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Abstract 

This paper studies the Newsvendor problem for a setting in which (i) the demand is temporally correlated, 
(ii) the demand is censored, (iii) the distribution of the demand is unknown. The correlation is modeled as 
a Markovian process. The censoring means that if the demand is larger than the action (selected inventory), 
only a lower bound on the demand can be revealed. The uncertainty set on the demand distribution is given 
by only the upper and lower bound on the amount of the change from a time to the next time. We propose 
a robust approach to minimize the worst-case total cost and model it as a min-max zero-sum repeated game. 
We prove that the worst-case distribution of the adversary at each time is a two-point distribution with non-
zero probabilities at the extrema of the uncertainty set of the demand. And the optimal action of the 
decision-maker can have any of the following structures: (i) a randomized solution with a two-point 
distribution at the extrema, (ii) a deterministic solution at a convex combination of the extrema. Both above 
solutions balance the over-utilization and under-utilization costs. Finally, we extend our results to uni-
model cost functions. 

Keywords 
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1.   Introduction 
Newsvendor problem or perishable inventory control problem has been a research topic for many years (Arrow 1951).  
The newsvendor model relates by analogy to the situation faced by a newspaper vendor who must decide on how 
many newspapers to stock since he doesn’t know how many demand (customer) he might have, and he knows that the 
leftover newspapers cannot be sold the next day (it is perishable in some sense). Since then, different solutions under 
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different assumptions have been presented. One of the approaches to tackle such a challenge is formulating the 
problem as a robust optimization problem. For a complete literature review on robust optimization and its application 
in inventory control problems, we refer to Gabrel 2014 and Xin 2015a. Most of the works in the literature focus on 
the fully observable demand with ambiguous distribution (e.g. See 2010, Xin 2013). Among them, some of the works 
assume the demand is independent and identically distributed (i.i.d.) at different time periods (e.g. Ding 2002, See 
2009, Solyali 2016). Some other works (such as Negoescu 2008, Besbes 2013) consider the case where the demand 
distribution is i.i.d but unknown, and to solve such a problem, they propose a learning process to estimate the 
distribution and make the decision. In recent years, it has been observed that the demand distribution is not necessarily 
i.i.d and it can have correlation over time (Xin 2015b, Carrizosa 2016, Natarajan 2017, Tai 2016). For example, In 
Xin 2015b, the Martingale demand is considered and the minimax optimal policy is explicitly computed in a closed 
form. Hu 2016 studied the inventory control problem with Markov-modulated demand. In Carrizosa 2016, a robust 
approach is proposed for the Newsvendor problem with auto regressive (AR) demand with an unknown distribution. 
Using numerical experiments, they show that the proposal usually outperforms the previous benchmarks in terms of 
robustness and the average revenue. The distributionally robust version of the inventory problems over the set of 
distributions satisfying the known information, which is usually mean and covariance of demand, is studied in 
Natarajan 2017. The authors show that a three-point distribution achieves the worst-case expected profit and derive a 
closed-form expression for the problem.  

Note that in most of these studies, the demand is assumed to be fully observed. However, there are some research 
papers which study the inventory control problem with censored (partially observed) and temporally correlated 
demands (non i.i.d.) (e.g. Lu 2008, and Bisi 2011). In these works, a Bayesian scheme is employed to dynamically 
update the demand distribution for the newsvendor problem with a storable or perishable inventory. As another 
example, in Bensoussan 2007, a perishable inventory management problem with a memory (Markovian with known 
transition probabilities) and partially observable demand process is considered. In our previous work (Mansourifard 
2017), we studied a Newsvendor problem with Markovian and censored demand, with the assumption that the 
transition probabilities are known, as well. In this paper, we extend the work to the case where the transition probability 
matrix is unknown and only the upper and lower bounds are given.  

The contribution of this paper is as follows:  

•   To our knowledge, this paper is the first work tackling the robust newsvendor problem with temporally 
correlated demand with censored demand, and we use a game theoretic approach in our solution. We model 
this problem as a zero-sum repeated game with incomplete information (Sorin 2002, Zamir 1992) and derive 
the solution in a closed-form. 

•   We prove that the worst-case distribution of the adversary at each time is a two-point distribution with non-
zero probabilities at the lower and upper bound of the uncertainty set.  

