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Abstract—We formulate and address mathematically the fun-
damental problem of resource allocation in the form of helper
nodes in disseminating multiple content in a hybrid intermittently
connected mobile network under a general stochastic homoge-
neous contact process. We consider and solve two variations of
the problem - one in which the goal is to maximize the expected
demands satisfied and another in which the goal is to minimize
the time taken to disseminate the contents. Besides the global
optimization perspective, we also examine the problem from a
game theoretic perspective in which a central agent auctions
the storage to competing content providers, and show how self-
interested decisions impact the social welfare.

I. INTRODUCTION

With the increasing availability of Wifi-direct equipped mo-
bile devices and the planned introduction of wireless access for
vehicular environments (WAVE) radios in vehicles in the near
future, there is continuing interest in mobile applications involv-
ing encounter-based intermittently connected mobile networks
(ICMN), that can off-load the dissemination of delay-tolerant
content from the increasingly congested and expensive cellular
data infrastructure.

Hitherto most of the literature on ICMN’s (also referred to
as delay-tolerant networks (DTN)) has focused primarily on
a flat decentralized architecture. We argue that in the real-
world, whether deployed on personal mobile devices or in
vehicles, the omnipresent availability of cellular infrastructure
makes possible an alternative, hybrid two-tier ICMN archi-
tecture. Analogous to the OpenFlow architecture [14], such a
hybrid network would have separate control and data planes.
The control plane would provide low-overhead bidirectional
control messaging between devices and a server via the cellular
infrastructure that allows for centralized resource allocation.
The data plane would be where heavier amounts of data are
disseminated via the encounter-based ICMN.

The focus of this work is on optimizing multicast dissemina-
tion of multiple contents in such a hybrid network. Specifically,
we consider a central agent who has control over the storage
resources of a set of helper relay nodes in such a hybrid two-
tier network. A number of content providers are interested in
disseminating (multicasting) the file they each have from a set
of initial seed nodes to a set of demanding nodes for each
content in the network.

The fundamental question we explore in this work through
mathematical modeling under a general stochastic homoge-
neous encounter model is how should the agent most efficiently

allocate the helper nodes? We consider this question under two
different metrics — one that aims to maximize the number
of satisfied demands by a deadline, and another that aims
to minimize the time taken to satisfy all demands. And we
explore this question under two settings. Initially, we consider
a social welfare model where the agent is trying to maximize
the total utility for all content providers. While this is the typical
“engineering” approach to the problem, in the real world, the
content provider and the resource managing agent are often
different entities with differing interests. Therefore, we consider
an economic model where the agent is assumed to be self-
interested and trying to maximize its revenue from all content
providers, which in turn have to balance their gain in terms of
the content dissemination utility with the payment they must
make to the agent. Our game-theoretic model allows us to
examine the price of anarchy, the ratio between the total utility
achieved when the system is operated based on maximizing
revenue versus when the resources are allocated to maximize
social welfare.

The high delays and reliability issues associated with single-
copy routing in ICMN has motivated several researchers to
develop multi-copy dissemination approaches in which the
number of nodes assisting in relaying each content is either
limited statically or carefully adapted [22], [1], [3]. In terms
of the resource that is limited, many of these works emphasize
the bandwidth limitation of ICMN [22], [23], [1], but several
others have emphasized the storage limitation [18], [17], [20],
[13], as we also do in this work.

Our work is closest in spirit to RAPID [3], whose authors
make the important observation that efficient dissemination
in ICMN should fundamentally be formulated as a utility-
based resource allocation problem of how the limited storage
resources on the nodes should be managed towards maximizing
well-defined system objectives. They rightly distinguish their
work from prior literature as being the first where the resource
management has an intentional effect on desired performance
metrics related to average delay or delivery rate as opposed
to prior schemes that have only an incidental effect on these
metrics. Our work closely follows this top-down philosophy,
and we thus start by clearly identifying the relevant perfor-
mance metrics and then derive the optimal storage allocation
to maximize those metrics. However, our work is distinguished
from [3] in that they propose heuristic mechanisms and evaluate
them via simulations, while our objective here is to undertake a



2

theoretical treatment of the problem in order to study rigorously
the nature of optimal allocations under a well-defined, tractable,
mathematical model.

We derive mathematical expressions for computing the ex-
pected time to satisfy all demands and the expected number
of satisfied demands by a given deadline for a given helper
node storage allocation, under a homogenous stochastic en-
counter model with general inter-encounter time distribution.
Using this, we show how to compute the node allocation
that maximizes the social welfare under both metrics. We
show some interesting trends: for instance, helper nodes have
diminishing returns and are less effective at large deadlines, and
that increase in demand is actually beneficial in reducing the
expected delay in dissemination. We formulate the problem of
helper node allocation also from a game theoretic perspective
and show that when the central agent tries to maximize its profit
under a proportional allocation policy, the resulting system
generally has a price of anarchy greater than 1. We also
find that, somewhat counter-intuitively, a content provider with
lower demand may need to pay more to the agent.

II. RELATED WORK

There have been a number of works that have focused on a
mathematical treatment of content dissemination in DTN. We
briefly survey these here.

One of the first works to analyze message dissemination for
DTNs is [6]. It analyzes the expected delay in propagating a
single message in a DTN using Markov models. We follow
a similar approach of using Markov models, but our work
is a more general version of their’s - since we consider
dissemination of multiple files simultaneously (multi-content)
and each possibly to multiple nodes (multicast). Furthermore,
we also analyze the expected number of demands satisfied by
a deadline - a metric that might be useful for certain types of
content.

The work [6] lead to [26], where the authors characterize
the message delay approximately using ODEs. While we could
have used the ODE approximations rather than the Markov
model, we chose the latter because of the more general nature
of the Markov model.

