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Abstract—We study the fundamental problem of optimal pow- the problem of dynamically choosing one of three transntti
er aIIoca_tion_ over two identical GiIbgrt-EIIiott (Bi_nary M arkov) schemes for a single Gilbert-Elliott channel in an attenapt t
communication channels. Our goal is to maximize the expedte 1, ayimize the expected discounted number of bits transthitte

discounted number of bits transmitted over an infinite time gan . .
by judiciously choosing one of the four actions for each time And in [10], the authors study the problem of choosing a

slot: 1) allocating power equally to both channels, 2) allcating transmitting strategy from two choices emphasizing thescas
all the power to channel 1, 3) allocating all the power to chanel when the channel transition probabilities are unknown.l&vhi
2, and 4) allocating no power to any of the channels. As the similar in spirit to these two studies, our work addresses a
channel state is unknown when power allocation decision is more challenging setting involving two independent chdsine

made, we model this problem as a partially observable Markov In 16118119 | h L di h i
decision process(POMDP), and derive the optimal policy wigh n [6],[8],[9], only one channel is accessed in each time

gives the optimal action to take under different possible cannel Slot, while our formulation of power allocation is possilite
states. Two different structures of the optimal policy are ctrived use both channels simultaneously. In [17], a similar power
analytically and verified by linear programming simulation. allocation problem is studied. Our work in this paper has
We also illustrate how to construct the optimal policy by the o fo|lowing differences compared with the work in [17]:
combination of threshold calculation and linear programming f locati fi idered instead of 3:
simulation once system parameters are known. our povyer_ allocation actions are _COHSI ered instead o ’
penalty is introduced when power is allocated to a channel
|. INTRODUCTION in bad condition. With the introduction of one more action
Adaptive power control is an important technique to sele@ising none of the two channels) and transmission penalty,
the transmission power of a wireless system according ttee problem becomes more interesting yet more difficult to
channel condition to achieve better network performance @malyze.
terms of higher data rate or spectrum efficiency [1],[2]. FEhe In this paper, we formulate our power allocation problem as
has been some recent work on power allocation over stochastipartially observable Markov decision process(POMDP). We
channels [3],[4],[5]; the problem of optimal power alloicat then convert it to a continuous state Markove Decision Ry®ce
across multiple dynamic stochastic channels is challepgid  (MDP) problem and derive the structure of the optimal policy
remains largely unsolved from a theoretical perspective ~ Our main contributions are:(1)we formulate the problermgsi
We consider a wireless system operating on two paralkble MDP theory and theoretically prove the structure of the
transmission channels. The two channels are statistiiidly- optimal policy, (2) we verify our analysis through simutati
tical and independent of each other. We model each chanhaked on linear programming, (3) we demonstrate how to
as a slotted Gilbert-Elliott channel. That is, each channelimerically obtain the structure of this optimal policy whe
is described by a two-state Markov chain, with a bad stasgstem parameters are known.
“0” and a good state “1” [7]. Our objective is to allocate The results in this paper advance the fundamental under-
the limited power budget to the two channels dynamicalstanding of optimal power allocation over multiple dynamic
so as to maximize the expected discounted number of bitechastic channels from a theoretical perspective.
transmitted over time. Since the channel state is unknown
o . . : Il. PROBLEM FORMULATION
when the decision is made, this problem is more challenging
than it looks like. A. Channel model and assumptions
Recently, several works have explored different sequientia We consider a wireless communication system operating on
decision-making problems involving Gilbert-Elliott chzals. two parallel channels. Each channel is described by a dlotte
In [8],[9], the authors consider the problem of selecting orGilbert-Elliott model which is a one dimensional two-state
channel to sense/access among several identical chaforels,Markov chainG; (i € {1,2},¢ € {1,2,...,00}): a good state
mulate it as a restless multi-armed bandit problem, and shdenoted by 1 and a bad state denoted byi Gs(channel
that a simple myopic policy is optimal whenever the channelsdex andt is time slot). The state transition probabilities are:
are positively correlated over time. In [6], the authorsdgtu P,.[G;; = 1|G;+—1 = 1] = Ay andP,[G; ¢ = 1|Gi -1 = 0] =



