementary approach by GA and PSO.

B.S. Faiçal et al. / Computers and Electronics in Agriculture 138 (2017) 210–223 219
Power Draw/Voltage of 1.2A @ 5 V, 26 pin of GPIO and one Ethernet
Port. The Linux operating system version 3.10.37 + for armv6l
architecture was installed in an SD Card Class 4 with 8 GB of space.
The metaheuristics and source code are the same as those used in
previous experiments, but recompiled to run on the embedded sys-
tem. Thus, the computer platform is the only difference between
this experiment and the previous experiment.

Each metaheurstic was run 10 times, to provide more reliable
results. The Average Runtime of the device used was 1480.198 s
for the PSO-PART15_ITE15 and 1364.898 s for GA-IND10_GEN25.
Fig. 12 compares the Average Runtime using Raspberry PI with
the use of similar external Control Station platform.

This comparison shows that it is not possible to run the meta-
heuristics in the embedded platform, since the running time will
be longer than the maximum limit required. This occurred because
of the high processing power required to run the metaheuristics.

Therefore, the AdEn system was kept as it is in the original pro-
posal. In other words, OPTIC element remains running in the Con-
trol Station while CollAct element remains embedded in UAVs.

5.3. Pesticide spraying with route correction adapted to weather
conditions

This section evaluated three metaheuristic variations for opti-
mizing the routeChangingFactor parameter optimization: (i) GA-
IND10_GEN25; (ii) PSO-PART15_ITE15; e (iii) PSO-PART5_ITE20.
The first two resulted from evaluations performed in this paper
and the third was proposed by Faiçal et al. (2014a). The weather
conditions used to evaluate the accuracy of the deposition of the
pesticide were as follows: (i) constant wind speed – 10 km/h and
20 km/h; and (ii) direction of constant wind is in the transverse
to the UAV route. A Constant Light Wind (CLW) for a speed of
10 km/h and Constant Moderate Wind (CMW) for a speed of
20 km/h were adopted (Faiçal et al., 2014b). These and other envi-
ronmental characteristics are listed in Table 1. It should be noted
that the experiments performed in this evaluation stage were
repeated 10 times.

The intensity of route correction with the worst fitness for each
weather condition was selected for the pesticide spraying. In the
case of a tie between the values with the worst fitness, the choice
was made at random. By using this approach, it was possible to
analyze the worst case scenario that each metaheuristic could pro-
vide for pesticide spraying, and the results with the lowest
accuracy.

5.3.1. Optimization of the routeChangingFactor parameter
In the experiments for the optimization of the intensity of the

route setting using the GA-IND10_GEN25, PSO-PART15_ITE15
and PSO-part5_ITE20 metaheuristics, each metaheuristic was run
in the control station for both types of weather conditions (CLW
and CMW). The performance and behavior of each metaheuristic
in both these conditions are listed in Table 6.



Fig. 11. Embeddable device used as a computing platform to run the PSO-PART15_ITE15 and GA-IND10_GEN25 metaheuristics to optimize the routeChangingFactor
parameter. This evaluation investigates whether the metaheuristics can be embedded in the UAV to reduce the rate of communication with the Control Station.

Fig. 12. A comparison between the Average Runtime of the metaheuristics running
on the Station Control and on the Raspberry PI. The difference was confirmed with
95% of statistical significance.
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The metaheuristics evaluated showed a maximum convergence
rate (1.0) and an average execution time suitable for the CLW envi-
ronment. These results indicate that all the evaluated solutions are
suitable for the optimization of the routeChangingFactor parameter
in this weather. However, for the CMW environment, only GA-
IND10_GEN25 reached the maximum convergence rate. The
behavior presented by GA-IND10_GEN25 shows an improved sta-
bility in different weather conditions, thus being the most reliable
for use in AdEn system.

