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Abstract—With mobile devices increasingly able to connect to cloud servers from anywhere, resource-constrained devices can
potentially perform offloading of computational tasks to either save local resource usage or improve performance. It is of interest to find
optimal assignments of tasks to local and remote devices that can take into account the application-specific profile, availability of
computational resources, and link connectivity, and find a balance between energy consumption costs of mobile devices and latency
for delay-sensitive applications. We formulate an NP-hard problem to minimize the application latency while meeting prescribed
resource utilization constraints. Different from most of existing works that either rely on the integer programming solver, or on heuristics
that offer no theoretical performance guarantees, we propose Hermes, a novel fully polynomial time approximation scheme (FPTAS).
We identify for a subset of problem instances, where the application task graphs can be described as serial trees, Hermes provides a
solution with latency no more than (1 + ε) times of the minimum while incurring complexity that is polynomial in problem size and 1

ε
.

We further propose an online algorithm to learn the unknown dynamic environment and guarantee that the performance gap compared
to the optimal strategy is bounded by a logarithmic function with time. Evaluation is done by using real data set collected from several
benchmarks, and is shown that Hermes improves the latency by 16% compared to a previously published heuristic and increases CPU
computing time by only 0.4% of overall latency.
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1 INTRODUCTION

As more embedded devices are connected, lots of re-
source on the network, in the form of cloud computing,
become accessible. These devices, either suffering from
stringent battery usage, like mobile devices, or limited
processing power, like sensors, are not capable to run
computation-intensive tasks locally. Taking advantage of
the remote resource, more sophisticated applications, re-
quiring heavy loads of data processing and computation
[1], [2], can be realized in timely fashion and accept-
able performance. Thus, computation offloading—sending
computation-intensive tasks to more resourceful severs, is
becoming a potential approach to save resources on local
devices and to shorten the processing time [3], [4], [5], [6].

However, implementing offloading invokes extra com-
munication cost due to the application and profiling data
that must be exchanged with remote servers. Offloading a
task aims to save battery use and expedite the execution,
but the additional communication spends extra energy on
wireless radio and induces extra transmission latency [7],
[8]. Hence, a good offloading strategy would select a subset
of tasks to be offloaded, considering the balance between
how much the offloading saves and how much extra cost is
induced. On the other hand, in addition to targeting a single
remote server, which involves only binary decision on each
task, another spectrum of offloading schemes make use of
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other idle and connected devices in the network [9], [10],
where the decision is made over multiple devices consider-
ing their availabilities and qualities of wireless channels. In
sum, a rigorous optimization formulation of the problem
and the scalability of corresponding algorithm are the key
issues that need to be addressed.

In general, we are concerned in this domain with a task
assignment problem over multiple devices, subject to con-
straints. Furthermore, task dependency must be taken into
account in formulations involving latency as a metric. In
this paper, we formulate an optimization problem that aims
to minimize the latency subject to cost constraint. We show
that the problem is NP-hard and propose Hermes1, which is
a fully polynomial time approximation scheme (FPTAS). For
all instances, Hermes always outputs a solution that gives
no more than (1+ ε) times of the minimum objective, where
ε is a positive number, and the complexity is bounded by
a polynomial in 1

ε and the problem size [13]. Table 1 sum-
marizes the comparison of our formulation and algorithm
to the existing works. To the best of our knowledge, for this
class of task assignment problems, Hermes applies to more
sophisticated formulations than prior works and runs in
polynomial time with problem size but still provides near-
optimal solutions with performance guarantee. We list our
main contributions as follows.

1) A new NP-hard formulation of task assignment
considering both latency and resource cost: Our
formulation is practically useful for applications

1. Because of its focus on minimizing latency, Hermes is named for
the Greek messenger of the gods with winged sandals, known for his
speed.
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TABLE 1: Comparison between existing works and Hermes

Existing Works MAUI [11] CloneCloud [4] min k-cut [12] Odessa [2] Hermes

Task Graph serial tree DAG general subset of DAG
Objectives energy consumption cost and latency communication cost latency & throughput latency

Constraints latency none none none cost
Partition 2 devices 2 devices multiple devices 2 devices multiple devices

Complexity exponential exponential exponential no guarantee polynomial
Performance optimal optimal optimal no guarantee (1 + ε)-approximate

with a general task dependency described by a
directed acyclic graph and allows for the minimiza-
tion of total latency (makespan) subject to a resource
cost constraint.

2) Hermes, an FPTAS algorithm: We identify for a
subset of problem instances, where the application
task graphs can be described as serial trees, Her-
mes admits a (1 + ε) approximation and runs in
O(dinNM

2 l
ε log2 T ) time, where N is the number

of tasks, M is the number of devices, din is the
maximum indegree over all tasks, l is the length of
the longest paths and T is the dynamic range.

3) An online learning scheme to unknown dynamic
environments: We adapt a sampling method pro-
posed in [14] to continuously probe the channels
and devices, and exploit the best assignment based
on the probing result. Furthermore, we prove that
the performance gap is bounded by a logarithmic
function of time compared to the optimal strategy
assuming the statistics is known beforehand.

4) Comparative performance evaluation: We evaluate
the performance of Hermes by using real data sets
measured in several benchmarks to emulate the
executions of these applications, and compare it to
the previously-published Odessa scheme [2]. The
result shows that Hermes improves the latency by
16% (36% for larger scale application) and increases
CPU computation time by only 0.4% of overall
latency, which implies the latency gain of Hermes is
significant enough to compensate its CPU overhead.

2 MODELS AND NOTATIONS

2.1 System Model

We consider a mesh network, where mobile devices can
communicate with each other through direct links. Before
an application begins, there is a leader node collecting the
available resources on each device, like released CPU cycles
per second, upload bandwidth and download bandwidth.
Considering the task complexity and the available CPU
cycles, the leader estimates the task execution latency on
each device, and the communication overhead. Finally, the
leader runs Hermes for the optimal assignment strategy and
notifies the helper nodes for task offloading.

At run time, the communication messages between ac-
tive devices are shown in Fig. 1. When device j finishes
the preceding task, it sends an acknowledgement to the
leader, and transmits the necessary data to device k that
is to execute the succeeding task. Upon receiving the data,
device k sends another acknowledgement to the leader and

device j device k
data transmission

leader

ack_complete ack_received
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Abstract—With mobile devices increasingly able to connect
to cloud servers from anywhere, resource-constrained devices
can potentially perform offloading of computational tasks to
either improve resource usage or improve performance. It is of
interest to find optimal assignments of tasks to local and remote
devices that can take into account the application-specific profile,
availability of computational resources, and link connectivity,
and find a balance between energy consumption costs of mobile
devices and latency for delay-sensitive applications. Given an
application described by a task dependency graph, we formulate
an optimization problem to minimize the latency while meeting
prescribed resource utilization constraints. Different from most of
existing works that either rely on an integer linear programming
formulation, which is NP-hard and is not applicable to general
task dependency graph for latency metrics, or on intuitively de-
rived heuristics that offer no theoretical performance guarantees,
we propose Hermes, a novel fully polynomial time approxima-
tion scheme (FPTAS) algorithm to solve this problem. Hermes
provides a solution with latency no more than (1 + ✏) times
of the minimum while incurring complexity that is polynomial
in problem size and 1

✏
. We evaluate the performance by using

real data set collected from several benchmarks, and show that
Hermes improves the latency by 16% (36% for larger scale
application) compared to a previously published heuristic and
increases CPU computing time by only 0.4% of overall latency.

I. INTRODUCTION

As more embedded devices are connected, lots of resource
on the network, in the form of cloud computing, become ac-
cessible. These devices, either suffering from stringent battery
usage, like mobile devices, or limited processing power, like
sensors, are not capable to run computation-intensive tasks
locally. Taking advantage of the remote resource, more sophis-
ticated applications, requiring heavy loads of data processing
and computation [1], [2], can be realized in timely fashion
and acceptable performance. Thus, computation offloading—
sending computation-intensive tasks to more resourceful sev-
ers, is becoming a potential approach to save resources on
local devices and to shorten the processing time [3], [4], [5].

However, implementing offloading invokes extra communi-
cation cost due to the application and profiling data that must
be exchanged with remote servers. The additional communi-
cation affects both energy consumption and latency [6]. In
general, an application can be modeled by a task graph, as

This work was supported in part by NSF via award number CNS-1217260.

split

start

final

10.5

3

1.2

2 10

3.3

5

1

10

3

5.5 5.5

5

10

3

5

15 9.7

8.5
8.5

3

1.2 1.2 5

5 5

15.510

10

5 5

5
8

Fig. 1: A task graph of an application, where nodes specify
tasks with their workloads and edges imply data dependency
labeled with amount of data exchange.

an example shown in Fig. 1. A task is represented by a node
whose weight specifies its workload. Each edge shows the data
dependency between two tasks, and is labelled with the amount
of data being communicated between them. An offloading
strategy selects a subset of tasks to be offloaded, considering
the balance between how much the offloading saves and how
much extra cost is induced. On the other hand, in addition to
targeting a single remote server, which involves only binary
decision on each task, another spectrum of offloading schemes
make use of other idle and connected devices in the network
[7], [8], where the decision is made over multiple devices
based on their availabilities and multiple wireless channels. In
sum, a rigorous optimization formulation of the problem and
the scalability of corresponding algorithm are the key issues
that need to be addressed.