In [21], the authors are primarily concerned with analyzing
the expected node inter-encounter durations for various mobil-
ity models, and for a more realistic mobility model that they
derive. In [11], the authors derive optimal policies for buffer
management because the amount of buffer and bandwidth is
limited. While the authors make use of a similar contact model
as well as similar metrics, their goal however is to decide when
to drop items from the buffer.

In [8], the problem of disseminating news and other dynamic
content to a mobile phone based ICMN is considered. It is
shown how to determine an optimal allocation of the bandwidth
of the service provider to maximize the social welfare of the
network, such that the content at the users is as fresh as possi-
ble. [2] has a similar flavor, but the goal is to design efficient
ways for distributing dynamic content when the participating
nodes could be either cooperative or non-cooperative.

Notation Meaning
N number of nodes in the system.
m Number of files/number of content providers.
[k] Equivalent to {1, . . . , k} for integer k.
nd,i, nh,i Number of demands and number of helper nodes allo-

cated for file i ∈ [m]
cd,i, ch,i Number of completed demands and number of com-

pleted helper nodes for file i ∈ [m] with 0 ≤ cd,i ≤
nd,i and 0 ≤ ch,i ≤ nh,i.

{Xj}∞1 Random variables denoting the inter-encounter times.
Ui Utility for content provider i ∈ [m].
A The transition matrix of content dissemination for a

fixed file of size nS × nS .
gτi (cd, ch) The probability that cd of the demanding nodes and ch

of the helper nodes (and not any more) have got the file
at encounter τ for file i ∈ [m].

TABLE I: List of variables used.

[15] and [9] are two works that consider optimal distributed
cache allocations strategies in ICMNs, along the lines of the
well-known square root replication scheme [4]. While [15] is
optimal at equilibrium, the convergence is not guaranteed; [9]
overcomes this issue. Even though [15], [9] and our work
share the similar objective (among others) of reducing access
delay to content, their problem formulation and the setting is
fundamentally different from ours.

Recently, DTNs have been started to be analyzed from a
game theoretic setting. The primary argument here is that the
helper (relay) nodes may be inherently selfish and so may not be
willing to relay content for other nodes. Some works consider
fully selfish nodes [25], [19], whereas others consider socially
selfish nodes [12] - where nodes may be willing to carry content
of other nodes depending on the social ties (for example, nodes
may prefer to help friends rather than strangers). In our work,
we do not consider fully autonomous nodes, but assume that a
central agent can control the nodes. We consider instead self-
interested content providers and a revenue-maximizing central
agent.

III. PROBLEM FORMULATION

The model we consider here has a central agent that has
control over allocating storage on a set of N nodes, and m
content providers with one file each. Each content provider is
interested in disseminating its file to some of the nodes that
may be interested in the content. All the nodes are assumed to
be homogeneous and are identical in their storage capabilities.

The central agent can get content (file) from the content
providers and can place them in one or more nodes, called
the seed nodes of the file (assume this is done offline). Let the
number of seed nodes for each file i be ns,i with ns,i ≥ 1. We
will assume for simplicity that the central agent places each
file onto different seed nodes. This is because we will be able
to decouple the analysis of the dissemination of different files.
Even if we assume that seed nodes store multiple files, all the
analysis should be extendable with suitable bookkeeping.

There are a set of demanding nodes for each file. Assume
that the number of demands for each file i is nd,i. The goal is
to get the file i to the nd,i demanding nodes.
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Since the total number of nodes is N , we would require∑m
i=1(ns,i + nd,i) ≤ N . Denote by nd =

∑m
i=1 nd,i the total

number of demand nodes, ns =
∑m
i=1 ns,i the total number of

seed nodes.
The remaining set of nodes, N−ns−nd in number are called

helper nodes as they can potentially help in the dissemination
of the files. Thus the number of helper nodes is nh = N −
ns − nd. We assume that each of these helper nodes help in
the dissemination of a single file (even though their storage
capacities may be much higher). The central agent uses the
control-plane prior to the dissemination process to inform each
helper node which file it should be helping. When two nodes
encounter, it is assumed that each node can download a full
file, if the other node carries anything of interest. The encounter
model will be made clear later.

It is of interest to determine which set of helper nodes must
assist in the dissemination of each file and for the metric over
which we want to optimize for, we consider the following two
formulations:
• Metric 1 (M1): Maximize the total expected number of

demands satisfied for each file, by a deadline T .
• Metric 2 (M2): Minimize the maximum expected time to

satisfy all the demands for each file.
The metric to be used depends on the application. For

example, M1 might be a useful metric when the content will
expire after certain duration.

A. Notation

The indices start with 1. All the vectors are column-vectors
unless specified otherwise. (A)(x,y) refers to the element at row
x and column y of matrix A, and (v)x refers to the element at
location x of the vector v. Note that all the vectors considered
here are of appropriate sizes, i.e. when a matrix B multiplies
a vector v, the number of columns of B equals the number of
rows of v. [m] denotes {1, 2, . . . ,m} for an integer m. A list
of the symbols used in this paper are presented in Table I.

B. Contact and Dissemination Model

We assume that content dissemination occurs through a series
of encounters between nodes. In particular, we assume that
when there is an encounter between nodes, it is always between
a pair of nodes and not any more. Furthermore, we assume a
homogeneous contact process whereby each pair of nodes are
equally likely to be involved in an encounter. Since there are
N(N − 1)/2 possible pairs, in each encounter, each particular
pair is involved with probability p

4
= 2

N(N−1) .
The inter-encounter times are assumed to be independent

and identically distributed (i.i.d). Let {Xj}∞1 be the i.i.d inter-
encounter times, with mean E[X]. Thus, the expected time
for say τ encounters is τE[X]. Let FX(t) be the cdf of X ,
i.e. FX(t) = Pr[X ≤ t]. We would also like to define the
joint distribution of time taken by τ encounters as follows:
fτ (t) = Pr[

∑τ
j=1Xj ≤ t].