Fig. 13 shows the parameter values obtained by the metaheuris-
tics for different weather conditions. In the graphics, the columns
represent the environment (CLW and CMW) and the rows the
metaheuristics (PSO-PART5_ITE20; PSO-PART15_ITE15 e GA-
IND10_GEN25). Fig. 13(a), (c), and (e) shows a larger interval of
values for the same accuracy in the CWL environment, between
the 3.343 and 6.616. On the other hand, Fig. 13(b), (d) and (f) sug-
gests that, for the CMW weather condition, the search space is less
complex, as indicated by the smaller range of values, between.561
and 3.660 and the best accuracy value found in the experiments.
GA-IND10_GEN25 was the only metaheuristic able to keep the
convergence rate at 100% for the range of values that provided
the best adjustment for the route correction.
5.3.2. Evaluation of pesticide spraying accuracy
The proposed system was validated by evaluating the accuracy

of pesticide spraying when the routeChangingFactor parameter is
Table 6
Optimization results for routeChangingFactor parameter with the GA (IND10_GEN25) and P
light wind (CLW) and constant moderate winds (CMW) – 10 km/h and 20 km/h).

Weather Metaheuristic Settings

CLW PSO PART5_ITE20
CLW PSO PART15_ITE15
CLW GA IND10_GEN25
CMW PSO PART5_ITE20
CMW PSO PART15_ITE15
CMW GA IND10_GEN25
adapted to weather conditions. A simulated assessment was car-
ried out to preserve the integrity of the equipment and comply
with the first validation of the proposal. This approach is com-
monly used in robotics, where the first validation is carried out
using simulation to identify and resolve potential problems before
being actually implemented and deployed in the field (Bergamini
et al., 2009; Colesanti et al., 2007; Malekzadeh et al., 2011).

The simulation performed produced an deposition matrix as the
result of the pulverization process. The deposition is measured by
the amount of particles and the proximity to the target region
(Faiçal et al., 2014b), which enables the evaluation of the spraying.
It is important to observe that the experiments are performed with
stochastic variables to approach a realistic actual behavior. These
variables are not used for the parameter optimization phase (mak-
ing it a deterministic environment), to make the comparison
between the different intensities as fair as possible (since they
are evaluated with the same environment).

As previously described, after the adaptation of routeChang-
ingFactor parameter, the UAV sprays one target sub-area with route
correction. The purpose of this experiment is to evaluate the spray-
ing accuracy using the intensities indicated by each metaheuristic
(PSO-PART5_ITE20; PSO-PART15_ITE15 and GA-IND10_GEN25). To
have more robust results, 70 repetitions were performed for the
worst intensity indicated by each metaheuristic. The experiments
use different stochastic The metaheuristics presented a similar
behavior for the CLW weather conditions.

Fig. 14 shows the percentage of pesticides deposited in the tar-
get sub-area (when sprayed correctly) for different approaches
investigated in the literature and in this paper. It shows the
increase in the accuracy of the pesticide spraying obtained by the
proposed approach, when compared with the other approaches
from the literature. The results from the PSO-PART15_ITE15 meta-
heuristic presented more compact quartiles and with a higher
median, when compared with the previously proposed PSO-
PART5_ITE20. They also show a spraying accuracy improvement
when PSO as configured by Grid Search. Finally, GA-
IND10_GEN25 presented a spraying accuracy higher to the other
metaheuristics. The authors believe that the best results were
obtained due to the stability in the Convergence rate, despite the
complexity of the weather conditions investigated.
SO (PART5_ITE20; PART15_ITE15) metaheuristics in all-weather conditions (constant

Average Runtime (s) Total Ratings

30.705 ± 0.506 1.0
65.165 ± 1.478 1.0
63.031 ± 0.787 1.0
28.697 ± 0.361 0.2
63.112 ± 0.340 0.8
59.637 ± 0.086 1.0



(a) PSO-PART5_ITE20 in Constant Light Wind. (b) PSO-PART5_ITE20 in Constant Moderate Wind.

(c) PSO-PART15_ITE15 in Constant Light Wind. (d) PSO-PART15_ITE15 in Constant Moderate Wind.