In general, we are concerned in this domain with a task as-
signment problem over multiple devices, subject to constraints.
Furthermore, task dependency must be taken into account in
formulations involving latency as a metric. The authors of
Odessa [11] present a heuristic approach to task partitioning
for improving latency and throughput metrics, involving iter-
ative improvement of bottlenecks in task execution and data

Fig. 1: An application task graph. A node specifies a comput-
ing task labeled with its workload and an edge implies data
dependency labeled with the amount of data transmission.
At application run time, acknowledgement is sent upon task
completion and data reception. The leader takes care of node
failure when acknowledge timeouts.

starts running the task. The process repeats for each pair of
tasks. Two different node failures are being tracked by the
leader based on the acknowledgement timeout rule. First,
if device k fails to complete the task, the leader will ask its
preceding device (j) to run the task. Second, if device k fails
to receive the necessary data so that it cannot run the task,
the leader will also ask device j to run the task. In both
cases, the leader always traces back to the preceding device
that holds the previous result and data so that there will be
no extra data transmission due to node failures.

2.2 Task Graph
An application profile can be described by a directed graph
G(V, E) as shown in Fig. 1, where nodes stand for tasks
and directed edges stand for data dependencies. A task
precedence constraint is described by a directed edge (m,n),
which implies that task n relies on the result of task m.
That is, task n cannot start until it gets the result of task
m. The weight on each node specifies the workload of the
task, while the weight on each edge shows the amount of
data communication between two tasks. In addition to the
application profile, there are some parameters related to the
graph measure in our complexity analysis. We use N to
denote the number of tasks and M to denote the number
of available devices in the network (potential offloading
candidates). For each task graph, there is an initial task
(task 1) that starts the application and a final task (task N )
that terminates it. A path from initial task to final task can
be described by a sequence of nodes, where every pair of
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consecutive nodes are connected by a directed edge. We use
l to denote the maximum number of nodes in a path, i.e., the
length of the longest path. Finally, din denotes the maximum
indegree in the task graph. Using Fig. 1 as an example, we
have l = 7 and din = 2.

2.3 Cost and Latency

Let C(j)
i be the execution cost of task i on device j and

C
(jk)
mn be the transmission cost of data between task m and

n though the channel from device j to k. Similarly, the
latency consists of execution latency T

(j)
i and the trans-

mission latency T
(jk)
mn . Given a task assignment strategy

x ∈ {1 · · ·M}N , where the ith component, xi, specifies
the device that task i is assigned to, the total cost can be
described as follows.

Cost =
∑

i∈[N ]

C
(xi)
i +

∑

(m,n)∈E
C(xmxn)
mn (1)

As described in the equation, the total cost is additive over
nodes (tasks) and edges of the graph.

For a tree-structure task graph, the accumulated latency
up to task i depends on its preceding tasks. Let D(i,x)
be the accumulated latency when task i finishes given the
assignment strategy x, which can be recursively defined as

D(i,x) = max
m∈C(i)

{
D(m,x) + T

(xmxi)
mi

}
+ T

(xi)
i . (2)

We use C(i) to denote the set of children of node i. For
example, in Fig. 2, the children of task 6 are task 4 and
task 5. For each branch leading by node m, the latency is
accumulating as the latency up to task m plus the latency
caused by data transmission between m and i. D(i,x) is
determined by the slowest branch.

2.4 Optimization Problem

Consider an application, described by a task graph, and a re-
source network, described by {C(j)

i , C
(jk)
mn , T

(j)
i , T

(jk)
mn }, our

goal is to find a task assignment strategy x that minimizes
the total latency and satisfies the cost constraint, that is,

P : min
x∈[M ]N

D(N,x)

s.t. Cost ≤ B,
xN = 1.

The Cost and D(N,x) are defined in (1) and (2), respec-
tively. The constant B specifies the cost constraint, for
example, energy consumption of mobile devices. Without
the loss of generality, the final task is in charge of collecting
the execution result from other devices. Hence, it is always
assigned to the local device (xN = 1).

Theorem 1. Problem P is NP-hard.

Proof. We reduce the 0-1 knapsack problem to a special case
of P, where a binary partition is made on a serial task
graph without considering data transmission. Since the 0-
1 knapsack problem is NP-hard [15], Problem P is at least
as hard as the 0-1 knapsack problem.

TABLE 2: Notations

Notation Description

αi workload of task i
dmn the amount of data exchange between task m and n

G(V, E) task graph with set of nodes V and set of edges E)
C(i) set of children of node i
l the depth of task graph (the longest path)
din the maximum indegree of task graph
δ quantization step size

[N ] set {1, 2, · · · , N}
x ∈ [M ]N assignment strategy of tasks 1 · · ·N
T

(j)
i latency of executing task i on device j

T
(jk)
mn latency of transmitting data between task m and n from device j to k

C
(j)
i cost of executing task i on device j

C
(jk)
mn cost of transmitting data between task m and n from device j to k

D(i,x) accumulated latency when task i finishes, given strategy x

w length of exploration phase in dynamic environment

TABLE 3: Computation Offloading Solutions

Solutions Task Offloading Thread Offloading

Source Modification Yes No
Kernel Modification No Yes
Partition Granularity coarse-grained fine-grained

Data Transmission application data thread stack, heap and VM state

Assume that C(0)
i = 0 for all i, the special case of

Problem P can be written as

P′ : min
xi∈{0,1}

N∑

i=1

(
(1− xi)T (0)

i + xiT
(1)
i

)

s.t.
N∑

i=1

xiC
(1)
i ≤ B.

Given N items with their values {v1, · · · , vN} and weights
{w1, · · · , wN}, one wants to decide which items to be
packed to maximize the overall value and satisfies the total
weight constraint, that is,

Q : max
xi∈{0,1}

N∑

i=1

xivi

s.t.
N∑

i=1

xiwi ≤ B.

Now Q can be reduced to P′ by the following encoding

T
(0)
i = 0, ∀i
T

(1)
i = −vi,
C

(1)
i = wi.

By giving these inputs to P′, we can solve Q exactly, hence,

Q ≤p P′ ≤p P.

In Section 4, we propose an approximation algorithm
based on dynamic programming to solve this problem and
show that its running time is bounded by a polynomial of 1

ε
with approximation ratio (1 + ε).
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3 RELATED WORKS

3.1 Formulations and Algorithms

Table 1 summarizes the comparison of our formulation
and algorithm to the existing works. Of all optimization
formulations, integer linear programming (ILP) is the most
common formulation due to its flexibility and intuitive
interpretation of the optimization problem. In the well-
known MAUI work, Cuervo et al. [11] propose an ILP
formulation with latency constraint of serial task graphs.
However, the ILP problems are generally NP-hard, that
is, there is no polynomial-time algorithm to solve all in-
stances of ILP unless P = NP [16]. Moreover, it does not
address the problems of general task dependency, which
is often described by a directed acyclic graph (DAG). Our
previous work [17] generalizes MAUI’s formulation, where
we propose a polynomial time algorithm that could be
applied to tree-structured task graphs. However, there is no
provable performance guarantee. In addition to ILP, graph
partitioning is another approach [12]. The minimum cut on
weighted edges specifies the minimum communication cost
and cuts the nodes into two disjoint sets, one is the set of
tasks that are to be executed at the remote server and the
other are ones that remain at the local device. However,
it is not applicable to latency metrics. Furthermore, for
offloading across multiple devices, solving the generalized
version, minimum k-cut, is NP-hard [18].

3.2 Computational Offloading

There have been systems that augment computing on a
resource-constrained device using computational offload-
ing. We classify them by the types of remote computational
resources that a local device has access to. One extreme is
the traditional cloud-computing where a local device sends
a request to a cloud that has remote servers set up by a
service provider. MAUI [11] and CloneCloud [4] are systems
that leverage the resources in the cloud. Odessa [2] identifies
the bottleneck stage and suggests offloading strategy and
leverages data parallelism to mitigate the load. On the other
extreme, Mobile Cloud connects and leverages the mobile
devices in close proximity to form a distributed computing
platform [19]. Shi et al. [9] investigate the mobile helpers
reached by intermittent connections. FemtoClouds [20] con-
figures multiple mobile devices into a coordinated cloud
service. Between these two extremes, MapCloud [21] is
a hybrid system that makes run-time decision on using
“local” cloud with less computational resources but faster
connections or using “public” cloud that is distant away
with more powerful servers but longer communication de-
lay. Cardellini et al. [22] propose a game theoretic approach
to model the interaction between selfish mobile users who
want to leverage remote computational resources. COS-
MOS [23] finds out the customized and economic cluster in
its size and its setup time considering the task complexity.

Table 3 summarizes the two approaches to implement
flexible execution at run-time. Application-layer task mi-
gration involves modifying the application source code
with wrapper functions and run-time decision logic, like
MAUI [11] and Thinkair [5]. Thread-level or process-level
migration involves modifying the kernel so that for any

between two tasks. In addition to the application profile, there
are some parameters related to the graph measure in our
complexity analysis. We use N to denote the number of tasks
and M to denote the number of devices. For each task graph,
there is an initial task (task 1) that starts the application and a
final task (task N ) that terminates it. A path from initial task
to final task can be described by a sequence of nodes, where
every pair of consecutive nodes are connected by a directed
edge. We use l to denote the maximum number of nodes in a
path, i.e., the length of the longest path. Finally, din denotes
the maximum indegree in the task graph.