These quantities depend on the underlying mobility. For
example, if the inter-encounter times are i.i.d exponential with

rate λ, then FX(t) = 1 − exp(−λt) and fτ (t) is Erlang with
parameters λ and τ as follows: fτ (t) = λτ tτ−1e−λt

(τ−1)! .
We note that our contact model captures the widely used

model in the DTN community. For example, [6], [26], [20],
[11], all assume that node encounter times between pairs of
nodes are independent of each other and follow a Poisson
process with rate 1/λ. This means that the inter-encounter
durations are i.i.d exponential with rate λ, and thus each pair is
equally likely to encounter, whenever there is one. Our analysis
does not rely on the exponential assumption, and can capture
a general inter-encounter distribution.

Since the state of the system changes only during an en-
counter, when presenting results, we will deal with the counting
of the number of encounters instead of the time.

Finally, as mentioned before, it is assumed that the encoun-
ters are long enough to transmit a full file. As our primary focus
is on large files and constrained storage, one way to satisfy
this is to have large bandwidth. To handle settings in which
both bandwidth and storage are constrained, this assumption
is equivalent to assuming that only long-duration encounters
are explicitly considered in our model. These long-duration
encounters would typically correspond to individuals that are
standing/sitting near each other, or to vehicles either temporar-
ily parked near each other or following each other in the same
direction1. In principle, the model could be extended in an
approximate way to consider even partial file transmissions
during short duration encounters by appropriately scaling down
the probability of transferring a file in each encounter between
a node that has the file and an interested node; we defer a
careful exploration of such an approximation to future work.

IV. UNDERSTANDING DISSEMINATION OF A SINGLE FILE

Let us first analyze the dissemination of a single file, with
the assumption that all the nodes in the system are participating
in the dissemination - i.e. they are either seeds, demands or are
willing to help (helper nodes). If ns, nd, nh denote the number
of seeds, demands and helpers, then we assume here that the
total number of nodes N = ns+nd+nh. Note that since there
is only a single file, we do not consider notation like nd,1 to
denote the parameters for the first file.

We will utilize the solution of this section as the building
block in the next, where we consider multiple files. There, we
will also handle the case when there could be a single file
with ns + nd + nh < N . This can be handled by assuming
that the remaining nodes participate in the dissemination of a
non-existent file.

The dissemination of the file can be modeled using a finite-
state discrete time absorbing Markov chain.

A. Modeling the Markov Chain
1) States of the Markov Chain: The states of the Markov

chain indicate how many demanding nodes and helper nodes

1Such long encounters are not rare. Prior work has shown that encounter
durations for human contacts follow a heavy-tailed distribution in which long
encounters are reasonably common [24], and that the contact durations for
certain groups of vehicles are bimodal with long durations corresponding to
the vehicles parked side by side [10].
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have got the file. So a state can be represented using a tuple
(cd, ch) when 0 ≤ cd ≤ nd demands and 0 ≤ ch ≤ nh helpers
have got the file. The state (0,0) for example indicates that none
of the demands or helper nodes have got the file. The number
of states is nS = (nh + 1)(nd + 1).

Note that since our goal is to be done with nd demands, all
of the states (nd, j) could have been made absorbing states, or
they could have been all combined to one absorbing state. We
do not make this distinction when writing down the Markov
chain because it lends to easier understanding of the analysis
and it can capture the distribution of the number of helper nodes
completed when all the demands are done.

2) Transition Probabilities: When in state (cd, ch), the total
number of nodes that have the file is ns+ cd+ ch. The number
of demands and helper nodes that don’t have the file are thus
nd − cd and nh − ch respectively. From a state (cd, ch), the
Markov chain can either go to state (cd+1, ch) or (cd, ch+1)
or will stay in the same state. The corresponding transition
probabilities are:

p(cd,ch)→(cd+1,ch) = p(ns + cd + ch)(nd − cd) (1)
p(cd,ch)→(cd,ch+1) = p(ns + cd + ch)(nh − ch) (2)

where p = 2/N(N −1). The transition probability to the same
state (self-loop) is
p(cd,ch)→(cd,ch) = 1− p(cd,ch)→(cd+1,ch) − p(cd,ch)→(cd,ch+1).

If the adjacent states (cd + 1, ch) and/or (cd, ch + 1) do not
exist, set the corresponding transition probabilities to zero. Note
that (nd, nh) is an absorbing state.

3) Transition matrix A: Next, we construct the transition
matrix A which is of size nS×nS since nS = (nh+1)(nd+1)
is the number of states. Note that the indexing of the rows and
columns of the matrix start from 1. Each state of the Markov
chain corresponds to a row or a column in the matrix at a
particular index. Let In(cd, ch) denote the index of state (cd, ch)
in the transition matrix A. We use the following mapping to
map the state (cd, ch) to an index in the matrix A: In(cd, ch) =
(nh + 1)cd + ch + 1.

Now given the index i ∈ [nS ], cd = quotient(i− 1, nh + 1)
and ch = remainder(i − 1, nh + 1) can give back the state
(cd, ch).

The transition probability from a state (cd, ch) to (c′d, c
′
h) will

be stored in the location (In(cd, ch), In(c
′
d, c
′
h)) in the matrix.

The index of the absorbing state (nd, nh) is nS and so A
can be written as:

A =

[
A0 a
0 1

]
where 0 is zero vector of appropriate size and a is a column
vector. Let 1 represent the all ones vector of appropriate size.
It can be proven by induction that for any k,

Ak =

[
Ak0 (I −A0)

k1
0 1

]
(3)

4) Occupancy of the Markov Chain: Since the content
dissemination starts at state (0, 0), which corresponds to index

In(0, 0) = 1, the initial probability distribution of being at
various states is e1.