•   The optimal action to minimize the worst-case cost-to-go can have be any of the following two formats: (i) 
a randomized solution with a two-point distribution at the lower and upper bound of the uncertainty set, (ii) 
a deterministic solution at a convex combination of the lower and upper bounds of the uncertainty set 

•   Both the possible solutions balance the over-utilization and under-utilization costs. In other words, if the 
over-utilization cost is larger than the under-utilization cost, the decision-maker assigns a higher probability 
to the lower bound (for the solution (i)) or chooses a lower action (for the solution (ii)) to behave 
conservatively. Otherwise, he behaves more aggressively to increase the chance of getting full observation 
which can be useful in decreasing the future cost.  

•   We also show that similar results hold for a more general class of cost functions that are uni-model on the 
difference between the demand and the action. 

2.   Problem Formulation 
We consider a single-item multi-period Newsvendor problem. The newsvendor model is a mathematical model in 
operations management and applied economics that is used to decide about the optimal inventory level (action) and it 
is typically assumes that the prices are fixed and the demand is uncertain for a perishable product. The decision-maker 
must select the action (e.g. inventory) 𝑟"	  to satisfy the demand 𝑎" where 𝑡 = 1, … , 𝑇 is the time step with the finite 
horizon 𝑇. The goal of the decision maker is to minimize the total expected cost over the horizon.  

In this paper, we assume the demand 𝑎" is temporally correlated over time as a Markovian random process given by 
𝑎" = 𝑎"+, + 𝛿" with 𝛿"as a linear transition of the demand from time step 𝑡 − 1 to 𝑡. In general, we have no 
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information about 𝛿", however, we assume that is bounded as 𝛿" ∈ {−𝛿"2, … , 0, … , 𝛿"4} where −𝛿"2, 𝛿"4 are the lower 
and upper bound on the transition, respectively.  

As mentioned before, the demand is not necessarily fully observed at each time step. Thus, we consider the case of 
censored inventory problem in which at each time 𝑡, if 𝑟" > 	   𝑎", the decision-maker gets a full observation about 𝑎", 
and if 𝑟" ≤ 	   𝑎", only partial observation about 𝑎"	  reveals (i.e. 𝑎" is censored).  

For a given demand 𝑎" and a selected action 𝑟", the decision maker faces an immediate cost as: 

𝐶 𝑎", 𝑟" =
𝑐: 𝑟" − 𝑎" 	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟" > 𝑎"
𝑐2 𝑎" − 𝑟" 	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟" ≤ 𝑎"

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (1)	  

where 𝑐: and 𝑐2 are over-utilization and under-utilization cost coefficients, respectively. The goal is to minimize the 
total expected cost accumulated over the finite horizon. Since the demand is unknown, this goal could be formulated 
as a min-max optimization problem: 

𝐶,∗	   𝑟,2	  , 𝑟,4 = min
CDE,…,CDF

	  	  	   max
ℙJE,…,ℙJE

𝔼LM𝔼NM 𝐶 𝑎", 𝑟" 𝐹" ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2)
Q

"R,

  

where 𝐹" is the information available to the player before time 𝑡, 𝕡LM and 𝕡NM are probability distribution functions 
(PDFs) of the action and the demand at time 𝑡, respectively. Since the transition of the demand is bounded, the action 
would also be bounded in [𝑟"2 , 𝑟"4]. Let	  𝐶"∗ (𝑟"2 , 𝑟"4) indicate the min-max expected cost-to-go from time 𝑡 onward 
where 𝐶,∗ (𝑟,2 , 𝑟,4) is given by (2). 

After taking the action 𝑟" and the observation revealed about the demand, the bounds on the actions can be updated 
for the next time step:  

𝑟"T,2 	  =
𝑎"−𝛿"2	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟" > 𝑎"
𝑟"−𝛿"2	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟" ≤ 𝑎"

 

rVT,W 	  = aV+δVW	  	  	  	  	  	  	  	  	  	  if	  rV > aV
rVW+δVW	  	  	  	  	  	  	  	  	  	  	  if	  rV ≤ aV

 

Now, the goal is to find the best actions 𝑟"∗ that achieves the min-max at (2). Fig. 1 shows an example of the demand 
path and the sequence of the taken actions with the corresponding costs and the bounds on the actions. 