B. Cost and Latency

We use the general cost and latency functions in our
derivation. Let C

(j)
ex (i) be the execution cost of task i on

device j and C
(jk)
tx (d) be the transmission cost of d units of

data from device j to device k. Similarly, the latency consists
of execution latency T

(j)
ex (i) and the transmission latency

T
(jk)
tx (d). Given a task assignment strategy x 2 {1 · · · M}N ,

where the ith component, xi, specifies the device that task i is
assigned to, the total cost can be described as follows.

Cost =
NX

i=1

C(xi)
ex (i) +

X

(m,n)2E
C

(xmxn)
tx (dmn) (1)

As described in the equation, the total cost is additive over
nodes (tasks) and edges of the graph. On the other hand, the
accumulated latency up to task i depends on its preceding
tasks. Let D(i) be the latency when task i finishes, which can
be recursively defined as

D(i) = max
m2C(i)

n
T

(xmxi)
tx (dmi) + D(m)

o
+ T (xi)

ex (i). (2)

We use C(i) to denote the set of children of node i. For
example, in Fig. 2, the children of task 6 are task 4 and task
5. For each child node m, the latency is accumulating as the
latency up to task m plus the latency caused by transmission
data dmi. Hence, D(i) is determined by the slowest branch.

C. Optimization Problem

Consider an application, described by a task graph, and a
resource network, described by the processing powers and link
connectivity between available devices, our goal is to find a
task assignment strategy x that minimizes the total latency and
satisfies the cost constraint, that is,

P : min
x2[M ]N

D(N)

s.t. Cost  B.

The Cost and D(N) are defined in Eq. (1) and Eq. (2),
respectively. The constant B specifies the cost constraint,
for example, energy consumption of mobile devices. In the
following section, we propose an approximation algorithm
based on dynamic programming to solve this problem and
show that it runs in polynomial time in 1

✏ with approximation
ratio (1 + ✏).

start

finish
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Fig. 2: A tree-structured task graph, in which the two sub-
problems can be independently solved.

cost

latency
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x = B

Fig. 3: The algorithm solves each sub-problem for the min-
imum cost within latency constraint t (the area under the
horizontal line y = t). The filled circles are the optimums
of each sub-problems. Finally, it looks for the one that has the
minimum latency of all filled circles in the left plane x  B.

III. HERMES: FPTAS ALGORITHMS

In the appendix, we prove that our task assignment problem
P is NP-hard for any task graph. In this section, we first
propose the approximation scheme to solve problem P for
a tree-structure task graph and prove that this simplest version
of the Hermes algorithm is an FPTAS. Then we solve for
more general task graphs by calling the proposed algorithm for
trees a polynomial number of times. Finally, we show that the
Hermes algorithm also applies to the dynamic environment.

A. Tree-structured Task Graph

We propose a dynamic programming method to solve the
problem with tree-structured task graph. For example, in Fig.
2, the minimum latency when the task 6 finishes depends on
when and where task 4 and 5 finish. Hence, prior to solving
the minimum latency of task 6, we want to solve both task
4 and 5 first. We exploit the fact that the sub-trees rooted by
task 4 and task 5 are independent. That is, the assignment
strategy on task 1, 2 and 4 does not affect the strategy on task
3 and 5. Hence, we can solve the sub-problems respectively
and combine them when considering task 6.

We define the sub-problem as follows. Let C[i, j, t] denote
the minimum cost when finishing task i on device j within
latency t. We will show that by solving all of the sub-problems
for i 2 {1, · · · , N}, j 2 {1, · · · , M} and t 2 [0, T ] with
sufficiently large T , the optimal strategy can be obtained by

Fig. 2: A tree-structured task graph, in which the two sub-
problems can be solved independently.
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device j and C
(jk)
tx (d) be the transmission cost of d units of
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ex (i) and the transmission latency

T
(jk)
tx (d). Given a task assignment strategy x 2 {1 · · · M}N ,

where the ith component, xi, specifies the device that task i is
assigned to, the total cost can be described as follows.

Cost =
NX

i=1

C(xi)
ex (i) +

X

(m,n)2E
C
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tx (dmn) (1)

As described in the equation, the total cost is additive over
nodes (tasks) and edges of the graph. On the other hand, the
accumulated latency up to task i depends on its preceding
tasks. Let D(i) be the latency when task i finishes, which can
be recursively defined as
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tx (dmi) + D(m)
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ex (i). (2)

We use C(i) to denote the set of children of node i. For
example, in Fig. 2, the children of task 6 are task 4 and task
5. For each child node m, the latency is accumulating as the
latency up to task m plus the latency caused by transmission
data dmi. Hence, D(i) is determined by the slowest branch.

C. Optimization Problem

Consider an application, described by a task graph, and a
resource network, described by the processing powers and link
connectivity between available devices, our goal is to find a
task assignment strategy x that minimizes the total latency and
satisfies the cost constraint, that is,

P : min
x2[M ]N

D(N)

s.t. Cost  B.

The Cost and D(N) are defined in Eq. (1) and Eq. (2),
respectively. The constant B specifies the cost constraint,
for example, energy consumption of mobile devices. In the
following section, we propose an approximation algorithm
based on dynamic programming to solve this problem and
show that it runs in polynomial time in 1

✏ with approximation
ratio (1 + ✏).
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latency

y = t

x = B

Fig. 3: The algorithm solves each sub-problem for the min-
imum cost within latency constraint t (the area under the
horizontal line y = t). The filled circles are the optimums
of each sub-problems. Finally, it looks for the one that has the
minimum latency of all filled circles in the left plane x  B.

III. HERMES: FPTAS ALGORITHMS

In the appendix, we prove that our task assignment problem
P is NP-hard for any task graph. In this section, we first
propose the approximation scheme to solve problem P for
a tree-structure task graph and prove that this simplest version
of the Hermes algorithm is an FPTAS. Then we solve for
more general task graphs by calling the proposed algorithm for
trees a polynomial number of times. Finally, we show that the
Hermes algorithm also applies to the dynamic environment.

A. Tree-structured Task Graph

We propose a dynamic programming method to solve the
problem with tree-structured task graph. For example, in Fig.
2, the minimum latency when the task 6 finishes depends on
when and where task 4 and 5 finish. Hence, prior to solving
the minimum latency of task 6, we want to solve both task
4 and 5 first. We exploit the fact that the sub-trees rooted by
task 4 and task 5 are independent. That is, the assignment
strategy on task 1, 2 and 4 does not affect the strategy on task
3 and 5. Hence, we can solve the sub-problems respectively
and combine them when considering task 6.

We define the sub-problem as follows. Let C[i, j, t] denote
the minimum cost when finishing task i on device j within
latency t. We will show that by solving all of the sub-problems
for i 2 {1, · · · , N}, j 2 {1, · · · , M} and t 2 [0, T ] with
sufficiently large T , the optimal strategy can be obtained by

Fig. 3: Hermes solves each sub-problem for the minimum
cost with latency less than t. The filled circles are the opti-
mums of each sub-problem. Finally, it looks for minimum
latency over all filled circles with cost less than B.

function execution, it gets trapped in kernel and is then as-
signed to local device or remote server, like CloneCloud [4].
Hermes applies to the former approach that embraces kernel
independence and transmits only application data without
overheads like VM state and address space. On the other
hand, CloneCloud makes offloading flexible without mod-
ification on the application source code, and enables fine-
grained partition on thread level, however, it requires non-
trivial modification on the kernel code.

One crucial component that is closely related to system
performance is how to partition an application and offload
tasks with the awareness of resource availability at run time.
To solve the optimal strategy, both MAUI and CloneCloud
rely on a standard ILP solver that might cause significant
computational overhead. COSMOS breaks the formulation
into three sub-problems, however, the combination of the
three strategies does not guarantee the global optimum.
Odessa and MapCloud propose heuristics that do not have
performance guarantee. As we will show in Section 6, a sub-
optimal task assignment strategy may lead to significant
performance loss in some scenarios. Hence, we develop
Hermes that efficiently solves for near-optimal strategy.
Furthermore, we are positive that Hermes can be incor-
porated into real systems to optimize the performance of
computational offloading.