After τ encounters, the corresponding probability distribution
is eᵀ1A

τ . Thus, the probability of being at state (cd, ch) is the
element in the index i = In(cd, ch) of eᵀ1A

τ , which can also
be represented as (eᵀ1A

τ )i and evaluates to eᵀ1A
τei.

Define gτ (cd, ch) to be the probability that cd demanding
nodes and ch helper nodes have got the file at the end of τ
encounters. Then,

gτ (cd, ch) = eᵀ1A
τeIn(cd,ch). (4)

B. A Few Definitions

We will define three column vectors u1,u2,u3 here. Let u1

be a column vector of length nS defined as follows:

u1
4
=

nd∑
cd=0

nh∑
ch=0

cdeIn(cd,ch),

where ei is a column vector of length nS with 1 at location
i and all other locations set to 0. The right hand side is also
equivalent to

∑nS
i=0 quotient(i − 1, nh + 1)ei, i.e. u1 has the

first nh + 1 entries 0, the second nh + 1 entries 1, and so on
and up to the last nh + 1 entries set to nd.

Let u2 be a column vector of length nS defined as follows:

u2
4
=

nh∑
ch=0

p(ns + nd − 1 + ch)eIn(nd−1,ch) (5)

Note that (u2)nS = 0.
Furthermore, define u3 to be a column vector of length nS−

1, containing the first nS − 1 entries of u2 as follows:

(u3)i
4
= (u2)i, ∀i = 1, 2, . . . , nS − 1.

C. M1: Understanding the expected number of satisfied de-
mands

Here, we will derive an expression for the expected number
of demands satisfied (also called completed demands) at the
end of τ encounters. Then depending on the contact model,
we will derive the same quantity, given a deadline. We slightly
abuse the notation to indicate CD(τ) and CD(T ) to be the
number of completed demands after τ encounters and after
time T respectively.

Lemma 1: The expected number of completed demands after
τ encounters is

E[CD(τ)] = eᵀ1A
τu1. (6)

Proof: At the end of τ encounters, the probability distri-
bution in being at any of the states is given by gτ (·, ·). When
in state (cd, ch), the number of demands satisfied is cd and
the corresponding probability is gτ (cd, ch). Hence we have
E[CD(τ)] =

∑nd
cd=0

∑nh
ch=0 cdg

τ (cd, ch). From equation 4,
and then using the definition of u1, we will get the desired
expression.
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Theorem 1: Given a deadline T , the expected number of
demands satisfied by a deadline T is

E[CD(T )] =

∫ T

0

[1− FX(T − t)] eᵀ1
∞∑
τ=0

Aτfτ (t)u1dt

(7)

Proof: E[CD(T )] =∑∞
τ=0E[CD(τ)] Pr

[∑τ
j=1Xj ≤ T <

∑τ+1
j=1

]
. Conditioning

on duration of τ encounters and noting that Xj are
independent, we can write Pr

[∑τ
j=1Xj ≤ T <

∑τ+1
j=1

]
=∫ T

0
Pr [Xτ+1 > T − t] fτ (t)dt =∫ T

0
[1− FX(T − t)] fτ (t)dt. Thus, E[CD(T )] =∫ T

0
[1− FX(T − t)]

∑∞
τ=0E[CD(τ)]fτ (t)dt. Using equation 6

from Lemma 1 completes the proof.

D. M2: Understanding the expected completion Time

Theorem 2: Given the transition matrix A for the dissemina-
tion of a file, the expected delay (in units of time) to disseminate
the file to all nd demands is

E[D] = eᵀ1(I −A0)
−2u3E[X] (8)

where A0 is the (nS−1)×(nS−1) submatrix of A, e is a unit
vector [1, 0, . . . , 0]ᵀ of size nS − 1 and u3 is defined above.

Proof: We will first count the expected number of en-
counters to satisfy all demands and then multiply it by E[X]
to get E[D]. If the last encounter that satisfies all demands
is τ , then d − 1 demands must have been satisfied at the end
of τ − 1 encounters. E[D] = E[X]

∑∞
τ=1 τ Pr[CD(τ) = nd |

CD(τ − 1) = nd − 1]. Also, by conditioning on the number of
helper nodes CH done at the end of τ − 1 encounters,
Pr[CD(τ) = nd | CD(τ − 1) = nd − 1]

=

nh∑
ch=0

Pr[CD(τ) = nd | CD(τ − 1) = nd − 1, CH(τ − 1) = ch]

Pr[CD(τ − 1) = nd − 1, CH(τ − 1) = ch]

=

nh∑
ch=0

Pr[CD(τ) = nd | CD(τ − 1) = nd − 1, CH(τ − 1) = ch]

gτ−1(nd − 1, ch).

where CH(τ) is the random variable indicating the number of
helper nodes done at the end of τ encounters.

The probability term here is just the transition probability
p(ns + nd − 1 + ch). Using this, and then using equation 4,
we get E[D] = E[X]

∑∞
τ=1 τe

ᵀ
1A

τ−1u2. We cannot write∑∞
τ=1 τA

τ−1 = (I − A)−2 since I − A is singular. But since
the last entry of u2 is 0, post-multiplying eᵀ1A

τ−1 by u2

is equivalent to eᵀ1A
τ−1
0 u3 (where e1 is of length nS − 1).

Applying taylor series to the infinite sum completes the proof.