Ao, € {1,2}. We assume the two channels are identical amyer an infinite time span. Since the channel state is not
independent of each other. Meanwhile channel state transitobservable when the choice is made, this power allocation
occurs only at the beginning of each time slot. We also assupmblem is a Partially Observable Markov Decision Problem
that Ay < A1, which is a positive correlation assumptior(POMDP). In [11], it shows that a sufficient statistic for de-
commonly used in the literature. termining the optimal action is the conditional probapitihat
The system has a total powét. At the beginning of each the channel is in good state at the beginning of the current sl
slot, the system allocates powEr(t) to channel 1 and power given the past history, henceforth this conditional prolitstis
P,(t) to channel 2, wheréP; (t) + P2(t) = P. We assume called belief. We denote the belief by a two dimensional mect
channel state is unknown at the beginning of each time slat, = (x1 ¢+, z2¢), Wherex,; ; = P.[G;+ = 1|h], i € {1,2}, Ay
thus the system needs to decide the power allocation for fkeall the history of actions and state observations prigdh&
two channels without knowing the channel states. If a chianreeginning of current slot. Using the belief as decisionalalg,
is used in slot, its channel state during that slot is revealethe POMDP problem is converted into an MDP problem with
at the end of time slot through channel feedback. But ifan uncountable state spa@é, 1], [0, 1]) [8].
a channel is not used, its state during the elapsed time sloDefine a policyr as a rule that determines the action to
remains unknown. take under different situations, that is, a mapping from the
_ ) belief space to action space. LEf (p) denote the expected
B. Power allocation strategies discounted reward with initial beliep = (p1,p2), that is,
To simplify the power allocation problem, we define threg, o = P.[G1,0 = 1|ho] = p1, 22,0 = P, [G2,0 = 1|ho] = p2,
power levels the system may allocate to a chanme/2, P.  with = denoting the policy followed. With discount factére
If a channel in good state is allocated powgy2, it can [0,1], the expected discounted reward is expressed as
transmit R, bits of data during that slot. If a channel in good .
state is allocated poweP, it can transmitR,;, bits of d_ata V7™ (p) = Ew[z B ga, (x¢)x0 = P, (1)
successfully. We assum@, < R, < 2R;. At the same time, =0
if a channel in bad state is allocated pouf&f2, it suffersC, whereE™ denotes the expectation given policyt is the time

bits of data loss. If a channel in bad state is allocated power . . .
P. it suffersC), bits of data loss. We assundé < C, < 2C; §ibt index,a; € {B1, B2, By, B,.} represents the action taken

ime t. Th r n he ex immedi
and Ry, > Cy. By > C. at time t. The terny,, (x;) denotes the expected ediate

T . reward when the belief ig; and actiona; is chosen:
At the beginning of each time slot, the system chooses one i K

the following four actions: balanced, betting on channel 1, z1t(Rp +Cp) — C, if a; = By
betting on channel 2 and conservative. G, (x1) = x2¢(Rp + Ch) — Cy !f a; = By
Balanced (denoted byB,): the system allocates power ““ " " (w1, +224) (R + Cp) —2C) if ap = By °
evenly on both channels, that i®; (t) = Py(t) = P/2 for 0 if ax = B,
time slot¢. This action is chosen when the system believes . . )
both channels are in good state and it is most beneficial to J¥@W We define the value function(p) as
both of the channels. -
Betting on channel 1 (denoted byB,): the system decides Vip) max ¥’ (®) v pe(0.1]00.1)) 3

to “gamble” by allocating all the power to channel 1, that isA policy is stationary if it is a function mapping the statesp

Pi(t) = P, P»(t) = 0. This occurs when the system believeg|o, 1], [0, 1]) into action spacé B, , B,, By, B, }. Ross proved

that channel 1 will be in good state and channel 2 will be im [12](Th.6.3) that there exists a stationary poliey such

bad state. that V(p) = V™ (p), and the value functio (p) satisfies
Betting on channel 2 (denoted byB,): contrary toB;, the the Bellman equation

system allocates all the power to channel 2, thatigt) =

0, Py(t) = P. Vip)= _ pmax  {Va(p)}, (4)
Conservative (denoted byB,.): the system decides to “play ST o
safe” by using none of the two channels, that &(t) = WhereV_a(p) .denotes the vglue.acquwed when the belighis

P»(t) = 0. This action is taken when the system believes bof{!d actiona is taken.V, (p) is given by
channels will be in bad state and using any of the channels Vo(p) = ga(p) + BEY[V (y)|x0 = P, a0 = d, )

will cause data loss.