4 HERMES: FPTAS ALGORITHMS

In this section, we first propose the approximation scheme
to solve Problem P for a tree-structure task graph and prove
that this simplest version of Hermes is an FPTAS. Then
we solve more general task graphs by calling the proposed
algorithm within polynomial number of times.
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Algorithm 1 Find maximum latency

1: procedure FINDT (N )
2: q ← BFS (G,N) . run Breadth First Search on G
3: for i← q.end, q.start do . start from the leaves
4: if i is a leaf then
5: L[i, j]← T

(j)
i ∀j ∈ [M ]

6: else
7: for j ← 1,M do
8: L[i, j]← . max latency finishing i on j

T
(j)
i + max

m∈C(i)
max
k∈[M ]

{L[m, k] + T
(kj)
mi }

9: T ← maxj∈[M ] L[N, j]
10: end procedure

Algorithm 2 Hermes FPTAS for tree

1: procedure FPTAStree(N, ε)
2: T ← FINDT (N)
3: q ← BFS (G,N)
4: for r ← 1, log2 T do
5: Tr ← T

2r−1 , δr ← εT
l2r

6: x̃← DP (q, Tr, δr)
7: if L(x̃) ≥ (1 + ε) T2r then
8: return
9: end procedure

10:
11: procedure DP (q, Tup, δ)
12: K ← dTup

δ e
13: for i← q.end, q.start do
14: if i is a leaf then

15: C[i, j, k]←
{
C

(j)
i ∀k ≥ qδ(T (j)

i )

∞ otherwise
16: else
17: for j ← 1,M , k ← 1,K do
18: Calculate C[i, j, k] from (6)
19: kmin ← minj∈[M ] k s.t. C[N, j, k] ≤ B
20: end procedure

4.1 Tree-structured Task Graph

We propose a dynamic programming method to solve the
problem on tree-structured task graphs. For example, in Fig.
2, the minimum latency when task 6 finishes depends on
when and where task 4 and 5 finish. Hence, prior to solving
the minimum latency of task 6, we want to solve both task
4 and 5 first. We exploit the fact that the sub-trees rooted by
task 4 and task 5 are independent. That is, the assignment
strategy on task 1, 2 and 4 does not affect the strategy
on task 3 and 5. Hence, we can solve the sub-problems
independently and combine them when considering task 6.

We define the sub-problem as follows. Let C[i, j, t] de-
note the minimum cost when finishing task i on device j
within latency t. We will show that by solving all of the
sub-problems for i ∈ [N ], j ∈ [M ] and t ∈ [0, T ] with
sufficiently large T , the optimal strategy can be obtained
by combining the solutions of these sub-problems. Fig. 3
shows our methodology. Each circle marks the performance
given by an assignment strategy, with x-component as cost
and y-component as latency. Our goal is to find out the red

circle, that is, the strategy that results in minimum latency
and satisfies the cost constraint. Under each horizontal
line y = t, we first identify the circle with minimum x-
component, which specifies the least-cost strategy among all
of strategies that result in latency at most t. These solutions
are denoted by the filled circles. In the end, we look at the
one in the left plane (x ≤ B) whose latency is the minimum.

Instead of solving infinite number of sub-problems for
all t ∈ [0, T ], we discretize the time domain by using the
quantization function

qδ(x) = k, if (k − 1)δ < x ≤ kδ. (3)

It suffices to solve all the sub-problems for k ∈ {1, · · · ,K},
where K = dTδ e. We will analyze how the performance
is affected due to the loss of precision by doing quantiza-
tion and the trade-off with algorithm complexity after we
present our algorithm. Suppose we are solving the sub-
problem C[i, j, k], given that all of sub-problems of the
preceding tasks have been solved, the recursive relation can
be described as follows.

C[i, j, k] = C
(j)
i

+ min
xm:m∈C(i)

{
∑

m∈C(i)
C[m,xm, k − km] + C

(xmj)
mi },

(4)

km = qδ
(
T

(j)
i + T

(xmj)
mi

)
. (5)

That is, to find out the minimum cost within latency k at
task i, we trace back to its child tasks and find out the min-
imum cost over all possible strategies, with the latency that
excludes the execution delay of task i and data transmission
delay. As the cost function is additive over tasks and the
decisions on each child task is independent with each other,
we can further lower down the solution space from Mz

to zM , where z is the number of child tasks of task i. By
making decisions on each child task independently, we have

C[i, j, k] = C
(j)
i

+
∑

m∈C(i)
min

xm∈[M ]
{C[m,xm, k − km] + C

(xmj)
mi }. (6)

After solving all the sub-problems C[i, j, k], given the final
task is always assigned to the local device, the optimal
strategy is solved by the following combining step.

min k s.t. C[N, 1, k] ≤ B. (7)

Let |I| be the number of bits that are required to rep-
resent an instance of our problem. As an FPTAS runs in
the time bounded by a polynomial of problem size, |I| and
1
ε [13], we have to bound K by choosing T that is larger
enough to cover the dynamic range, and choosing the quan-
tization step size δ to achieve the required approximation
ratio. To find T , we solve an unconstrained problem for
maximum latency given the input instance. We also pro-
pose a polynomial-time dynamic programming to solve this
problem exactly, which is summarized in Algorithm 1. To
realize how the solution provided by Hermes approximates
the minimum latency, we take iterative approach and reduce
the dynamic range and step size for each iteration until the
solution is close enough to the minimum.
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We summarize Hermes for tree-structure task graph in
Algorithm 2. For rth iteration, we solve for half of the
dynamic range with half of the step size compared to
last iteration. The procedure DP solves for the minimum
quantized latency based on the dynamic programming de-
scribed in (6). Let x̃ be the output strategy suggested by the
procedure and L(x̃) be the total latency. Algorithm 2 stops
when L(x̃) ≥ (1 + ε) T2r , or after running log2 T iterations,
which implies the smallest precision has been reached.

Theorem 2. Algorithm 2 runs in O(dinNM
2 l
ε log2 T ) time

and admits a (1 + ε) approximation ratio.

Proof. From Algorithm 2, each DP procedure solves NMK
sub-problems, where K = dTr

δr
e = O( lε ). Let din denote the

maximum indegree of the task graph. For solving each sub-
problem in (6), there are at most din minimization problems
over M devices. Hence, the overall complexity of a DP
procedure can be bounded by

O(NMK × dinM) = O(dinNM
2 l

ε
).

Algorithm 2 involves at most log2 T iterations, hence, it
runs in O(dinNM

2 l
ε log2 T ) time. Since both l and din of

a tree can be bounded by N , and log2 T is bounded by the
number of bits to represent the instance, Algorithm 2 runs
in polynomial time of problem size, |I| and 1

ε .
Now we prove the performance guarantee provided by

Algorithm 2. For a given strategy x, let L̂(x) denote the
quantized latency and L(x) denote the original one. That
is, L(x) = D(N,x). Assume that Algorithm 2 stops at the
rth iteration and outputs the assignment strategy x̃. As x̃
is the strategy with minimum quantized latency solved by
Algorithm 2, we have L̂(x̃) ≤ L̂(x?), where x? denotes
the optimal strategy. For a task graph with depth l, only
at most l quantization procedures have been taken. By the
quantization defined in (3), it always over-estimates by at
most δr . Hence, we have

L(x̃) ≤ δrL̂(x̃) ≤ δrL̂(x?) ≤ L(x?) + lδr (8)

Since Algorithm 2 stops at the rth iteration, we have

(1 + ε)
T

2r
≤ L(x̃) ≤ L(x?) + lδr = L(x?) + ε

T

2r
.

That is,
T

2r
≤ L(x?).

From (8), we achieve the approximation ratio as required.

L(x̃) ≤ L(x?) + lδr = L(x?) + ε
T

2r
≤ (1 + ε)L(x∗). (9)

As chain is a special case of a tree, Algorithm 2 also
applies to the task assignment problem of serial tasks.
Instead of using the ILP solver to solve the formulation for
serial tasks proposed previously in [11], we have therefore
provided an FPTAS to solve it. Furthermore, Algorithm 2
generalizes the FPTAS we have proposed in [24] in the
way that we no longer assume that the input instance is
bounded.

Algorithm 2 Hermes FPTAS for serial trees

1: procedure FPTASpath(N ) . min. cost when task N finishes at devices 1, · · · , M within latencies 1, · · · , K
2: for root il, l 2 {1, · · · , n} do . solve the conditional sub-problem for every tree
3: for j  1, M do
4: Call FPTAStree(il) conditioning on j with modification described in Eq. (7)
5: for l 2, n do
6: Perform combining step in Eq. (8) to solve C[il, jl, kl]

7: end procedure

chain tree tree
i1 i2 i3

Fig. 4: A task graph of serial trees

with depth l, only at most l quantization procedures are taken.
By the quantization defined in Eq. (3), it always over estimates
by at most �. Hence, we have

L(x̃)  �L̂(x̃)  �L̂(x⇤)  L(x⇤) + l� (5)

Let Tmin = cmmax

rmax
, that is, the latency when the most

intensive task is executed at the fastest device. As the most
intensive task must be assigned to a device, the optimal
latency, L(x⇤), is at least Tmin. From Eq. (5), we have

L(x̃)  L(x⇤) + l� = L(x⇤) + ✏Tmax  (1 + ✏
rmax

rmin
)L(x⇤). (6)

For realistic resource network, the ratio of the fastest CPU
rate and the slowest CPU rate is bounded by a constant c0.
Let ✏0 = 1

c0 ✏, then the overall complexity is still bounded by
O(dinNM2 l2

✏ ) and Algorithm 1 admits an (1 + ✏) approxi-
mation ratio. Hence, Algorithm 1 is an FPTAS.

As chain is a special case of a tree, the Hermes FPTAS
Algorithm 1 also applies to the task assignment problem of
serial tasks. Instead of using the ILP solver to solve the
formulation for serial tasks proposed previously in [9], we
have therefore provided an FPTAS to solve it.