 
Fig. 1. An example of the demand path and the sequence of the taken actions. 
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3.   The Game Theoretic Approach 
This can be modeled as a game between the adversary and the decision-maker. The sufficient statistic for 𝐹" at each 
time step 𝑡, is the support {𝑟"2 , 𝑟"4} and the adversary chooses the probability distribution of 𝑎" ∈{𝑟"2 , 𝑟"4} to maximize 
the expected cost-to-go for the selected distribution of the action 𝑟". The solutions are given in the following theorem 
(and we prove them using induction):  

Theorem 1-a) The worst-case distributions 𝕡N" are two-point distributions with non-zero probabilities at 𝑟"2 and 𝑟"4 , 
for all 𝑡	   = 	  1, … , 𝑇. And there are two possible solution to the min-max problem: 

1.   𝑟"∗ =
Z[LM

\T]MLM
^

Z[T]M
	   , 𝑝LM 𝑟"

∗ = 1,	  and	  	  𝑝NM can be any two-point distribution at extrema	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2.   𝑝LM 𝑟"
2 = 1 − 𝑝LM 𝑟"

4 = Z[
Z[TZ\

,	  	  and	  

𝑝NM 𝑎"
2 = 1 − 𝑝NM 𝑎"

4 =
𝑦"

𝑐: + 𝑦"
,	   

where,	  

𝑦" = 𝑐2 +
𝑐:𝑦"T,
𝑐: + 𝑦"T,

	   , ∀𝑡 = 1, … , 𝑇 − 1  

𝑦Q = 𝑐2.	  

Theorem 1-b) The min-max cost-to-go at time 𝑡 is obtained as: 

𝐶"∗ 𝑟"2, 𝑟"4 = 𝐶"∗ 𝑟"4 − 𝑟"2 = ∆"T, +
𝑐:𝑦"
𝑐: + 𝑦"

𝑟"4 − 𝑟"2 ,  

where, 

∆"= ∆"T, +
𝑐:𝑦"
𝑐: + 𝑦"

𝛿"4 + 𝛿"2 , ∀𝑡 = 1, … , 𝑇 − 1,	  

∆"=
𝑐:𝑦"
𝑐: + 𝑦"

𝛿"4 + 𝛿"2 .	  

Proof: 

We use induction to prove the both parts of the Theorem 1. First, at horizon 𝑇, we need to solve the single-period 
version of this problem: 

min
ℙDF

max
ℙJF

𝔼LF𝔼NF 𝐶 𝑎Q, 𝑟Q = 𝔼LF[ 𝑐: 𝑟Q − 𝑥 𝑝NF
LF

fRLF
\

𝑥 𝑑𝑥 + 𝑐2 𝑥 − 𝑟Q 𝑝NF 𝑥 𝑑𝑥].
LF
^

fRLF
	  

The PDF maximizing the above equation is a two-point distribution where only 𝑝NF(𝑟Q
2 ) and 𝑝NF(𝑟Q

4) are non-zero. 
Fig. 2 shows the graph of the cost functions for all 𝑎 and any two pairs of 𝑟, 𝑟i ∈ [𝑟Q2  , 𝑟Q4]. As it is obvious, for any 
pair of 𝑟, 𝑟i, the values of 𝑎 that can affect the min-max cost are 𝑎 = 𝑟Q2 	  and 𝑎 = 𝑟Q4 since their corresponding cost 
functions are included in the upper bound of the costs. Therefore, we can ignore any adversary actions inside the 
bounds, i.e.	  𝑎 ∈ (𝑟Q2 	  , 𝑟Q4) which confirms that the distribution is two-point at horizon. 
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Fig.2. The cost functions 𝑋𝐶# 𝑎, 𝑟 + 1 − 𝑋 𝐶# 𝑎, 𝑟* ; WLOG assume 𝑟 < 𝑟*, 𝑋 =
./0(2

3)
./0 2 5./0(2

3)
 

Now to find the best action of the decision-maker at horizon, we plot the graph of the cost functions for different 
values of	  𝑟 in Fig. 3, and find the randomized action with the best probability density of 𝑝80 𝑟#

9 = 𝑥 and 𝑝80 𝑟#
; =

1 − 𝑥 or the best deterministic action 𝑟#∗.  

For both possible actions, the expected cost can be computed as: 

𝐶#∗ 𝑟#9 , 𝑟#; = =>=?
=>5=?

𝑟#; − 𝑟#9 . 