In Fig 1 we show the expected number of demands satisfied
as a function of the number of encounters so far (or they can
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Expected Delay to satisfy
all demands = 207.31

Fig. 1: The expected number of demands satisfied in percentage
as a function of the number of encounters.

be considered as the deadline) obtained using equation 6. The
expected number of encounters to satisfy all the demands is
found using equation 8. There are N = 50 nodes, ns = 1
seed, nd = 30 demands and the remaining are helper nodes.
We also utilized a custom built simulator with the specified
node mobilities. The average number of encounters to satisfy
all demands as per the simulation was 206.47 and it can be seen
that the results obtained closely match the theoretical results.

V. UNDERSTANDING DISSEMINATION OF MULTIPLE FILES

Not only do we generalize to multiple file dissemination here,
but we could also generalize to the case where the number of
seeds, demands and helper nodes do not have to add up to the
total number of nodes in the system.

We can consider all the nodes associated with each file i as
a group, such that the number of nodes in group-i are Ni =
ns,i + nh,i + nd,i. Also,

∑m
i=1Ni = N .

The general idea is to apply the previous results of M1 or M2
for each of the groups as if only the dissemination of nodes in
the groups is going on, and then combine the results carefully
to obtain the results of M1 or M2 when considering all the files
together.

A. M1: Compute Expected Number of Satisfied Demands

Given a deadline T (in units of time), we want to compute
the expected number of satisfied demands E[CD(T )]. This can
be expressed in terms of E[CD(τ)], the expected number of
demands satisfied after τ encounters in the system. If E[CD(τ)]
is known, by the same approach as outlined in Theorem 1 we
can get

E[CD(T )] =

∫ T

0

[1− FX(T − t)]
∞∑
τ=0

E[CD(τ)]fτ (t)dt. (9)

Let us next compute E[CD(τ)].
When there was a single file before, after τ encounters in

the system, the corresponding Markov chain would have taken
τ steps. But when there are m files, we will have m Markov
chains that are not independent of each other.

Given an encounter in the system, the probability that the
encounter is useful for file i is pi = Ni(Ni−1)

N(N−1) (when nodes
within this group encounter). This is the probability that the
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(a) E[CD,1(T )] vs nh,1 for nd,1 = 10
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(b) E[CD,1(T )] vs nh,1 for nd,1 = 20
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(c) E[CD,1(T )] vs nd,1 for T = 200 encoun-
ters
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(d) E[CD,1(T )] vs nd,1 for T = 400 encoun-
ters
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Fig. 2: We consider N = 50 nodes that could have multiple files, and show various statistics for file 1.

Markov chain corresponding to file i will make a move when
there is an encounter in the system.

If we know that the number of encounters pertaining to
group-i is τi, the results from the previous section can help
us determine the expected number of demands satisfied
E[CD,i(τi)] (use Lemma 1 with appropriate parameters, e.g.
the total number of nodes will be Ni etc.).

Thus, conditioned on the number of encounters that could
have helped in the dissemination of file i, the expected number
of demands satisfied for file i at the end of τ encounters in the
system will be

∑τ
τi=0

(
τ
τi

)
pτii (1− pi)τ−τiE[CD,i(τi)].

Since CD(τ) is just the sum of the number of demands
satisfied for each file, by linearity of expectations, E[CD(τ)] =∑m
i=1

∑τ
τi=0

(
τ
τi

)
pτii (1 − pi)τ−τiE[CD,i(τi)] Once E[CD(τ)]

is computed, and then using equation 9, we can compute
the expected number of demands satisfied by deadline T ,
E[CD(T )].

After τ encounters, the expected number of demands satisfied
for file i is E[CD,i(τ)], and so similar to equation 9, given a
deadline T , the corresponding expectation will be

E[CD,i(T )] =

∫ T

0

[1− FX(T − t)]

×
∞∑
τ=0

τ∑
τi=0

(
τ

τi

)
pτii (1− pi)

τ−τiE[CD,i(τi)]fτ (t)dt

(10)

B. M2: Compute Completion Time

As in M1, we will divide the nodes into groups for each
file and we can use Theorem 2 to compute the expected time
(E[Di]) and the expected number of encounters (E[Di]/E[X])
within group-i to satisfy all demands.

Since each encounter in the system will be a possible
encounter within group-i with probability pi = Ni(Ni−1)

N(N−1) ,
the expected number of encounters in the system required to
disseminate to all demands in group-i will be E[Di]/E[X]pi
and the expected time will be E[Di]/pi.

We are interested in the maximum expected delay which will
be maxi∈[m]E[Di]/E[X]pi.

C. Understanding M1 and M2

In Fig. 2, we show some characterizations of the dissem-
ination under M1 and M2 for a single file. As previously
mentioned, we only count the number of encounters rather than
the actual time, which will depend on the distribution. We show
results for say the first file. For M1, when deadline T = τ , num-
ber of encounters in the system is given,

∑τ
τ1=0

(
τ
τ1

)
pτ11 (1 −

p1)
τ−τ1E[CD,1(τ1)] captures the expected demands satisfied,

whose percentage is plotted (obtained by dividing by nd,1 = nd
and scaling by 100). For M2, E[Di]/E[X]pi is plotted. For all
the cases, we consider one seed.

Fig. 2a-Fig. 2d show plots when M1 is used, whereas the rest
show plots when M2 is used. In Fig. 2a, we plot the percentage
of demands that get satisfied at the end of various deadlines as
a function of the helper nodes allocated when the total number
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Fig. 3: Finding the globally optimal (social welfare maximizing) helper node allocation

of demands for the file is 10. As can be seen, the effect of
the helper nodes is the highest for medium deadlines. When
the deadline is small, even if a large number of helpers are
allocated, the number of demands satisfied does not improve
by the same numbers as when the deadline is medium. Further
when the deadline is large enough, most of the demands are
completed by virtue of the long deadlines, and the helpers offer
only diminishing returns.