B. Serial Trees

Most applications start from a unique initial task, then split
to multiple parallel tasks and finally, all the tasks are merged
into one final task. Hence, the task graph is neither a chain
nor a tree. In this section, we show that by calling Algorithm
1 in polynomial number of times, Hermes can solve the task
graph that consists of serial of trees.

The task graph in Fig. 4 can be decomposed into 3 trees
connecting serially, where the first tree (chain) terminates in
task i1, the second tree terminates in task i2. In order to find
C[i3, j3, k3], we independently solve for every tree, with the
condition on where the root task of the former tree ends. For
example, we can solve C[i2, j2, k2|j1], which is the strategy
that minimizes the cost in which task i2 ends at j2 within delay
k2 and given task i1 ends at j1. Algorithm 1 can solve this
sub-problem with the following modification for the leaves.

C[i, j, k|j1] =(
C

(j)
ex (i) + C

(j1j)
tx (di1i) 8k � q�(T

(j)
ex (i) + T

(j1j)
tx (di1i)),

1 otherwise
(7)

To solve C[i2, j2, k2], the minimum cost up to task i2, we
perform the combining step as

C[i2, j2, k2] = min
j2[M ]

min
kx+ky=k2

C[i1, j, kx] + C[i2, j2, ky|j].
(8)

Similarly, combining C[i2, j2, kx] and C[i3, j3, ky|j2] gives
C[i3, j3, k3]. Algorithm 2 summarizes the steps in solving the
assignment strategy for serial trees. To solve each tree involves
M calls on different conditions. Further, the number of trees
n can be bounded by N . The latency of each tree is within
(1 + ✏) optimal, which leads to the (1 + ✏) approximation of
total latency. Hence, Algorithm 2 is also an FPTAS.

C. Parallel Chains of Trees

We take a step further to extend Hermes for more com-
plicated task graphs that can be viewed as parallel chains of
trees, as shown in Fig. 1. Our approach is to solve each chains
by calling FPTASpath with the condition on the task where
they split. For example, in Fig. 1 there are two chains that can
be solved independently by conditioning on the split node.
The combining procedure consists of two steps. First, solve
C[N, j, k|jsplit] by Eq. (4) conditioned on the split node. Then
C[N, j, k] can be solved similarly by combining two serial
blocks in Eq. (8). By calling FPTASpath at most din times,
this proposed algorithm is also an FPTAS.

D. Stochastic Optimization

The dynamic resource network, where server availabilities
and link qualities are changing, makes the optimal assignment
strategy vary with time. For Hermes, which solves the opti-
mal strategy based on the profiling data, it is reasonable to
formulate a stochastic optimization problem of minimizing
the expected latency subject to expected cost constraint. If
both latency and cost metrics are additive over tasks, we
can directly apply the deterministic analysis to the stochastic
one by assuming that the profiling data is the 1st order
expectations. However, it is not clear if we could apply our
deterministic analysis for parallel computing as the latency
metric is nonlinear. For example, for two random variables X
and Y , E{max(X, Y )} = max(E{X}, E{Y }) is in general
not true. In the following, we exploit the fact that the latency

Fig. 4: A task graph of serial trees

4.2 Serial Trees

In [2], several of applications are modeled as task graphs
that start from a unique initial task, then split to multiple
parallel tasks and finally, all the tasks are merged into one
final task. Hence, the task graph is neither a chain nor a
tree. In this section, we show that by calling Algorithm 2
in polynomial number of times, Hermes can solve the task
graph that consists of serial trees.

The task graph in Fig. 4 can be decomposed into 3 trees
connecting serially, where the first tree (chain) terminates
in task i1, the second tree terminates in task i2. In order
to find C[i3, j3, k3], we independently solve for every tree,
with the condition on where the root task of the former tree
ends. For example, we can solve C[i2, j2, k2|j1], which is the
strategy that minimizes the cost in which task i2 ends at j2
within delay k2 and given task i1 ends at j1. Algorithm 2
can solve this sub-problem with the following modification
for the leaves.

C[i, j, k|j1] ={
C

(j)
i + C

(j1j)
i1i

∀k ≥ qδ(T (j)
i + T

(j1j)
i1i

),

∞ otherwise
(10)

To solve C[i2, j2, k2], the minimum cost up to task i2, we
perform the combining step as

C[i2, j2, k2] = min
j∈[M ]

min
kx+ky=k2

C[i1, j, kx] + C[i2, j2, ky|j].
(11)

Similarly, combining C[i2, j2, kx] and C[i3, j3, ky|j2] gives
C[i3, j3, k3]. Algorithm 3 summarizes the steps in solving
the assignment strategy for serial trees. To solve each tree
involves M calls on different conditions. Further, the num-
ber of trees n can be bounded by N . The latency of each
tree is within (1 + ε) optimal, which leads to the (1 + ε)
approximation of total latency. Hence, Algorithm 3 is also
an FPTAS.

4.3 Parallel Chains of Trees

We take a step further to extend Hermes for more compli-
cated task graphs that can be viewed as parallel chains of
trees, as shown in Fig. 1. Our approach is to solve each
chains by calling FPTASpath with the condition on the task
where they split. For example, in Fig. 1 there are two chains
that can be solved independently by conditioning on the
split node. The combining procedure consists of two steps.
First, solve C[N, j, k|jsplit] by (6) conditioned on the split
node. Then C[N, j, k] can be solved similarly by combining
two serial blocks in (11). By calling FPTASpath at most din
times, this proposed algorithm is also an FPTAS.

4.4 Resource Contention on Parallel Tasks

In Fig. 1, the task graph consists of parallel tasks that might
be running at the same device at the same time, which

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMC.2017.2679712

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

Algorithm 3 Hermes FPTAS for serial trees

1: procedure FPTASpath(N ) . min. cost when task N finishes at devices 1, · · · ,M within latencies 1, · · · ,K
2: for root il, l ∈ {1, · · · , n} do . solve the conditional sub-problem for every tree
3: for j ← 1,M do
4: Call FPTAStree(il) conditioning on j with modification described in (10)
5: for l← 2, n do
6: Perform combining step in (11) to solve C[il, jl, kl]

7: end procedure

causes resource contention over CPU cycles, memory usage
and network access. For example, when we assign multiple
parallel tasks to the same device, the resources are shared
over concurrent threads (or processes 2).

In this section, we consider the resource sharing over
sibling tasks. Using Fig. 2 as an example, if task 1 and
2 are running at different devices (x1 and x2), they can
fully utilize the available resources on the two devices,
respectively. The task execution latencies remain the same
as T (x1)

1 and T (x2)
2 . However, if we assign them to the same

device x, then the sharing over CPU cycles leads to longer
latencies as T (x)

1 + t and T2(x) + t. In general, the task
execution latency T (xm)

m depends on the assignments on its
sibling tasks m ∈ C(i). Hence, we use tm to denote the extra
latency on executing task m and consider this term when
solving the sub-problem in (5).

C[i, j, k] = C
(j)
i

+ min
xm:m∈C(i)

{
∑

m∈C(i)
C[m,xm, k − km] + C

(xmj)
mi },

(12)

km = qδ
(
T

(j)
i + T

(xmj)
mi + tm + tmi

)
. (13)

Note that tm depends on the assignments {xm : m ∈ C(i)},
so we have to jointly consider the assignments on these sib-
ling tasks in the minimization problem. On the other hand,
the network resource sharing, including sharing the down-
load bandwidth on device j that executes task i, and upload
bandwidth on a potential device xm that executes more than
one sibling tasks, induces extra latency as well. Hence, we
denote it as tmi, which depends on {xm : m ∈ C(i)} and xj ,
and consider it in (13).

For resource sharing over globally parallel tasks, we
no longer can make optimal decision on each sub-problem
independently. This problem is highly related to makespan
minimization problems in machine scheduling literature
[25], [26], which have been shown to be strongly NP-hard
[27]. Garey et al. [28] show that if P 6= NP, a strongly NP-hard
problem does not have an FPTAS. Hence, we cannot ap-
proximate the solution arbitrarily close within polynomial
time. Considering the observation that the task graphs are in
general more chain-structured with narrow width, like the
face recognition and pose recognition benchmarks in [2], we
propose Hermes that solves the optimal assignment strategy
with low complexity, and addresses the resource contention
between local parallel tasks.

2. Depending on the partition granularity, different approaches have
been proposed for the system prototypes [4], [11].

5 APPLYING HERMES TO DYNAMIC ENVIRONMENT

At the application run time, the task execution latency
on a device might be affected by its CPU load, memory
and other time-varying resource availability. Moreover, data
transmission latency over a wireless channel varies with
time due to mobility and other dynamic features. In this
section, we model the execution latency on a device and
the data transmission latency over a channel as stochastic
processes. We adapt Hermes to two different scenarios. First,
if a system keeps track of the running averages on the
single-stage latencies, then given these average numbers,
Hermes suggests a strategy to minimize the average latency
so that the average cost is within the budget. Second, in case
when these averages are unknown, we propose an online
version of Hermes to learn the environment and derive
its performance guarantee. This online version of Hermes
guarantees the convergence to the optimal strategy with an
upper bound on the performance loss due to not knowing
the devices’ and channels’ performance at run time.