Note that in actionsB;, B, and B,, if a channel is not where y denotes the next belief after actiorns taken when
used, the system will not know its state in the elapsed slotthe initial belief isp. V, (p) for the four actions is derived as

follows.

C. Formulation of the Partially Observable Markov Decision  4) Bajanced(B,): If this action is taken with initial belief
problem p = (p1,p2), the immediate reward ig; R; + poR; and the

At the beginning of each time slot, the system needs itmmediate loss i§1—p;)C;+ (1 —p2)C;. Since both channels
judiciously choose one of the four power allocation actitms are used, their states during the current slot are revedled a
maximize the total discounted number of data bits transahittthe end of current time slot. Therefore with probability



channel 1 will be in good state hence the belief of channelAl Properties of value function

at the beginning of the next slot will b&,. Likewise, with

probability 1 — p; channel 1 will be in bad state thus the belie}fo1

Lemmal: V,(p),a € {Bsy, B1,Bs, B} is affine in both
andp, and the following equalities hold:

in the next slot will be)\g. Since both channels are identical,
channel 2 has similar belief update. Consequently, theevalu Va(cp + (1 — ¢)p’, p2) = cVa(p, p2) + (1 — ¢)Va(p', p2)

function when actionB, is taken can be expressed as

VB, (p)

(p1 4 p2) (R + Cp) — 2C)

BI(1 = p1)(1 —p2)V (Ao, o) + pip2V (A1, A1)
P1(1 = p2)V (A1, Ao) + (1 = p1)p2V (Ao, A1)]

b) Betting on channel 1(B,): If this action is taken with
initial belief p = (p1,p2), the immediate reward ip; Ry,

(6)

+ + |

and the immediate loss id — p;)C}. Since channel 2 is not
used, its channel state in the current slot remains unkno
Therefore the belief of channel 2 in the next time slot i

calculated as

T(p2) = (1 — p2)Xo + p2A1 = apa + Ao, (7

Va(p1,ep+ (1 —e)p') = cVa(p1,p) + (1 — o) Valp1,p')

where0 < ¢ < 1 is a constant, and(z) is said to be affine
with respect tar if f(x) = ax + ¢ with constantz andc.
Proof: Itis clear from @7?) thatVp, is affine inp; andp..

Also it is obvious thal/p, is affine inp; and V3, is affine in
p2 from (??) and @7?), respectively. Next, we will prove that
Vg, is affine inps.

Let's look at the right side of equatior??. The
f'r[|st and second terms are not related pg so this

art is affine inpy. For the third term, the main part

(¢,T(p2)) (¢ € {Xo,A1}) takes one of the follow-
ing four forms: Vg, (¢, T(p2)), Vs, (¢, T(p2)), Vi, (¢, T(p2))
or Vg, (¢,T(p2)). The first form is affine inp, because
Vg, (c,T(p2)) is affine in T'(p2) and T'(p2) = ap2 + Ao

wherea = A\ — Ag. Consequently, the value function wheris affine in py. Similarly the second forni/g, (¢, T'(p2)) is

action B; is taken can be expressed as

VB, (p)
= (Rh + C}z)pl - Ch .
+  Blp1V (A1, T(p2)) + (1 = p1)V (2o, T(p2))]

c) Betting on channel 2(B,): Similar to actionB;, the value
function when actinB; is taken can be expressed as

VBz (p)

8

= (Rn+Ch)p2 —Cy , 9
+ Blp2V(T(p1), M) + (1 = p2)V(T(p1), Ao)]
where
T(p1) = (1 —p1)do +piii = ap1 + Ao. (10)

d) Conservative(B,): If this action is taken, both immediate V5: (A1, T (p2)) or Vi, (A1, T"(p2))
reward and loss are 0. Since none of the channel is used, theiill eventually becomeVp, (A1,

belief at the beginning of the next slot is given by
T(pi) = (1 —pi)Xo +pid1 = ap; + o, i€{1,2}. (11)