 

Fig. 3. The cost functions 𝑋𝐶#(𝑟#9 ,r)+ 1 − 𝑋 𝐶# 𝑟#;, 𝑟 ; 	  𝑋 =
.@0(20

A)
.@0 20A 5.@0(20

> )
 . The optimal distribution of player could have non-

zero probabilities at 𝑟 ∈ {𝑟#9 , 𝑟#∗, 𝑟#;} 

Now for time steps 𝑡 = 1, … , 𝑇 − 1, we use induction to find the best action distributions (or best deterministic action) 
and the worst-case adversary distributions. If the solutions are valid for 𝑡	   + 	  1, for time 𝑡 we have: 
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min
ℙ/0

max
ℙ@0

𝔼2O[ 𝑐R 𝑟S − 𝑥 𝑝8O
2O

TU2O
>

𝑥 𝑑𝑥 + 𝑐9 𝑥 − 𝑟S 𝑝8O 𝑥 𝑑𝑥
2O
A

TU2O
	  

+ 𝑝8O 𝑥 𝐶S5W∗ 𝑥 − 𝛿S5W9 , 𝑥 + 𝛿S5W; 𝑑𝑥
2O

TU2O
>

	  

+ 𝑝8O 𝑥 𝑑𝑥. 𝐶S5W∗ 𝑟S − 𝛿S5W9 , 𝑟S; + 𝛿S5W; ]
2O
A

TU2O
  

Since 	  𝐶S5W∗ 𝑦, 𝑧 = 𝐶S5W∗ 𝑧 − 𝑦 = ∆S5^ +
=?_O`a
=?5_O`a

𝑧 − 𝑦 ,	  

min
ℙ/O

max
ℙ@O

𝔼2O[ 𝑐R 𝑟S − 𝑥 𝑝8O
2O

TU2O
>

𝑥 𝑑𝑥 + 𝑐9 𝑥 − 𝑟S 𝑝8O 𝑥 𝑑𝑥
2O
A

TU2O
  

+ 𝑝8O 𝑥 𝑑𝑥. (∆S5^ +
𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝛿S5W9 + 𝛿S5W; )
2O

TU2O
>

	  

+ 𝑝8O 𝑥 𝑑𝑥. (∆S5^ +
𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝑟S; − 𝑟S + 𝛿S5W9 + 𝛿S5W; )]
2O
A

TU2O
  

= ∆S5W + minℙ/O
max
ℙ@O

𝔼2O[ 𝑐R 𝑟S − 𝑥 𝑝8O
2O

TU2O
>

𝑥 𝑑𝑥 + 𝑐9 𝑥 − 𝑟S 𝑝8O 𝑥 𝑑𝑥
2O
A

TU2O
  

+ 𝑝8O 𝑥 𝑑𝑥.
𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝑟S; − 𝑟S ]
2O
A

TU2O
	  

In other words, 

𝐶S∗ 𝑟S9, 𝑟S; = ∆S5W + minℙ/O
max
ℙ@O

𝔼2O𝔼8O[𝐶S
* 𝑎S, 𝑟S ], 

where, 

𝐶S* 𝑎S, 𝑟S =
𝑐R 𝑟S − 𝑎S 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟S > 𝑎S
𝑐9 𝑎S − 𝑟S +

𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝑟S; − 𝑟S 	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟S ≤ 𝑎S
	  

As it is shown in Fig. 4, we can ignore the adversary actions of 𝑎 ∈ (𝑟S9	  , 𝑟S;). Now to find the best distributions of the 
decision-maker, in Fig. 5 we plot the graph of the cost functions for different values of 𝑟 and find the best probability 
density for 𝑝8O 𝑟S

; = 𝑋	  and	  𝑝8O 𝑟S
9 = 1 − 𝑋. 
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Fig. 4. The cost functions 𝑋𝐶S*(𝑎, 𝑟) + 1 − 𝑋 𝐶S* 𝑎, 𝑟* ; WLOG assume  𝑟 < 𝑟*,	  𝑋 =
./O(2

3)
./O 2 5./O(2

3)
 Note that to get the actual cost 

function we should add all of them by	  ∆S5W. 

 
Fig. 5. The cost functions	  𝑋𝐶S*(𝑟S9,r)+ 1 − 𝑋 𝐶S* 𝑟S;, 𝑟 ; 	  𝑋 = 𝑝8O 𝑟#

; = 1 − 𝑝8O(𝑟S
9). The optimal distribution of player could have 

non-zero probabilities at 𝑟 ∈ 𝑟S9, 𝑟#∗, 𝑟S; . 