5.1 Stochastic Optimization

We aim to apply our deterministic to stochastic environ-
ment. If both latency and cost metrics are additive over
tasks, we can directly apply Hermes to the stochastic en-
vironment by assuming that the profiling data is the 1st

order expectation. However, it is not clear if we could apply
our analysis for parallel computing as the latency metric
is nonlinear. For example, for two random variables X
and Y , E{max(X,Y )} 6= max(E{X},E{Y }) in general.
In the following, we exploit the fact that the latency of
a single branch is still additive over tasks and show that
our deterministic analysis can be directly applied to the
stochastic optimization problem, minimizing the expected
latency such that the expected cost is less than the budget.

Let C̄[i, j, k] be the minimum expected cost when task i
finishes on device j within expected delay k. It suffices to
show that the recursive relation in (6) still holds for expected
values. As the cost is additive over tasks, we have

C̄[i, j, k] = E{C(j)
i }

+
∑

m∈C(i)
min

xm∈[M ]
{C̄[m,xm, k − k̄m] + E{C(xmj)

mi )}}.

The k̄m specifies the sum of expected data transmission
delay and expected task execution delay. That is,

k̄m = qδ
(
E{T (j)

i + T
(xmj)
mi }

)
.

Based on the fact that Hermes is tractable with respect to
both the application size (N ) and the network size (M ),
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we propose an update scheme that is adaptive to dynamic
resource network. The strategy is updated every period
of time, which aims to minimize the expected latency in
the following coherence time period. We will show how
the proposed scheme adapts to the changes of network
condition in Section 6.

5.2 Learning the Unknown Environment
We adapt the sampling method, deterministic sequencing
of exploration and exploitation (DSEE) [14], to learn the
unknown environment and derive the performance bound.
The DSEE algorithm consists of two phases, exploration and
exploitation. During the exploration phase, DSEE follows
a fixed order to probe (sample) the unknown distributions
thoroughly. Then, in the exploitation phase, DSEE exploits
the best strategy based on the probing result.

In [14], learning the unknown environment is modeled
as a multi-arm banded (MAB) problem, where at each time
an agent chooses over a set of “arms”, gets the payoff from
the selected arm and tries to learn the statistical information
from sensing it, which will be considered in future decision.
The goal is to figure out the best arm from exploration
and exploit it later on. However, the exploration costs some
price due to the mismatch between the payoffs given by
the explored arm and the best one [29]. Hence, we have
to efficiently explore the environment and compare the
performance with the optimal strategy (always choose the
best arm).

The authors in [14] prove that the performance gap com-
pared to the optimal strategy is bounded by a logarithmic
function of number of trials as long as each arm is sampled
logarithmically often. That is, if we get enough samples
from each arm (O(lnV )) compared to total trials V , we
can make good enough decision such that the accumulated
performance loss flats out with time, which implies we can
learn and exploit the best arm without losing noticeable
payoff in the end.

In the following, we adapt DSEE and combine Hermes to
learn the unknown and dynamic environment, and derive
the bound on performance loss compared to the optimal
strategy. We model the execution latency as

T
(j)
i = αiT

(j), (14)

where αi is the task complexity and T (j) is the latency of
executing an unit task on device j, which is highly related
to its CPU clock rate. We use linear model to simplify our
analysis and presentation. In general, the task execution
latency is a nonlinear function of task complexity, CPU clock
rate and other factors [30]. We further assume that T (j) is an
i.i.d. process with unknown mean θ(j). Similarly, the data
transmission latency T (jk)

mn can be expressed as

T (jk)
mn = dmnT

(jk), (15)

where dmn is the amount of data exchange and T (jk) is the
transmission latency of unit data, which is also modeled as
an i.i.d. process with mean θ(jk).

For some real applications, like video processing appli-
cations considered in [2], a stream of video frames comes as
input to be processed frame by frame. For example, a video-
processing application takes a continuous stream of image

0 TT/2T/4

1st round2nd round

selected edge

B

A

A

C

B

C

A A

B

B C

C

selected edge

Fig. 5: The task graph has matching number equal to 3.
Hence, we can sample at least 3 channels (AB,CA,BC)
in one execution. We can further assign tasks that are left
blank to other devices to get more samples.

frames as input, where each image comes and goes though
all processing tasks as shown in Fig. 1. Hence, for each data
frame, our proposed algorithm aims to make decision on
the assignment strategy of current frame, considering the
performance of different assignment strategies learned from
previous frames.

We combine Hermes with DSEE to sample all devices
and channels thoroughly at the exploration phase, calculate
the sample means, and apply Hermes to solve and exploit
the optimal assignment based on sample means. During the
exploration phase, we design a fixed assignment strategy
to get samples from devices and channels. For example, if
task n follows after the execution of task m, by assigning
task m to device j and assigning task n to device k, we
could get one sample of T (j), T (k) and T (jk). Since sampling
all the M2 channels implies that all devices have been
sampled M times, we focus on sampling all channels using
as less executions of the application as possible. That is,
we would like to know, for each frame (an execution of
the application), what is the maximum number of different
channels we can get a sample from. This number depends
on the structure of the task graph, which, in fact, is lower-
bounded by the matching number of the graph. A matching
on a graph is a set of edges, where no two of which share
a node [31]. The matching number of a graph is then the
maximum number of edges that does not share a node.
Taking an edge from the set, which connects two tasks in
the task graph, we can assign these two tasks arbitrarily to
get a sample of data transmission over our desired channel.

Fig. 5 illustrates how we design the task assignment to
sample as many channels in one execution. First, we treat
every directed edges as non-directed ones and find out the
graph has matching number equal to 3. That is, we can
sample at least 3 channels (AB,CA,BC) in one execution.
There are some tasks that are left blank. We can assign them
to other devices to get more samples.

In every exploration epoch, we want to get at least one
sample from every channel. Hence, we want to know how
many frames (executions) are needed in one epoch. We
derive a bound for general case. For a DAG, its matching
number is shown to be lower-bounded by |E|

dmax
, where dmax

is the maximum degree of a node [32]. For example, the
matching number of the graph in Fig. 5 is lower bounded
by 10

5 = 2. Hence, to sample each channel at least once, we
require at most r = ddmaxM

2

|E| e frames.
Algorithm 4 summarizes how we adapt Hermes to dy-

namic environment. We separate the time (frame) horizon
into epoches, where each of them contains r frames. Let
A(v − 1) ⊆ {1, · · · , v − 1} be the set of exploration epoches
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Algorithm 4 Hermes with DSEE

1: procedure HermesDSEE(w)
2: r ← ddmaxM

2

|E| e
3: A(0)← ∅ . A(v) defines the set of exploration epoches up to v
4: for v ← 1, · · · , V do
5: if |A(v − 1)| < dw ln ve then . exploration phase
6: for t← 1, · · · , r do . each epoch contains r frames
7: Sample the channels with strategy x̂

8: Calculate the sample means, θ̄(j)(v) and θ̄(jk)(v), for all j, k ∈ [M ]
9: A(v)← A(v − 1) + {v}

10: else . exploitation phase
11: Solve the best strategy x̃(v) with input T (j)

i = αiθ̄
(j)(v) and T (jk)

mn = dmnθ̄
(jk)(v)

12: for t← 1, · · · , r do
13: Exploit the assignment strategy x̃(v)

14: end procedure

prior to v. At epoch v, if the number of exploration epoches
is below the threshold (|A(v − 1)| < dw ln ve), then epoch
v is an exploration epoch. Algorithm 4 uses a fixed assign-
ment strategy x̂ to get samples. After r frames have been
processed, Algorithm 4 gets at least one new sample from
each channel and device, and updates the sample means. At
an exploitation epoch, Algorithm 4 calls Hermes to solve for
the best assignment strategy x̃(v) based on current sample
means, and uses this assignment strategy for the frames in
this epoch.

In the following, we derive the performance guarantee
of Algorithm 4. First, we present a lemma from [14], which
specifies the probability bound on the deviation of sample
mean.

Lemma 1. Let {X(t)}∞t=1 be i.i.d. random variables drawn from
a light-tailed distribution, that is, there exists u0 > 0 such that
E[exp(uX)] < ∞ for all u ∈ [−u0, u0]. Let X̄s =

∑s
t=1X(t)
s

and θ = E[X(1)]. We have, given ζ > 0, for all η ∈ [0, ζu0],
a ∈ (0, 1

2ζ ],

P{|X̄s − θ| ≥ η} ≤ 2 exp(−aη2s). (16)

Lemma 1 implies the more samples we get, the much
less chance the sample mean deviates from the actual mean.
From (2), the overall latency is the sum of single-stage
latencies (T (j)

i and T (jk)
mn ) across the slowest branch. Hence,

we would like to use Lemma 1 to get a bound on the
deviation of total latency. Let β be the maximum latency
solved by Algorithm 1 with the following input instance

T
(j)
i = αi, ∀i ∈ [N ], j ∈ [M ],

T (jk)
mn = dmn, ∀(m,n) ∈ E , j, k ∈ [M ].

Hence, if all the single-stage sample means deviate no more
than η from their actual means, then the overall latency
deviates no more than βη. In order to prove the performance
guarantee of Algorithm 4, we identify an event and verify
the bound on its probability in the following lemma.