(e) GA-IND10_GEN25 in Constant Light Wind. (f) GA-IND10_GEN25 in Constant Moderate Wind.

Fig. 13. The values indicated by the metaheuristic for the routeChangingFactor parameter. The red dots represent the indicated values that are contained in a range of values
that resulted in the best Fitness found among all the optimizations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14. The degree of pesticides correctly deposited on the targeted sub-area for each solution in CMWweather conditions. It is important to observe that GA-IND10_GEN25,
proposed in this study, found a more appropriate intensity to weather in all its executions. This result exceeds the efficiency of the solutions found in the literature.

Table 7
P-values smaller than 0.05 indicate a statistically significant difference between the
sample groups. The Wilcoxon test indicates that the accuracy achieved by GA-
IND10_GEN25 was better, with statistical significancy, than PSO in both settings.

Wilcoxon Rank Sum Test

PSO-PART5_ITE20 PSO-PART15_ITE15
PSO-PART15_ITE15 0.130 –
GA-IND10_GEN25 0.000 0.000
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Statistical tests were conducted to evaluate the obtained
results. Initially, the Shapiro-Wilk method was used to verify the
adequacy of the sample sets and normal distribution and, hence,
to define if parametric or non-parametric methods should be used.
The sample sets resulted in a p-value smaller than 0.05. Thus, the
normal distribution hypothesis was rejected and the Wilcoxon
method was used for the statistical analysis. Therefore, paired
comparisons using the Wilcoxon rank sum test (see Table 7) were
made to check whether there is a statistically significant difference
between the sample sets. Despite the apparent improvement in
accuracy when using the PSO-PART15_ITE15 rather than PSO-
PART5_ITE20, it is not possible to assume that there is a statisti-
cally significant difference between the results obtained. On the
other hand, the Wilcoxon test indicates that the accuracy in the
spray provided by GA-IND10_GEN25 is better, with statistical sig-
nificance, than the other metaheuristics evaluated (PSO in both
settings).
According to the experimental results, GA-IND10_GEN25 seems
to be a better caption for the AdEn system. This metaheuristic
allowed high-precision spraying in a more complex environment
for adaptation of the route correction system. Furthermore, the
routeChangingFactor parameter optimization process was more
stable with the use of the GA-IND10_GEN25 than with any of the
other metaheuristic analyzed.
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6. Conclusion and future work

This paper proposes AdE, a system that can adapted the route
correction rules of a UAV pesticide spray in different weather con-
ditions. This system consists of two elements: (i) CollAct, which is
responsible for checking the weather of the crop field and updating
the routeChangingFactor parameter defined in the UAV’s control
system; and (ii) OPTIC, responsible for optimizing the routeChang-
ingFactor parameter to adjust the intensity of the route correction
according to the sensored weather conditions.

During the AdEn system design, the importance of an efficient
optimization process was observed Thus, when validating the pro-
posal and evaluating the progress made, four metaheuristics were
assessed as components of the AdEn system. The accuracy of the
pesticide spray provided by the values optimized with these meta-
heuristics was evaluated.

The results of the experiments demonstrated that the proposed
AdEn system presented a good performance in the tested scenario,
since it uses the control station to process most of the workload.
Furthermore, the proposed metaheuristic, GA-IND10_GEN25 (set
by the Grid Search technique), was shown to be more efficient
and stable than other solutions found in the literature.

In addition to the good results and progress achieved in this
work, it opened up several opportunities for further studies, such
as: (i) the development of a computer model for pesticide spraying
with lower computational costs; (ii) the optimization of other
parameters (e.g. height and speed of the UAVs) to reduce errors
in pesticide deposition; (iii) investigation of specific characteristics
of optimization techniques for dynamic environments (Alba et al.,
2013; Yang and Yao, 2013); (iv) an investigation of the scalability
of the proposed system for implementing a fully-featured proto-
type model; (v) study on the suitability of different dispersion
models to make the most accurate computer model the real
environment.
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