And the worst-case distribution is a two-point distribution at 𝑟S9 and 𝑟S;. Therefore: 

 

𝐶S∗ 𝑟S9, 𝑟S; = 𝑝8O 𝑟S
9 𝑐R 𝑟S∗ − 𝑟S9 + (1 − 𝑝8O 𝑟S

9 )𝑐9(𝑟S; − 𝑟S)  

+𝑝8O 𝑟S
9 ∆S5^ +

𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝛿S5W9 + 𝛿S5W; 	  
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+ 1 − 𝑝8O 𝑟S
9 ∆S5^ +

𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝑟S; − 𝑟S∗ + 𝛿S5W9 + 𝛿S5W;   

= 𝑝8O 𝑟S
9 𝑐R 𝑟S∗ − 𝑟S9 + 1 − 𝑝8O 𝑟S

9 𝑐9 +
𝑐R𝑦S5W
𝑐R + 𝑦S5W

𝑟S; − 𝑟S + ∆S5^  

= 𝑝8O 𝑟S
9 𝑐R 𝑟S∗ − 𝑟S9 + 1 − 𝑝8O 𝑟S

9 𝑦S 𝑟S; − 𝑟S + ∆S5^  

= 𝑐R 𝑟S∗ − 𝑟S9 + ∆S5^.	  

which results in the optimal actions given in Theorem 1-a and the min-max expected cost given in Theorem 1-b, thus 
completes the proof of Theorem 1. 

4.   Extension of Cost Function 
We can get similar results for general form of uni-modal cost functions, given by: 

𝐶 𝑎S, 𝑟S =
𝐶R 𝑟S − 𝑎S 	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟S > 𝑎S
𝐶9 𝑎S − 𝑟S 	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑟S ≤ 𝑎S

	  

where 𝐶R 𝑦 and 𝐶9 𝑦 	  are increasing functions of 𝑦. 

Lemma 1-a) The worst-case distribution at all time steps 𝑡	   = 	  1, … , 𝑇 are two-point distributions 

𝑝8O(𝑟S
9) ≠ 0 and 𝑝8O(𝑟S

;) ≠0. 

Lemma 1-b) The min-max expected cost has the following property: 𝐶S∗ (𝑦 + 𝑥, 𝑧 + 𝑥) 	  = 𝐶S∗ (𝑦, 𝑧). 

Proof: 

The min-max cost-to-go at time 𝑡 is given by: 

𝐶S∗ 𝑟S9, 𝑟S; = min
2O

max
ℙ@O

𝑝8O 𝑥 [𝑐R 𝑟S − 𝑥 + 𝐶S5W∗ (𝑥 − 𝛿S9, 𝑥 + 𝛿S;)]
2O

TU2O
>

𝑑𝑥  

+ 𝑝8O 𝑥 [𝑐9 𝑥 − 𝑟S + 𝐶S5W∗ (𝑟S − 𝛿S9, 𝑟S; + 𝛿S;)]
2O
A

TU2O
𝑑𝑥	  

At horizon 𝑇	  the worst-case distribution is a two-point distribution and: 

𝑟#∗ = {𝑟: 𝐶R 𝑟 − 𝑟#9 = 𝐶9 𝑟#; − 𝑟 }	  

and the expected cost equals: 

𝐶#∗ 𝑟#9 , 𝑟#; = 𝐶9 𝑟#;, 𝑟#∗ = 𝐶R 𝑟#∗, 𝑟#9 .	  

This shows that Lemma 1 is true at	  𝑡	   = 	  𝑇, now if it is true at	  𝑡	   + 	  1, for time 𝑡 we have: 

𝐶S∗ 𝑟S9, 𝑟S; = min
2O

max
ℙ@O

𝑝8O 𝑥 [𝑐R 𝑟S − 𝑥 + 𝐶S5W∗ (𝑟S9 − 𝛿S9, 𝑟S9 + 𝛿S;)]
2O

TU2O
>

𝑑𝑥  

+ 𝑝8O 𝑥 [𝑐9 𝑥 − 𝑟S + 𝐶S5W∗ (𝑟S − 𝛿S9, 𝑟S; + 𝛿S;)]
2O
A

TU2O
𝑑𝑥	  

where we replace 𝑥 at 𝐶S5W∗ 𝑥 − 𝛿S9, 𝑥 + 𝛿S;  with 𝑟S9. From the above equation, it is obvious that: (i) the worst-case 
distribution is a two-point distribution, and (ii) if we add a fixed value to 𝑟S9 and 𝑟S;	  the minimizing	  rt will be added 
with the same amount and thus 𝐶S∗ (𝑟S9+𝑥; 𝑟S; +𝑥) = 𝐶S∗ (𝑟S9, 𝑟S; ) for any 𝑥. 