Lemma 2. Assume that T (j), T (jk) are independent random
variables drawn from unknown light-tailed distributions with
means θ(j) and θ(jk), for all j, k ∈ [M ]. Let a, η be the numbers
that satisfy Lemma 1. For each assignment strategy x, let θ̄(x, v)

be the total latency accumulated over the sample means that
are calculated at epoch v, and θ(x) be the actual expected total
latency. We have, for each v,

P{∃x ∈ [M ]N | |θ̄(x, v)− θ(x)| > βη}
≤

∑

n∈[M2+M ]

(M2+M
n

)
(−1)(−2)ne−naη

2|A(v−1)|.

Proof. We want to bound the probability that there exists
a strategy whose total deviation (accumulated over sample
means) is greater than βη. We work on its complement event
that the total deviation of each strategy is less than βη. That
is,

P{∃x ∈ [M ]N | |θ̄(x, v)− θ(x)| > βη}
= 1− P{|θ̄(x, v)− θ(x)| ≤ βη ∀x ∈ [M ]N}

We further identify the fact that if every single-stage devia-
tion is less than η, then the total deviation is less than βη for
all strategy x ∈ [MN ]. Hence,

1−P{|θ̄(x, v)− θ(x)| ≤ βη ∀x ∈ [M ]N}
≤ 1− P{(

⋂

j∈[M ]

|θ̄(j) − θ(j)| ≤ η) ∩ (
⋂

j,k∈[M ]

|θ̄(jk) − θ(jk)| ≤ η)}

= 1−
∏

j∈[M ]

P{|θ̄(j) − θ(j)| ≤ η} ·
∏

j,k∈[M ]

P{|θ̄(jk) − θ(jk)| ≤ η}

≤ 1−
[
1− 2e−aη

2|A(v−1)|
]M2+M

(17)

≤
∑

n∈[M2+M ]

(
M2+M

n

)
(−1)(−2)ne−naη

2|A(v−1)| (18)

Leveraging the fact that all of random variables are in-
dependent and Lemma 1, where at epoch v, we get at
least |A(v − 1)| samples for each unknown distribution, we
arrive at (17). Finally, we use the binomial expansion to
achieve the bound in (18).

In the following, we compare the performance of Al-
gorithm 4 with the optimal strategy (assuming the actual
averages, θ(j) and θ(jk), are known), which is obtained by
solving Problem P with the input instance

T
(j)
i = αiθ

(j), ∀i ∈ [N ], j ∈ [M ],

T (jk)
mn = dmnθ

(jk), ∀(m,n) ∈ E , j, k ∈ [M ].
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Theorem 3. Let η = c
2β , where c is the smallest precision

so that for any two assignment strategies x and y, we have
|θ(x) − θ(y)| > c whenever θ(x) 6= θ(y). Let RV be the
expected performance gap accumulated up to epoch V , which can
be bounded by

RV ≤ rT (w lnV + 1)

+ rT
∑

n∈[M2+M ]

(M2+M
n

)
(−1)(−2)n(1 +

1

naη2w − 1
)

Proof. The expected performance gap consists of two parts,
the expected loss due to the use of fixed strategy during
exploration (RfixV ) and the expected loss due to the mis-
match of strategies during exploitation (RmisV ). During the
exploration phase, the expected loss of each frame can be
bounded by T , which can be obtained by Algorithm 1 with
αiθ

(j) and dmnθ
(jk) as input instance. Since the number of

exploration epoches |A(v)| will never exceed (w lnV + 1),
we have

RfixV ≤ rT (w lnV + 1).

On the other hand, RmisV is accumulated during the ex-
ploitation phase whenever the best strategy given by sample
means is not the same as the optimal strategy, where the loss
can also be bounded by T . That is,

RmisV ≤ E{
∑

v 6∈A(v)

rT I(x̃(v) 6= x?)} = rT
∑

v 6∈A(v)

P{x̃(v) 6= x?}

≤ rT
∑

v 6∈A(v)

P{∃x ∈ [M ]N | |θ̄(x, v)− θ(x)| > βη} (19)

≤ rT
∑

v 6∈A(v)

∑

n∈[M2+M ]

(
M2+M

n

)
(−1)(−2)ne−naη

2|A(v−1)| (20)

≤ rT
∑

n∈[M2+M ]

(
M2+M

n

)
(−1)(−2)n

∞∑

v=1

v−naη
2w (21)

≤ rT
∑

n∈[M2+M ]

(
M2+M

n

)
(−1)(−2)n(1 +

1

naη2w − 1
) (22)

In (19), we want to bound the probability when the best
strategy based on sample means is not the optimal strategy.
We identify an event, where there exists a strategy x whose
deviation is greater than βη. If this event doesn’t happen,
in worst case, the difference between any two strategies
deviates at most 2βη = c. Hence, θ̄(x?, v) is still the mini-
mum, which implies Algorithm 4 still outputs the optimal
strategy. We further use Lemma 2 in (20) and acquire (21)
by the fact that epoch v is in exploration phase implies
|A(v − 1)| >= w ln v. Finally, selecting w to be larger
enough such that aη2w > 1 guarantees the result in (22).

Theorem 3 shows that the performance gap consists of
two parts, one of which grows logarithmically with V and
another one remains the same as V is increasing. Hence,
the increase of performance gap will be negligible when
V (time) grows, which implies Algorithm 4 will find the
strategy that matches to the optimal performance as time
goes on. Furthermore, Theorem 3 provides the upper bound
on the performance loss based on the worst-case analysis,
in which w is a parameter left for users in Algorithm 4.
A smaller w leads to less amount of probing (exploration)
and hence reduces the accumulated loss during exploration,
however, may increase the chance of missing the optimal

strategy during exploitation. In next section, we will com-
pare Algorithm 4 with other algorithms by simulation.

6 EVALUATION OF HERMES

We first verify that Hermes provides near-optimal solu-
tion with tractable complexity. Then, we apply Hermes
to the dynamic environment, using the sampling method
proposed in Algorithm 4. We also use the real data set of
several benchmark profiles to evaluate the performance of
Hermes and compare it with the heuristic Odessa approach
proposed in [2]. Finally, couple of run-time scenarios like
resource contention and node failure are evaluated.

6.1 Algorithm Performance

From our analysis result in Section 4, the Hermes algorithm
runs in O(dinNM

2 l
ε log2 T ) time with approximation ratio

(1+ε). In the following, we provide the numerical results to
show the trade-off between the complexity and the accuracy.
Given the task graph shown in Fig. 1 and M = 3, the
performance of Hermes versus different values of ε is shown
in Fig. 6. When ε = 0.4, the performance converges to the
minimum latency. Fig. 6 also shows the bound of worst case
performance in dashed line. The actual performance is much
better than the (1 + ε) bound. We generalize our previous
result in [24] that Hermes admits (1 + ε) approximation for
all problem instances, including the unbounded ones. Our
previous result admits a (1+ cε) performance bound, where
c depends on the input instance.

We examine the performance of Hermes on different
problem instances. Fig. 7 shows the performance of Hermes
on 200 different application profiles. Each profile is selected
independently and uniformly from the application pool
with different task workloads and data communications.
The result shows that for every instance we have considered,
the performance is much better than the (1 + ε) bound and
converges to the optimum as ε decreases.

6.2 CPU Time Evaluation

Fig. 8 shows the CPU time for Hermes to solve for the
optimal strategy as the problem size scales. We use a less
powerful laptop with very limited resources to simulate a
mobile computing environment and use java management
package for CPU time measurement. The laptop is equipped
with 1.2GHz dual-core Intel Pentium processor and 1MB
cache. For each problem size, we measure Hermes’ CPU
time over 100 different problem instances and show the av-
erage with vertical bar as standard deviation. As the number
of tasks (N ) increases in a serial task graph, the CPU time
needed for the Brute-Force algorithm grows exponentially,
while Hermes scales well and still provides the near-optimal
solution (ε = 0.01). From our complexity analysis, for serial
task graph l = N , din = 1 and we fix M = 3, the CPU time
of Hermes can be bounded by O(N2).

6.3 Performance on Dynamic Environment

We simulate an application that processes a stream of data
frames under dynamic environment. The resource network
consists of 3 devices with unit process time T (j) on device j.
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Fig. 6: Hermes performs much better
than the worst case bound. When ε =
0.4, the objective value has converged
to the minimum.
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200 different application profiles. Each
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Fig. 9: The expected latency and cost over 10000 samples of
resource network.

The devices form a mesh network with unit data transmis-
sion time T (jk) over the channel between device j and k.
We model T (j) and T (jk) as stochastic processes that are
uniformly-distributed with given means and evolve i.i.d.
over time. Hence, for each frame, we draw the samples from
corresponding uniform distributions, and get the single-
stage latencies by (14) and (15).

6.3.1 Stochastic Optimization

If the means of these stochastic processes are known, Her-
mes can solve for the best strategy based on these means.
Fig. 9 shows that how the strategies suggested by Hermes
perform under the dynamic environment. The average per-
formance is taken over 10000 samples. From Fig. 9, the
solution converges to the optimal one as epsilon decreases,
which minimizes the expected latency and satisfies the
expected cost constraint.