Fig. 2b shows a similar plot for 20 demands instead of 10.
We can see that the curves have shifted upwards because having
more demands actually helps the dissemination, as we will see
next.

In Fig. 2c and Fig. 2d we fix the deadlines to T = 200 and
T = 400 respectively, and study the percentage of demands
completed in expectation as a function of the demands. These
figures reveal that as the number of demands increase, the
percentage completed also increase, even though this means
that more demands have to be satisfied by the deadline. This
happens because as the demands also increase, they can also
contribute to the dissemination. If a few demands get the file
before the deadline, they can still help other demands.

We next turn to studying M2 in Fig. 2e and Fig. 2f where
we plot the expected delay (in number of encounters) as a
function of either the number of helpers or the demands. In
both the plots, it can be seen that increasing either the helpers
or the demands can only help. From Fig. 2e it can be seen
that when the demands are low, even a slight increase in
the number of helpers allocated will bring down the expected
delays significantly. Furthermore, it can be seen that the helper
nodes have diminishing returns.

Fig. 2f offers an interesting view of the role of demands. As
before, the overall trend here is that as the demands increase,
the expected delay continues to decrease except at a few places.
When the number of helper nodes is very low (or zero), any
increase in the demands lends itself favorably, whereas when
the number of helper nodes is higher, a slight increase in the
demands registers itself as extra burden before starting to help
itself.

VI. SOCIAL ALLOCATION

Having studied the dissemination of multiple files, we will
now turn to finding an optimal allocation of the helper nodes
to help in the dissemination of the files. In order to do so,
depending on M1 or M2, we will define utilities for the dissem-
ination of each of the files and then define the system utility. An
allocation of the helper nodes defined as (nh,1, nh,2, . . . , nh,m)
indicates that nh,i helper nodes are allocated to help dissemi-
nate file i and

∑m
i=1 nh,i = nh.

For M1, given a deadline T , set Ui = E[CD,i(T )] as the
utility of the content provider i.

The system utility will be U =
∑m
i=1 Ui. and this is same as

E[CD(T )]. For M2, set Ui = −E[Di]
pi

as the utility of content
provider i.

The utility of the system will be U = minUi.
Next, find an allocation (nh,1, nh,2, . . . , nh,m) with∑
i nh,i = nh, such that the system utility U is maximized.

Umax = max
(nh,1,nh,2,...,nh,m),

∑
nh,i=nh

(
max
i

(Ui(nh,i))
)
.

In Fig 3, we show an example of how the allocation of helper
nodes affects the utilities and how thereby we find the best
allocation for M1 and M2. As before, we consider N = 50
nodes and two files with seeds ns,1 = ns,2 = 1 and demands
nd,1 = 4, nd,2 = 8. Thus the number of remaining nodes are 36,
which can be considered as the pool of helper nodes (nh = 36).
Since we are interested in allocating all the helper nodes to help
either of the files, nh,1 +nh,2 = 36. In the plots, we vary nh,1
and nh,2 can be inferred.

From Fig 3a and Fig. 3c, the utilities of the individual
files as well as the system utility are plotted as a function of
the number of helper nodes allocated for file 1. Clearly, as
nh,1 increases, the utility of file 1 increases and that of the
second file decreases because nh,2 decreases. It can be seen
that the utilities are maximized when (nh,1, nh,2) = (12, 24)
and (18, 18) respectively.

Fig 3b shows an interesting effect of the deadline on the
optimal allocation. We plot the optimal number of nodes
allocated for the file 1 against various deadlines (in number
of encounters). We note that when the deadline is very small,
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the helper nodes may not have much influence on file 1
anyway, so all of them are being allocated to file 2. But as
the deadline increases, more and more are allocated until the
optimal allocation stops at (18, 18) for the nodes.

VII. MARKET ALLOCATION

To reiterate, there are m content providers (CP), numbered
i = 1, 2, . . . ,m. Content provider i has a single file i, and is
interested in disseminating the file to nd,i demanding nodes.
Given a pool of helper nodes, so far we have studied the
problem of allocating these helper nodes for efficient content
dissemination from a social setting. Next, we would like
to study the market-based scenario where the central agent
requires the content providers to pay for helper nodes to help
in the dissemination of their files2. Based on the bids placed by
each content provider (CP), the central agent (CA) will allocate
the sets of helper nodes to each of the CPs so as to maximize
its own revenue.

Note that we could have a formulation where the CPs could
each pay for the seed nodes in addition to the helper nodes
(albeit at a higher cost). We exclude ourselves from doing that
for ease of exposition. It is assumed that the central agent gets
the files from the CPs and places each file in m distinct nodes,
which will form the seed nodes for the m CPs. This allocation
could be done by the use of control tier of the network, Thus
ns,i = 1 for all i ∈ [m] irrespective of the bid placed by CP i.

A. Game Formulation

1) Players: In our game formulation, we have m+1 players
in total - the agent and the m CPs with one file each. We will
denote by player 0 the agent, and by player i, the CP i with
file i, for i ∈ [m].

2) Actions: The action of each player is a price ci. In the
case of the agent, this price c0 > 0 is the minimum unit price
for the helper nodes that it requires the CPs to pay. The agent
informs this value to all the other players.

The action of other players is then the price they want to bid
ci ≥ 0 for i ∈ [m].

Note that the agent moves first: it fixes the c0 and informs the
CPs. We thus have a Stackelberg game here. We assume that
all the players have complete knowledge of the system. The
agent thus knows all the demands for all the contents; each CP
knows not only the demand of its respective content, but also
of other contents. Furthermore each CP knows N and the unit
price c0.

Since the players will not bid arbitrarily high values, we can
restrict ci ≤ cmax. Therefore, a row-vector
c = [c0, c1, . . . , cm] ∈ [0, cmax]

m+1 forms the strategy space.
Since [0, cmax]

m+1 is a hypercube, it is a compact and convex
subset of Rm+1.