And recursively: 
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𝑟S∗ = {𝑟: 𝐶9 𝑟S; − 𝑟 +𝐶S5W∗ 𝑟 − 𝛿S9, 𝑟S; + 𝛿S; = 𝐶R 𝑟 − 𝑟S9 + 𝐶S5W∗ 𝑟S9 − 𝛿S9, 𝑟S9 + 𝛿S; }	  

or a randomized solution as follows: 

𝑝2O 𝑟S
9 = 1 − 𝑝2O 𝑟S

; =
𝑟S; − 𝑟S∗

𝑟S; − 𝑟S9
,	  

Or any combination of non-zero probabilities at	  𝑟S ∈ {𝑟S9, 𝑟S∗, 𝑟S;} which proves Lemma 1-a. And the expected cost 
equals:  

𝐶S∗ 𝑟S9, 𝑟S; = 𝐶9 𝑟S; − 𝑟S∗ +𝐶S5W∗ 𝑟S∗ − 𝛿S9, 𝑟S; + 𝛿S; = 𝐶R 𝑟S∗ − 𝑟S9 + 𝐶S5W∗ 𝑟S9 − 𝛿S9, 𝑟S9 + 𝛿S; .	  

This proofs Lemma 1-b. 

5.   Conclusion 
We have studied the Newsvendor problem with the following challenges: (i) the demand is temporally correlated as a 
Markovian process, (ii) the demand can only be censored (i.e. partially observable), (iii) the distribution of the demand 
and the transition probabilities of the Markovian process are unknown and only upper and lower bounds on the 
transitions are given. We modeled this problem as a min-max zero-sum repeated game. We have proved that the worst-
case distribution of the adversary at each time is a two-point distribution with non-zero probabilities at the lower and 
upper bound of the uncertainty set. The optimal action to minimize the worst-case cost-to-go can have be any of the 
following two formats: (i) a randomized solution with a two-point distribution at the lower and upper bound of the 
uncertainty set. If the over-utilization cost is larger than the under-utilization cost, higher probability is assigned to the 
lower bound to behave conservatively. Otherwise, higher probability is assigned to the upper bound to behave more 
aggressively and increase the chance of full observation. (ii) a deterministic solution at a convex combination of the 
lower and upper bounds of the uncertainty set, which also balance the over-utilization and under-utilization costs. 
Finally, we showed that similar results hold for a more general class of cost functions that are uni-model on the 
difference between the demand and the action. 

Acknowledgements 
This work was supported in part by the U.S. National Science foundation under ECCS-EARS awards numbered 
1247995 and 1248017, by the Okawa foundation through an award to support research on “Network Protocols that 
Learn”. Parisa Mansourifard was supported by AAUW American Dissertation Completion Fellowship for 2015-2016.  

References 
Arrow, K. J., Harris, T., and Marschak, J., “Optimal inventory policy,” Econo-metrica: Journal of the Econometric 

Society, pp. 250–272, 1951.  
Zamir, S., “Repeated games of incomplete information: Zero-sum”, Handbook of Game Theory with Economic 

Applications, vol. 1, pp. 109-154, 1992. 
Ding, X., Puterman, M. L., Bisi, A., “The censored newsvendor and the optimal acquisition of information”, 

Operations Research, vol. 50, no. 3, pp. 517–527, 2002. 
Sorin, S., “A first course on zero-sum repeated games”, Springer Science & Business Media, vol. 37, 2002. 
Negoescu, D., Frazier, P., Powell, W., “Optimal learning policies for the newsvendor problem with censored demand 

and unobservable lost sales”, URL: http://people.orie.cornell.edu/pfrazier/pub/learning-newsvendor.pdf, 2008. 
Lu, X., Song, J., Zhu, K., “Analysis of perishable-inventory systems with censored demand data”, Operations 

Research, vol. 56 no. 4, pp. 1034-1038, 2008. 
Bensoussan, A., Akanyıldırım, M. C¸ Sethi, S. P., “A multiperiod newsvendor problem with partially observed 

demand”, Mathematics of Operations Research, vol. 32, no. 2, pp. 322–344, 2007. 
Bisi, A., Dada, M., Tokdar, S., “A censored-data multi-period inventory problem with newsvendor demand 

distributions”, Manufacturing & Service Operations Management, vol. 13, no. 4, pp. 525-533, 2011. 
See, C.-T. and Sim, M., “Robust approximation to multiperiod inventory management”, Operations research, vol. 58, 

no. 3, pp. 583-594, 2010. 
Besbes, O., Muharremoglu, A., “On implications of demand censoring in the newsvendor problem”, Management 

Science, vol. 59, no. 6, pp. 1407-1424, 2013. 