6.3.2 Online Learning to Unknown Environment

If the means are unknown, we adapt Algorithm 4 to probe
the devices and channels and exploit the strategy that is
the best based on the sample means. Fig. 10 shows the per-
formance of Hermes using DSEE as the sampling method.
We see that the average latency per frame converges to the
minimum, which implies Algorithm 4 learns the optimal
strategy and exploits it most of the time. On the other hand,
Algorithm 4 uses the strategy that costs less but performs
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Fig. 10: The performance of Hermes using DSEE sampling
method in dynamic environment. The average of frame
latency approaches to the optimum and the accumulated
performance gap compared to the optimal strategy flats out
as the number of frames increases.
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Fig. 11: Hermes using DSEE only resolves the strategy at the
beginning of each exploitation phase but offers competitive
performance compared to the algorithm that resolves the
strategy every frame.

worse than the optimal one during the exploration phase.
Hence, the average cost per frame is slightly lower than the
cost induced by the optimal strategy. Finally, we measure
the performance gap, which is the extra latency caused by
sub-optimal strategy accumulated over frames. The gap flats
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out in the end, which implies the increase on extra latency
becomes negligible.

We compare Algorithm 4 with two other algorithms in
Fig. 11. First, we propose a randomized sampling method
as a baseline. During exploration phase, Algorithm 4 de-
signs a fixed strategy to sample the devices and chan-
nels thoroughly. However, the baseline randomly selects
an assignment strategy and gather the samples. The biased
sample means result in significant performance loss during
exploitation phase. We propose another algorithm that re-
solves the best strategy every frame. That is, at the end of
each frame, it updates the sample means and runs Hermes
to solve for the best strategy for the next frame. We can see
that by updating the strategy every frame, the performance
is slightly better than Algorithm 4. However, Algorithm
4 only runs Hermes at the beginning of each exploitation
phase, which only increases tolerable amount of CPU load
but provides competitive performance. We will examine the
extra CPU load on running Hermes in the next section.

6.4 Benchmark Evaluation

In [2], Ra et al. present several benchmarks of perception
applications for mobile devices and propose Odessa, to
improve both makespan and throughput with the help of
a cloud connected server. To improve the performance,
for each data frame, Odessa first identifies the bottleneck,
evaluates each strategy with simple metrics and finally
select the potentially best one to mitigate the load on the
bottleneck. However, Odessa as a greedy heuristic does not
offer any theoretical performance guarantee, as shown in
Fig. 12 Hermes can improve the performance by 36% for
task graph in Fig. 1.

To evaluate Hermes and Odessa on real applications,
we further choose two of benchmarks proposed in [2] for
comparison. Taking the timestamps of every stage and the
corresponding statistics measured in real executions pro-
vided in [2], we emulate the executions of these benchmarks
and evaluate the performance.

In dynamic resource scenarios, as Hermes’ complexity is
not as light as the greedy heuristic (86.87 ms in average) and
its near-optimal strategy needs not be updated from frame
to frame under similar resource conditions, we propose
the following on-line update policy: similar to Odessa, we
record the timestamps for on-line profiling. Whenever the
latency difference of current frame and last frame goes
beyond the threshold, we run Hermes based on current
profiling to update the strategy. By doing so, Hermes always
gives the near-optimal strategy for current resource scenario
and enhances the performance at the cost of reasonable CPU
time overhead due to resolving the strategy.

As Hermes provides better performance in latency but
induces more CPU time overhead, we define two metrics
for comparison. Let Latency(t) be the normalized latency
advantage of Hermes over Odessa up to frame number t.
Let CPU(t) be the normalized CPU advantage of Odessa
over Hermes up to frame number t. That is,

Latency(t) =
1

t

t∑

i=1

(
LO(i)− LH(i)

)
, (23)
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Fig. 12: Hermes can improve the performance by 36% com-
pared to Odessa for task graph shown in Fig. 1.
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Fig. 13: Top: Hermes improves the average latency of
each data frame by 10%. Bottom: the latency advantage of
Hermes over Odessa (Latency(t)) is significant enough to
compensate its CPU time overhead (CPU(t)).
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Fig. 14: Hermes improves the average latency of each data
frame by 16% and well-compensates its CPU time overhead.

CPU(t) =
1

t

(C(t)∑

i=1

CPUH(i)−
t∑

i=1

CPUO(i)
)
, (24)

where LO(i) and CPUO(i) are latency and update time of
frame i given by Odessa, and the notations for Hermes are
similar except that we use C(t) to denote the number of
times that Hermes updates the strategy up to frame t.

To model the dynamic resource network, the latency of
each stage is selected independently and uniformly from a
distribution with its mean and standard deviation provided
by the statistics of the data set measured in real applications.
In addition to small scale variation, the link coherence time
is 20 data frames. That is, for some period, the link quality
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TABLE 4: Mobile Energy Evaluation

Budget (mW · sec) Latency (sec) Energy (mW · sec)
50 2.058 ± 0.290 41.194 ± 13.548

40 2.212 ± 0.313 27.664 ± 11.756

30 2.205 ± 0.305 27.371 ± 11.130

20 4.364 ± 0.838 12.958 ± 7.220

local 16.710 ± 3.483 8.137 ± 3.341

degrades significantly due to possible fading situations. Fig.
13 shows the performance of Hermes and Odessa for the
face recognition application. Hermes improves the average
latency of each data frame by 10% compared to Odessa
and increases CPU computing time by only 0.3% of overall
latency. That is, the latency advantage provided by Hermes
well-compensates its CPU time overhead. Fig. 14 shows
that Hermes improves the average latency of each data
frame by 16% for pose recognition application and increases
CPU computing time by 0.4% of overall latency. When the
link quality is degrading, Hermes updates the strategy to
reduce the data communication, while Odessa’s sub-optimal
strategy results in significant extra latency. Considering CPU
processing speed is increasing under Moore’s law but net-
work condition does not change that fast, Hermes provides
a promising approach to trade-in more CPU for less network
consumption cost.

6.4.1 Energy Consumption on Mobile Devices
We use the trace data from the pose recognition bench-
mark [2] and the power characteristics model proposed
in [33] to evaluate the energy consumption on a mobile
device for different assignment strategies. For each strategy,
we evaluate the performance on latency and energy con-
sumption over 200 frames, with mean and standard devia-
tion as shown in Table 4. Under various budget constraints,
Hermes adapts to different assignment strategies that min-
imize the latency and fit the budget. Compared to pure
local execution, computational offloading consumes more
energy due to cellular data transmission. However, Hermes
identifies the offloading strategy that induces limited data
transmission while offloads intensive tasks, to significantly
improve latency performance under stringent budget.

6.4.2 Resource Contention and Node Failure
In Section 4.4, we adapt Hermes to consider resource con-
tention on “local” parallel tasks and still provide the optimal
strategy if the task graph can be decomposed into serial
trees, like the face recognition and pose recognition bench-
marks in [2]. For the task graphs that contain global parallel
tasks (Fig. 1), Hermes’ solution may be sub-optimal for some
problem instances. In this section, we use such a task graph
shown in Fig. 1 to examine Hermes’ performance degrada-
tion in the worst case. That is, whenever two parallel tasks
are assigned to the same device, we add up the latencies,
assuming the application executes in a single thread on a
single-processor device. Fig 15 shows Hermes’ performance
over 50 randomly-chosen problem instances, compared to
the ideal parallel execution (no resource contention) and
the optimal strategy. We observe that for 50% of instances,
Hermes still matches the optimal performance. While for
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Fig. 16: Latency overhead due to node failure

the instances when Hermes assigns global parallel tasks to a
single devices, it suffers from performance degradation up
to 1.5 times in the worst case.

We propose a node failure recovery scheme in Section 2.1
that does not require extra data transmission but only some
control signals. The system re-executes the task in the pre-
ceding device when node failure or data transmission failure
happens, in order to minimize the latency overhead. We use
the independent node failure model to examine the system
performance, where each node fails with probability p for
each task execution. Fig. 16 shows the latency overhead
under different node failure probabilities. We observe that
the latency overhead increases with p, up to 100% when
node failure happens 80% of the time.

7 CONCLUSIONS

We have formulated a task assignment problem and pro-
vided an FPTAS algorithm, Hermes, to solve for the optimal
strategy that balances between latency improvement and
energy consumption of mobile devices. Compared with
previous formulations and algorithms, to the best of our
knowledge, Hermes is the first polynomial time algorithm to
address the latency-resource tradeoff problem with provable
performance guarantee. Moreover, Hermes is applicable
to more sophisticated formulations on the latency metrics
considering more general task dependency constraints as
well as multi-device scenarios. The CPU time measurement
shows that Hermes scales well with problem size. We have
further emulated the application execution by using the
real data set measured in several mobile benchmarks, and
shown that our proposed on-line update policy, integrat-
ing with Hermes, is adaptive to dynamic network change.
Furthermore, the strategy suggested by Hermes performs
much better than greedy heuristic so that the CPU over-
head of Hermes is well compensated. Extending Hermes to
consider resource contention on a general directed acyclic
task graph, known as a strongly NP-hard problem, and op-
timally scheduling tasks when using pipelining strategies,
are worthy of detailed investigation in the future.
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