Consequently, the value function when actiBp is taken can
be expressed as

affine inT'(p2) thus also affine im,. For the latter two forms
Vb, (¢, T(p2)) andVp, (¢, T(p2)), they can be written as:

VB, (¢, T(p2))

= C(Rh -+ Ch) - Ch 5 (14)
+ BV (M, T?(p2)) + B(1 = )V (Mo, T?(p2))
or
Vi, (¢,T(p2)) = Vi, (T(c), T?(p2)), (15)

where T"(p) = T""D(T(p)) = 22(1 — a") + a"p.
Since T™(p2) is affine in pa, (??) is affine in py as
soon as V(A1,T?%(p2)) takes the form Vg, (A1, T"(p2))
or Vi,(A1,T"(p2)), and V(X\g,T?(p2)) takes the form
VBb(AOan(pQ» or VBz(A();Tn(p2))’ n = 273a"'i which
is affine in ps. If V(\,T%(p2)) keeps taking the form
till n goes to infinity,

A A
17004) or VBT ()\1’ lfoa)
becausd™(ps) — 22 whenn — oo, which is a special case

of affine inpe. The same is true for the terii(\g, 72 (p2)).
With this we show that?®?) is affine inp,. Similarly we can
prove that ?7?) is affine inpy thus (27?) is affine inpa.

Using the same technique we can prove g} (p1, p2) is
affine in p; and Vg, is affine in bothp; and ps. With this
we show thatV,(p),a € {By, B1, B2, B} is affine in both

Ve, (p) = AV(T(p1), T(p2))- (12) p1 andps, and the equalities in Lemma 1 immediately follow.
Finally, the Bellman equation for our power allocationlhis concludes the proof. =
problem reads as Lemma2: V(p) is convex inp; andp,, and the following
inequalities hold:
V(p) = HlaX{VBb7 VB1 5 V32 5 VBT } (13)

Ill. STRUCTURE OF THEOPTIMAL PoLICY

Viep+ (1 —c)p',p2) <
V(pr,ep+(1—c)p') <

cV(p,p2) + (1 — )V (p',p2)
cV(p1,p) + (1 = c)V(p1,p') -

From the discussion in the previous section, we understand Proof: The convexity property of the value function of

that an optimal policy exists for our power allocation pexil

any general POMDP is proved in [11] and we will use that

In this section, we try to derive the optimal policy by firstresult directly in this paper.

looking at the features of its structure.



Lemma3: V(p1,p2) = V(pe,p1), that is, V(p) is sym-
metric with respect to the ling; = p» in the belief space.

Definition 1. &, is said to be contiguous along dimen-
sion if given (z1, p2), (z2,p2) € ®,, thenvVa € [z, x2], We

Proof: Let V"(p1, p2) denote the expected reward whemave(z, p2) € ®,. Similarly, we sayd,, is contiguous along,

the decision horizon spans only n time slots. Whesa: 1,
Vi(p1,p2)

= ma'X{(pl +p2)(Rl + Cl) - 201) 07 (16)
P1 (Rh + Ch) —Ch,p2 (Rh + Ch) - Ch}
Vl(anpl)

= max{(p1 erg)(Rl + Cl) — 2,0, (17)

pQ(Rh + Ch) - Ch, ;1 (Rh + Ch) - Ch}

Obviously we haveV!(pi,ps) = V1(p2,p1). Next we as-
sumeV¥(p1,p2) = VF(pe,p1),k > 1, we now show that
VEH (p1,p2) = V¥ (pa, p1). Since

ngl(phpz)

(p1 +p2) (R + C1) — 2C; + Blpip2VF (A1, A1)
p1(1—p2)VF(A1, Xo) + (1 — p1)p2VE(No, A1)
(1= p1)(1 = p2)V*(Xo, Xo)

VE T (p1,p2)
p1(Ry + Ch) — Crh+
BI(L = p1)VF(No, T(p2)) + p1VF(A1, T (p2))]

Vi (p1,p2)
p2(Rp, + Cr) — Ch+
Bl(1 = p2)VF(T(p1), o) + p2VF(T (p1), M1)]

VET (p1,p2) = BVE(T(p1), T(p2)) -
Using the assumption th&t* (p, p2) = V*(p2, p1), we have,