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Paris, France, July 26-27, 2018 
	  

© IEOM Society International 

Gabrel, V., and Murat, C., and Thiele, A., “Recent advances in robust optimization: An overview”,  European journal 
of operational research, vol. 235, no. 3, pp. 471-483, 2014. 

Xin, L., “New approaches to inventory control: algorithms, asymptotics and robustness”, PhD. Thesis Georgia 
Institute of Technology, 2015a. 

Xin, L., and Goldberg, D. A., “Distributionally robust inventory control when demand is a martingale”, arXiv preprint 
arXiv:1511.09437, 2015b. 

Solyali, O., and Cordeau, J.-F., and Laporte, G., “The impact of modeling on robust inventory management under 
demand uncertainty”, Management Science, vol. 62, no. 4, pp. 1188-1201, 2015. 

Park, K., “Min-Max Stochastic Optimization with Applications to the Single-Period Inventory Control Problem”, 
Management Science & Financial Engineering, vol. 21, no. 1, 2015. 

Carrizosa, E., and Olivares-Nadal, A. V. and Ramrez-Cobo, P., “Robust newsvendor problem with autoregressive 
demand”, Computers & Operations Research, vol. 68, pp. 123-133, 2016. 

Mansourifard, P., Javidi, T., Krishnamachari, B., “Percentile Policies for Tracking of Markovian Random Processes 
with Asymmetric Cost and Observation”, arXiv preprint arXiv:1703.01261, 2017. 

Tai, A. H, Ching, WK, “Recent advances on Markovian models for inventory research”, International Journal of 
Inventory Research, vol. 3, no. 3, pp. 198-216, 2016. 

Hu, J., Zhang, Ch., Zhu, Ch., “(s, S) Inventory Systems with Correlated Demands”, INFORMS Journal on Computing, 
vol. 28, no. 4, pp. 603-611, 2016. 

Natarajan, K., and Sim, M., and Uichanco, J., “Asymmetry and ambiguity in newsvendor models”, Management 
Science, 2017. 

Qiu, R., and Sun, M., and Lim, Y. F., “Optimizing (s, S) policies for multi-period inventory models with demand 
distribution uncertainty: Robust dynamic programing approaches”, European Journal of Operational Research, 
vol. 261, no. 3, pp. 880-892, 2017. 

Biographies 
Parisa Mansourifard received the B.S. and M.S. in electrical engineering from Sharif university of technology, 
Tehran, Iran, in 2008 and 2010 respectively. She also the M.S. in computer science and Ph.D. in electrical engineering 
from University of Southern California, Los Angeles, CA, USA, in 2015 and 2017, respectively. During her Ph.D. 
she held Viterbi Dean fellowships in 2011-2014 and AAUW dissertation completion fellowship in 2015-2016. She is 
currently a data scientist at Supplyframe Inc. and a part-time lecturer at University of Southern California. Her research 
interest is decision-making under uncertainty, machine learning and stochastic optimization. 

Farzaneh Mansourifard is a master student at department of engineering and technology at Alzahra university, 
Tehran, Iran. She earned B.S. in industrial engineering from Tabriz university, Tabriz, Iran, 2016. Her research interest 
is optimization with the applications in healthcare and supply chain. 

Bhaskar Krishnamachari (M02 – SM14) received the B.E. degree in electrical engineering at The Cooper Union, 
New York, NY, USA, in 1998, and the M.S. and Ph.D. degrees from Cornell University, Ithaca, NY, USA, in 1999 
and 2002, respectively. He is currently Professor and Ming Hsieh Faculty Fellow in the Department of Electrical 
Engineering at the Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA. He is 
also the Director of the USC Viterbi School of Engineering Center on Cyber-Physical Systems and the Internet of 
Things. His primary research interest is in the design and analysis of algorithms, protocols, and applications for next-
generation wireless networks.  

 
 
 