2We are assuming that in this two-tier network the storage in the nodes can
be centrally controlled and managed by a single economic entity - the agent.
There may be additional layer of economic interaction whereby this agent
pays each individual node for each use of their storage. This payment can be
absorbed into our model as a fixed cost for the central agent as it would still
be interested in maximizing its revenue.

All the players will determine their actions to maximize their
payoffs, which will be explained later.

3) Allocation Policy: The minimum price on each helper
node is c0. So if the CP i pays ci and if ci < c0, then it will
not get any helper nodes. If the price ci ≥ c0, the player could
possibly get bci/c0c, subject to the availability of the helper
nodes and the price bid by other players.

In the case when the bid values are sufficiently high, such
that

∑m
i=1bci/c0c is more than the number of helper nodes

available, the agent could decide to allocate the helper nodes
proportional to ci. Thus, each CP could possibly get
bnhci/(

∑m
j=1 cj)c. Combining both cases, the number of

helper nodes allocated to CP i as a function of the payment
ci made by the CP and the payment of other players c−i can
be expressed as follows:

nh,i(ci, c−i) =

⌊
min

(
ci
c0
,

nhci∑m
j=1 cj

)⌋
. (11)

where c−i = (c1, c2, . . . , ci−1, ci+1, . . . , cm).
4) Payoffs: The agent’s utility is the sum of the prices

accrued from each of the players minus the maintenance cost.
since the maintenance cost is constant, it does not affect the
equilibrium calculation and we omit it for simplicity. Thus, the
payoff will be P0 = U0 =

∑m
i=1 ci. As a Stackelberg-leader

agent will set c0 to maximize its payoff.
By bidding ci, the CP i gets nh,i helper nodes allocated to

help in the dissemination of file i. Next, depending on M1 or
M2, the CP will reap a utility Ui(nh,i), which may be computed
since we know the number of seeds ns,i = 1, helpers nh,i and
demands nd,i.

Thus the net payoff of the CP i ∈ [m] is

Pi = wUi(nh,i)− ci, (12)

and it is of interest to the CP to maximize this. Here w is a
weighting parameter that dictates how much the CP values the
outcome compared to the cost, and depends on the metric. It
could vary from player to player, but we do not consider this
distinction.

B. Existence of Nash Equilibria

We numerically observe the existence of multiple Nash
equilibria for the cases we consider (more details in the next
subsection). We investigate the existence of Nash equilibria in
a more detailed manner in Appendix A, where we rely on the
quasiconcavity property of payoffs to find out cases where Nash
equilibria are guaranteed to exist [16].

C. Three Player Game Example

We next turn to numerically understand a three player game
consisting of an agent and two CPs. Let there be N = 50
nodes in total of which nd,1 = 4 want content 1 and nd,2 = 8
want content 2. Irrespective of the bids placed by the content
providers, the central agent will guarantee one seed each:
ns,1 = ns,2 = 1. There are nh = 36 helper nodes remaining.
We need to pick w for M1 and M2 to get the expressions for
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Fig. 4: Three player example (with one agent and two content providers). Here c0 = 1,c2 = 50, nd(1) = 4, nd(2) = 8

payoff. Since the utility values from M2 are about two orders
higher in magnitude than that in M1, we pick w = 100 for M1
while keeping w = 1 for M2. Given all this information, we
are interested in determining what should the central agent fix
c0 to and once this is fixed, what will be the prices (c1, c2) that
the content providers bid?

Let us first understand the best response dynamics. If we fix
c0 to 1 and c2 to 50. The number of helper nodes allocated
according to equation 11 and the utilities of both the content
providers for various values of c1 is shown in Fig. 4. As can
be seen, the number of helper nodes allocated increases as
the content provider pays more and more, and it eventually
gets almost all the helper nodes (the curve saturates at 35
rather than 36 because of the floor function in equation 11).
Correspondingly, its payoff first increases since it is getting
more helper nodes, but after a certain threshold, the payoff
starts to fall due to the increasing cost. The best response of
the content provider 1 will just be the price c1 when the payoff
is maximized. Under both M1 and M2, the best response of
content provider 1 is to set c1 = 70.

But since both the players know that they will play the best
response to each other, they will play according to a Nash
Equilibrium, if it exists. In fact, we numerically see that there
are multiple pure Nash Equilibria when c0 = 1. We show this
in Fig. 5. In each figure, the circle represents a bid (c1, c2)
that could be a possible NE, and the circles are color coded
according to c0 (refer to the color bar legend to get approximate
values of c0). There are in fact many NE, but we do not show
them all in the illustrations. The general trend to be noted is
that as c0 increases, the points shift slowly to the upper right
side (which means the bids increase), but after a certain extent,
one of the bidder realizes that it is too costly and so starts to bid
zero (and so the other is non-zero). These are shown along the
x-axis or y-axis. When the c0 is too high, both the bidders bid
0 each. Another thing to note is that there are several equilibria
when c0 is low, but for higher values, there seems to be only
one NE.

As the central agent increases c0, it will start earning bigger
payoffs until a certain extent depending on the scheme, after
which the payoff starts to decrease and eventually reaches zero,

see Fig. 6. To plot this curve, after fixing the model, for each c0,
we determine the possible Nash Equilibria (c1, c2) numerically
and use the one that gives the lowest c1 + c2.

For M1 with deadline 250, the payoff is maximized when
c0 = 9. The content providers bid (90, 234) and get (10, 26)
helper nodes each. The expected demands satisfied for each of
the content providers due to this allocation are 1.87 and 7.30,
and thus the system utility is 9.17. Since the optimal allocation
that maximizes the system utility is in fact (12, 14), we should
have that the system utility be 2.10+ 7.10 = 9.20, where 2.10
and 7.10 are the expected number of demands satisfied for each
at the end of 250 encounters with the help of 12 and 24 helper
nodes. Thus, the price of anarchy is 9.20/9.17 = 1.0033.