VE T (p1,p2)

p1(Rn + Ch) — Crh+

Bl(1 = p1)VE(T(p2), Xo) + p1VH(T(p2), \1)] -
VA (p2,p1)

Similarly, we have V;t'(p1,p2) Vi (p2,p1),

VET (p1,p2) Vi (p2,p1) and VET(p1,po)
VA (p2, p1). Therefore,

VERD (py, py)

maX{ngl(pl,pQ), ngl(pl,pg),
VA (p1,p2), VE (91, p2), }
maX{ngl(pg,m),ngl(m,m), '
VE (p2, p1), VE (92, p1), }
V(kJrl) (anpl)

Hence we havé/(p1,p2) = V(p2,p1) for all (p1,p2) in the
belief space. ]

. (18)

+ + |l

(19)

(20)

(21)

(22)

(23)

B. Properties of the decision regions of policy 7*
We used, to denote the decision region of actian That

is, @, is the set of beliefs under which it is optimal to take

actiona:

(I)a = {(plap2) € ([07 1]7 [07 1])|V(p1ap2) = Va(p17p2)}
a € {Bb,Bl,BQ,BT} )
(24)

dimension if given(pi,y1), (p1,y2) € ®a, thenVy € [y1,y2],
we have(p1,y) € D

Theoreml: &, is contiguous in bothp; and p,, where
a < {Bb7 B, Bo, B.,}

Proof: We will prove @, as an example, and the results
for other actions can be proved in a similar manner. First we
prove that®p, is contiguous inp;. Let (z1,p2), (x2,p2) €
®p,, next we show thaf(cz: + (1 — ¢)xz),p2) is also in
region®p,, where0 < c¢ < 1.

V((ex1 + (1 —c)z2),p2)
cV(x1,p2) + (1 — )V (2, p2)

Vi, (z1,p2) + (1 — ¢)Vp, (22,p2) ,
VBl((Cxl + (1 - C)x2)7p2)

V((ex1 + (1 = c)z2),p2)

where the first inequality comes from the convexity in
lemma 2; the first equality follows from the fact that
(z1,p2), (x2,p2) € Pp,; the second equality follows from
the affine linearity ofVg, (p) in py; the last inequality fol-
lows from the definition ofV/(p). We haveV ((cz; + (1 —
¢)x2),p2) = Vp,((cx1 + (1 — ¢)x2),p2), that is, ((cz1 +
(1 — ¢)zq),p2) is also in the regionb g, . Therefore,®p, is
contiguous inp;. Similarly ®z, is contiguous inps. [ |
Theorem2: ®p, and®p,_ are self-symmetric with respect
to the linep; = po, thatis, if(p1,p2) € ®4,a € {By, B, } then
(p2,p1) € D,. P, and dp, are mirrors with respect to the
line p; = po, thatis, if (p1,p2) € ®p, then(pa,p1) € Pp,.
Proof: If (p1,p2) € ®p,, then we have

I IA

(25)

IA

V(p1,p2) = VB, (p1,p2)- (26)
Using lemma 3, we have
VB, (p2;p1)
= BV(T(p2),T(p1)) = BV(T(p1), T(p2)) ,  (27)

VB, (p1,p2) = V(p1,p2) = V(p2,p1)

hence(pz2,p1) also belongs tabp, . Similarly, we can show
that if (p1,p2) € ®p,, then(pa, p1) also belongs tabp, .
If (p1,p2) € ®p,, then we have

V(p1,p2) = VB, (p1,p2)
p1(Rn + Cr) — Cy

+ Blp1V (A, T(p2)) + (1 —p1)V (Ao, T(p2))]

Using lemma 3, we have

(28)

VBz (p27p1)

p1(Rp + Ch) — Cp

Blp1V (T (p2), A1) + (1 = p1)V(T(p2), Ao)]
D1 (Rh + Ch) - Ch ’
Blp1V (A1, T(p2)) + (1 — p1)V (Ao, T'(p2))]
VB, (p1,p2) = V(p1,p2) = V(p2,p1)

(29)

=+ 1+

hence(ps, p1) belongs to® 5, which concludes the proofl
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C. Structure of the optimal policy T Ths

1 | 7

Based on the properties discussed above, we are now ready I ¢L/;

to derive the structure of the optimal policy. ~—®p, 7 >
From the belief update ir?@), (??),(??) and (2?), it is clear 7 The

that the belief state of a channel is updated to one of the L7

following three values after any actiohj, A1, or T'(p), where Tha 5.[),1; Pp;

p is the current belief of a channel. For all< p <1, \g < F

T(p) = Ao + ()\1 — )\())p < A1. Since0 < )\(),)\1 < 1, the

belief space is the rectangle area determined by four esrtic

at (0,0),(0,1),(1,1) and(1,0). Fig. 1. Structure of the optimal policy on the boundary of
First we consider the four vertices and it is easy to obtabelief space

the following results,

1 P

V(O’?) - “;Br (07(1)) (0’?) < iBT A simple threshold structure on each edge is clear from
v(o, ): B,(0.1) ((1)’ ) € (I)Bz (30) Figure 1. Next we will derive the structure of the optimal
V(1,0)=Vp(1,0) (1,0) € 5, policy in the whole belief space.

V(l,l):VBb(l,l) (1,1)€(I)Bb

Theorem3: @, is a simple connected region extended from
Next we consider the four edges. On the edge= 0, the d. in the belief spacg|0, 1], [0, 1]), where

partial value functions are (0,0) a=B,
Vi, (0.p2) = —Ch+ BV (Ao, T(p2)) gy ={ O a=B
Vg, (07]72) = pQ(Rh + Ch) — Ch+ (1’ 0) a=B
BI(1 = p2)V (X, o) + p2V (Ao, Av)] (L1) a=5
Ve, (0,p2) = pa(Ri+Ch) —2C+ "~ andV(p1,pe) € ®p,, p1 > pa; Y(p1,p2) € Py, p1 < po.
Bl(1 = p2)V (Ao, Ao) + p2V (Ao, A1) Proof: At the beginning of this section we already show
VB, (0,p2) = BV(Ao,T(p2)) 31) that d, € ®,, and from Theorem 1%, has at least one

) ] connected region extended fro#g. Therefore next we need
Using our assumptiort; < Cj, < 2C, Rp > Cp, i > g show that eack, has only one connected region.

Ci, and convexity of value function/(p,,ps), we have o, ®p , let ®, denote the connected region extend-
VB, (0,p2) < Vi, (0,p2) < Vi, (0,p2). With this we say oq om (0,0), thén we will show that there exists no
that on the edge, = 0, only two actionsB and B, aré  giner connected regio®’, . Since & is symmetric, let
possible. Sinc¢0,0) € 5, and(0,1) € ®p,, we know there 14 41,1 10, ¢4,]) be the minimum rectangle to includg, (no
exists a thresholg such thatvp; € [0, p), (0,p2) € ®p, @nd  giher connected region in this rectangle)(Figure 2(a)p-Su
Vpz € [p; 1], (0, p2) € ®p,. To derivep we define pose there is another connected regidfi in the area

81.00(0) = (1= P)V(Aos Ao) +pV (A1, Ao) = V(T (p), Ag) (0 tRul, [tha, 1) or ([thy, 1], [0, /). Take the former for
1., (0) = (1= P)V(Aoy A1) + V(A1 M) — V(T(p), A1) example, ther) we ha\)?l(x,y) € ®% , line p; = z will pass
S2.00(p) = (1 — )V (Ao, o) + pV (Ao, A1) — V(Ao T(p)) ~ BCTOSS bo_thanr gnd % , thus_at least two separate parts
52:/\1(]7) =(1-p)V(A, o) +pV (A, A1) — V(AL T(p)) of &y, exist on linep; = x, which contradicts the result in

(32) theorem 1. Therefore, no connected regigh exists in area
From the symmetric property ofV (pi,ps), we have ([0,thi],[thi,1]) or ([th,1],[0,ths]).
5100 (D) = Gaxo(P) = Ox,(p) @nd 6.z, (p) = dan, (p) = Suppose another connected regioh;  exists in

5x. (p). Using the fact thaVs, (0, p) = Vi, (0, p), we have  ([tha, 1], [thi, 1]). Let VP2=¥(p;) denoteV,(p1,pa) whenp,
is a fixed valuey. From Iemma 1, the slope of linér2=¥(p, )
VBz (Oa P) - VBr (07 P)