For M1 with deadline 400, the corresponding c0 = 13.
The bids here are (130, 156) and the number of helper nodes
allocated are (10, 12). Note that all the helper nodes did not get
allocated since the price minimum price is very high. Here, the
utilities for the content providers are 3.1093 and 7.3683 respec-
tively, and the overall system utility is 10.4776. The optimal
allocation of helper nodes for this deadline is (18, 18), which
guarantees a system utility of 3.7895+7.8259 = 11.6154. Thus,
the price of anarchy is 1.1086, higher than before. Given the
sufficiently long deadline, the improvement in utility brought
by helper nodes for the second content provider is quite low
as compared to the price it has to pay. Therefore, it will bid
lower than it did when the deadline was shorter (when it knew
that the helpers would indeed help).

In M2, the agent fixes c0 to be 24 at which the bids will
be (240, 168). 10 and 7 helper nodes will be allocated for
each content provider. In fact the content provider 2 bids much
lower partly because of the much higher minimum price c0 and
partly because it knows that the demands can help themselves.
The expected delay for content provider 1 is 422.3303 (and
so its utility is -422.3303), and that of content provider 2 is
457.9848 (utility is -457.9848). The utility of the system is
then -457.9848. If the allocation of the helper nodes were to
maximize social welfare, the content providers would have got
18 helpers each, due to which the max delay would have been
297.2508 (each will have delay 297.2508 and 294.4246). Thus
the price of anarchy in this case is 1.5407, the highest.
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Fig. 5: The bids for different values of c0.
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Fig. 6: Payoff of the Central Agent for various c0 for M1 with
deadlines 250 and 400 and M2. The Central Agent will fix the
c0 to maximize its payoff, and it depends on the scheme.

VIII. CONCLUSION

We have formulated and analyzed the problem of helper
node allocation in a hybrid ICMN mathematically under a
general stochastic homogeneous encounter model. We believe
this analysis advances our theoretical understanding of the
impact of various parameters and designs (such as the impact
of a market-based approach on social welfare) for resource
allocation in ICMN.

Some recent works have explored heuristically the problem
of allocating storage in the context of statistically structured
heterogeneous ICMN, including via social network analysis [5],
[7]. To shed some theoretical light on such problems, the
formulation in this work will need to be extended in future
work, to handle more realistic heterogenous mobility patterns.
This may be mathematically and computationally challenging
as not only the number of helper nodes, but also their identity
starts to matter, resulting in a combinatorial explosion of states.
Nevertheless, approaches leveraging approximation algorithms
may prove fruitful.
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APPENDIX

While previously we were able to show the existence of
multiple Nash equilibria for parameters that were of interest to
us, here we investigate the existence of Nash equilibria further
in a more general setting. Specifically we determine regions of
w which guarantee the existence of Nash Equilibria for a few
c0 values. As before we consider the case of three players -
one agent and two content providers for ease of understanding.
Therefore m = 2 here.

We use the result from Theorem 2.2 in [16] here to discuss
sufficient conditions for the existence of Nash equilibrium. We

first note that the set of pure strategies is compact and convex.
Consider player i ∈ [m] who bids ci. We fix the strategies of
other players to c−i and would like to determine the conditions
under which the payoff of player i, Pi is quasiconcave with
respect to ci (from the theorem, quasiconcavity guarantees the
existence of Nash Equilibria).
Pi (a function of ci) is quasiconcave if either (i) it is

nondecreasing, (ii) it is nonincreasing, or (iii) there exists a
c∗i such that Pi is nondecreasing for ci < c∗i and nonincreasing
for ci > c∗i . While this can be checked by taking a derivative
of Pi with respect to ci, since the expression for Pi is not
suitable for differentiation, we resort to numerically study the
quasiconcavity property. Note that this can be verified rather
easily numerically.

In Fig 7, we show a few plots of P1 and P2 for c0 = 1
and c0 = 10 for various w, where quasiconcavity is satisfied
for model M1 (when the deadline is T = 250). Fig 8 shows a
similar set of plots for model M2.

For the model M1, for the choices of c0 = 1 and c0 = 10, we
see that P1, P2 are quasiconcave (in this case non increasing)
when w ≤ 4. For higher values of w, quasiconcavity does
not hold (see Fig 9. Similarly, for the model M2, for the
choices of c0 = 1 and c0 = 10, quasiconcavity is observed for
w ≤ 0.008. Since quasiconcavity is only a sufficient condition,
higher values of w do not necessarily preclude the existence of
Nash equilibria.

Fig 9 shows a case where the quasiconcavity property does
not hold for both P1 and P2. Note that even though the curve
in Fig 9a looks like it is decreasing, there are cases where the
payoff decreases and then increases.

Investigation of the quasiconcavity of the payoffs analytically
is left as a future work.
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(a) c2 fixed at 50, c0 = 1
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(b) c1 fixed at 50, c0 = 1

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

Bid from CP 1

P
a
y
o
ff
 f
o
r 

C
P

 1

 

 

w = 1

w = 2

w = 3

w = 4

(c) c2 fixed at 50, c0 = 10
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(d) c1 fixed at 50, c0 = 10

Fig. 7: A set of cases for model M1 (deadline T = 250 encounters) when quasiconcavity holds for both P1 and P2.
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(a) c2 fixed at 50, c0 = 1
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(b) c1 fixed at 50, c0 = 1
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(c) c2 fixed at 50, c0 = 10
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Fig. 8: A set of cases for model M2 when quasiconcavity holds for both P1 and P2.