(33) is given by
= Rp+Ch) —C ) =0
p(Rp + Ch) h =+ Bx, (p) V() _ ﬂaV(T(m ()

Bpl Op1
— M (34) ovg2 Y (p1) _ 69[(1 V(T (p1),20)+yV (T (p1),A)]) (36)
Ry, +Cy Op1 Op1
U OVER(p1) _ OVEZV(p1)
sing the results in Theorem 2, we can easily derive similgfom (??) we have —Z= and from the

5]
structure on the other three edges. The structure of thenapti structure of optimal p0|IC]§/ on the boundary of the beliefspa

policy on the boundary of the belief space is shown in Figyle havev(x,y) € @% , we haveVp, (0, y) > Vg, (0,y)

The thresholdg h, andT'hs in Figure 1 are given by (Figure 2 (b)).
Thy — Cn=B03g(Tha) It is clear from Fi%Z(b) that there exists ng = = Sl_Jch
1= "7 R+Cr_ that VE>=Y(z) < VE*~=Y(z). Therefore(z,y) ¢ ®p,, which
_ (B Rl)+Cl B6x, (Tha) - (35) Ba. By A\ ’
The : o contradicts our assumption that,y) € ®, C ®p,. From
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Fig. 2: (a)Belief space region segmentation/{p¥=" (p1)
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Fig. 3: The structure of optimal policy*

Fig. 4: Value function and Structure of optimal policy

this we show there is no other connected regibfj in
the area([thi, 1], [thi,1]). In other words,®; is the only
connected region obp . linear programming to construct the optimal policy and fyeri

We can prove thab s, , ® 5, or &5, has only one connectedits features.
region in a similar manner and the detail is omitted due to
space limit.

Next we proveY(pi,ps2) € ®p,, p2 > p1. Obviously®p,
has a connected region extended fraiml). If 3(z,y) € Pp,
andx > y, we can find a mirror point ofz, y) with respect
to line p; = p2 according to the convexity ofz,. Then min ZpEX V(p),

IV. SIMULATION BASED ONLINEAR PROGRAMMING

Linear programming is one of the approaches to solve the
Bellman equation in (4). Based on [13], we model our problem
as the following linear program:

both points(z, y) and(y, «) belong to® z,, which contradicts st ga(P) + BXvex fa(@,Y)V(Y) < V(DP),
theorem 2. Hence/(pi,p2) € ®,, we havep; < po. Vp eygg, Va € Ap -
Similarly, V(p1, p2) € ®5,, p1 > pa. (37)

B whereX denotes the belief spacd,, is the set of available
When we prove the extended region ®f, in theorem 3 actions for statep. The state transition probabilitf, (p,y) is
(refer to [18] for detail), two types of structures are found the probability that the next state will e when the current
the line py = p2. (1) one threshold structuréld < p; < 1, state isp and the current action is € A,. The optimal policy
such that'y € [0, p1], (v,%) € ®5,, andVy € [p1,1], (y,y) € is given by
®p,. (2) two threshold structureld < p; < p2 < 1, such that

Yy € [0, p1, (y,9) € ®,; Yy € [p1,p2], (4,9) € P, (Pp,); m(p) = arg max(ga(p) + > fapy)V(P).  (39)
andVy € [p2,1],(y,y) € ®p,. From theorem 3, the structure yex
of the optimal policy is illustrated in Figure 3. We used the LOQO solver on NEOS Server [14] with

For the one threshold structurg; can be obtained by AMPL input [15] to obtain the solution of equation (37).
solving V,_(p1,01) = Va,(p1,p1). For the two threshold Then we used MATLAB to construct the policy according
structurep; andp. can be obtained by solvingg, (p1,p1) = to equation (38).

VB, (p1,p1) and Vg, (p2, p2) = Vg, (p2,p2). Therefore for Figure 4 shows the AMPL solution of the value function
this power allocation problem, we are able to give the basimd the corresponding optimal policy. In Fig 4(a), we use
structure of the optimal policy and derive the thresholds dhe following set of parametersty = 0.1,A\; = 0.9,8 =

four edges and on the ling, = po. However, so far we are 0.9, R,/R; = 3/2 = 1.5,Cy/C; = 1.2/0.8 = 1.5 and the
unable to derive a closed form expression for the boundary“dfthreshold structure” of the optimal policy is observed;
each®,. In the next section, we will use simulation based oRig 4(b), we use the same set of parameters as in (a) except
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Ri/R; = 3.7/2 = 1.85 and the “2-threshold structure” of the A
optimal policy is observed. The optimal policy in Figure 4 °= Pl

- _o

clearly shows the properties we gave in Section 3. | ‘ 1 " e |
For our power allocation problem, it is interesting to in- : o
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vestigate the effect of parameters (such\gshi, Ry, Ri, Cr "R o4

and C;) on the structure of optimal policy. For this purpose, (¢) ®z, with increasingRz, /R, (d) ®p, with increasingC, /C}
we conducted simulation experiments with varying paramsete

First, we increase\, from 0.1 to 0.8 while keeping the rest ., .. e

of parameters the same as in experiment in Fig 4(a)|&gt ~ « eote. e e

denote the area ob,, in total belief space and we normalize - NN ) s .

all ®, with total belief space a$d,|/|X|. Fig 5(a) shows = RO 1

how the normalizedd, changes with differenf\,. We can * AN v

observe in Fig 5(a) that initiallypp, has the biggest area os , e
with Ao = 0.1. When gradually increasing,, ®5, becomes | » (B
smaller, whilst®g, (¢5,) and &5, become bigger. When =~ = " Tan T T TS R
Ao > 0.5, ®p, (Pp,) occupies the major part of the belief (€) ®5, with increasingRy, /Ry () ©p, with increasingCy /C;
space, meaning thay, is big enough and it is more optimal Fig. 6: Normalized®, (Ao = 0.1, \; = 0.9)

to “gamble” on one channel. Similarly, Fig 5(b) shows the
results when we decrease from 0.9 to 0.2.|®z| changes
in a similar manner as in Figure 5(a). We can see that ondystem decides to “play safe”.

when); is as small as 0.3® 5, [(|®5, ) is bigger thari®p,|.  From above observation we understand that “1-threshold
Interestingly,® 5, | is always the smallest in both experimentssirycture” may occur with smallR,,/R;, big C,/C; and
which means the system likes “gambling” instead of “being1 — Xo; “2-threshold structure” may occur with big, /R;,
conservative”. small C),/C; and A\; — \o. Figure 7 verifies our speculation.

In Figure 4 we already observed that differéd)f/ R; ratio We can see that in all experiments with a wide range of
leads to different structure of optimal policy (1-threshalr parameters, no other policy structure than 1-threshold and
2-threshold structure). Therefore we believe the optinaditp  2-threshold structure is observed. So we can conclude that
is closely related to the immediate reward and loss of the fowith the help of linear-programming simulation, once the
actions. And we believe the ratio d@?,/R; and C,/C; has parametersXo, A1, Ry, R, C, Cy, 3) are known, the structure
more effect on the structure of optimal policy than theirl reaf optimal policy can be derived like in Figure 7(a)(b).
value. Therefore, in the next experiment we increase the rat
of R, /R; with differentC), /C;. V. CONCLUSION

Figure 6(a)(c)(e) show the normalizéd;, , ®,, P, with In this paper we have derived the structure of optimal policy
increasingR;,/R; from 1.05 to 1.95. We can see that wheffor our power allocation problem by theoretical analysisl an
Ry /R; increases,|®p.| and |®p,| become smaller while simulation. We have given the structure of optimal policy on
|® 5, | grows bigger, meaning that the immediate reward of utstal belief space and proved that the optimal policy fos thi
ing one channelgy,) is big enough to justify “gambling”. Sim- problem has a 1 or 2 threshold structure. With the help of
ilarly Figure 6(b)(d)(f) show the normalizedts ,®5,,®p5, linear programming, we can derive the optimal policy with
with increasing’}, /C; from 1.05 to 1.95. In contrast to Figurekey parameters. Further, we would like to find a closed form
6(a)(c)(e), whenC}/C; increases,|®p, | and |®p,| grows expression for the boundary of action region. Also, we would
bigger while |®5,| becomes smaller, meaning that the thike to investigate the case of non-identical channels likg,
immediate loss of using a chann@}() is big enough and the or derive useful results for more than 2 channels.
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