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Abstract—We study the fundamental problem of optimal pow-
er allocation over two identical Gilbert-Elliott (Binary M arkov)
communication channels. Our goal is to maximize the expected
discounted number of bits transmitted over an infinite time span
by judiciously choosing one of the four actions for each time
slot: 1) allocating power equally to both channels, 2) allocating
all the power to channel 1, 3) allocating all the power to channel
2, and 4) allocating no power to any of the channels. As the
channel state is unknown when power allocation decision is
made, we model this problem as a partially observable Markov
decision process(POMDP), and derive the optimal policy which
gives the optimal action to take under different possible channel
states. Two different structures of the optimal policy are derived
analytically and verified by linear programming simulation.
We also illustrate how to construct the optimal policy by the
combination of threshold calculation and linear programming
simulation once system parameters are known.

I. I NTRODUCTION

Adaptive power control is an important technique to select
the transmission power of a wireless system according to
channel condition to achieve better network performance in
terms of higher data rate or spectrum efficiency [1],[2]. There
has been some recent work on power allocation over stochastic
channels [3],[4],[5]; the problem of optimal power allocation
across multiple dynamic stochastic channels is challenging and
remains largely unsolved from a theoretical perspective

We consider a wireless system operating on two parallel
transmission channels. The two channels are statisticallyiden-
tical and independent of each other. We model each channel
as a slotted Gilbert-Elliott channel. That is, each channel
is described by a two-state Markov chain, with a bad state
“0” and a good state “1” [7]. Our objective is to allocate
the limited power budget to the two channels dynamically
so as to maximize the expected discounted number of bits
transmitted over time. Since the channel state is unknown
when the decision is made, this problem is more challenging
than it looks like.

Recently, several works have explored different sequential
decision-making problems involving Gilbert-Elliott channels.
In [8],[9], the authors consider the problem of selecting one
channel to sense/access among several identical channels,for-
mulate it as a restless multi-armed bandit problem, and show
that a simple myopic policy is optimal whenever the channels
are positively correlated over time. In [6], the authors study

the problem of dynamically choosing one of three transmitting
schemes for a single Gilbert-Elliott channel in an attempt to
maximize the expected discounted number of bits transmitted.
And in [10], the authors study the problem of choosing a
transmitting strategy from two choices emphasizing the case
when the channel transition probabilities are unknown. While
similar in spirit to these two studies, our work addresses a
more challenging setting involving two independent channels.
In [6],[8],[9], only one channel is accessed in each time
slot, while our formulation of power allocation is possibleto
use both channels simultaneously. In [17], a similar power
allocation problem is studied. Our work in this paper has
the following differences compared with the work in [17]:
four power allocation actions are considered instead of 3;
penalty is introduced when power is allocated to a channel
in bad condition. With the introduction of one more action
(using none of the two channels) and transmission penalty,
the problem becomes more interesting yet more difficult to
analyze.

In this paper, we formulate our power allocation problem as
a partially observable Markov decision process(POMDP). We
then convert it to a continuous state Markove Decision Process
(MDP) problem and derive the structure of the optimal policy.
Our main contributions are:(1)we formulate the problem using
the MDP theory and theoretically prove the structure of the
optimal policy, (2) we verify our analysis through simulation
based on linear programming, (3) we demonstrate how to
numerically obtain the structure of this optimal policy when
system parameters are known.

The results in this paper advance the fundamental under-
standing of optimal power allocation over multiple dynamic
stochastic channels from a theoretical perspective.

II. PROBLEM FORMULATION

A. Channel model and assumptions

We consider a wireless communication system operating on
two parallel channels. Each channel is described by a slotted
Gilbert-Elliott model which is a one dimensional two-state
Markov chainGi,t(i ∈ {1, 2}, t ∈ {1, 2, ...,∞}): a good state
denoted by 1 and a bad state denoted by 0 (i is channel
index andt is time slot). The state transition probabilities are:
Pr[Gi,t = 1|Gi,t−1 = 1] = λ1 andPr[Gi,t = 1|Gi,t−1 = 0] =



λ0, i ∈ {1, 2}. We assume the two channels are identical and
independent of each other. Meanwhile channel state transition
occurs only at the beginning of each time slot. We also assume
that λ0 < λ1, which is a positive correlation assumption
commonly used in the literature.

The system has a total powerP . At the beginning of each
slot, the system allocates powerP1(t) to channel 1 and power
P2(t) to channel 2, whereP1(t) + P2(t) = P . We assume
channel state is unknown at the beginning of each time slot,
thus the system needs to decide the power allocation for the
two channels without knowing the channel states. If a channel
is used in slott, its channel state during that slot is revealed
at the end of time slott through channel feedback. But if
a channel is not used, its state during the elapsed time slot
remains unknown.

B. Power allocation strategies

To simplify the power allocation problem, we define three
power levels the system may allocate to a channel:0, P/2, P .
If a channel in good state is allocated powerP/2, it can
transmitRl bits of data during that slot. If a channel in good
state is allocated powerP , it can transmitRh bits of data
successfully. We assumeRl < Rh < 2Rl. At the same time,
if a channel in bad state is allocated powerP/2, it suffersCl

bits of data loss. If a channel in bad state is allocated power
P , it suffersCh bits of data loss. We assumeCl < Ch < 2Cl

andRh > Ch, Rl > Cl.
At the beginning of each time slot, the system chooses one

the following four actions: balanced, betting on channel 1,
betting on channel 2 and conservative.

Balanced (denoted byBb): the system allocates power
evenly on both channels, that is,P1(t) = P2(t) = P/2 for
time slot t. This action is chosen when the system believes
both channels are in good state and it is most beneficial to use
both of the channels.

Betting on channel 1 (denoted byB1): the system decides
to “gamble” by allocating all the power to channel 1, that is,
P1(t) = P, P2(t) = 0. This occurs when the system believes
that channel 1 will be in good state and channel 2 will be in
bad state.

Betting on channel 2 (denoted byB2): contrary toB1, the
system allocates all the power to channel 2, that is,P1(t) =
0, P2(t) = P .

Conservative (denoted byBr): the system decides to “play
safe” by using none of the two channels, that is,P1(t) =
P2(t) = 0. This action is taken when the system believes both
channels will be in bad state and using any of the channels
will cause data loss.

Note that in actionsB1, B2 and Br, if a channel is not
used, the system will not know its state in the elapsed slot.

C. Formulation of the Partially Observable Markov Decision
problem

At the beginning of each time slot, the system needs to
judiciously choose one of the four power allocation actionsto
maximize the total discounted number of data bits transmitted

over an infinite time span. Since the channel state is not
observable when the choice is made, this power allocation
problem is a Partially Observable Markov Decision Problem
(POMDP). In [11], it shows that a sufficient statistic for de-
termining the optimal action is the conditional probability that
the channel is in good state at the beginning of the current slot
given the past history, henceforth this conditional probability is
called belief. We denote the belief by a two dimensional vector
xt = (x1,t, x2,t), wherexi,t = Pr[Gi,t = 1|~t], i ∈ {1, 2}, ~t
is all the history of actions and state observations prior tothe
beginning of current slot. Using the belief as decision variable,
the POMDP problem is converted into an MDP problem with
an uncountable state space([0, 1], [0, 1]) [8].

Define a policyπ as a rule that determines the action to
take under different situations, that is, a mapping from the
belief space to action space. LetV π(p) denote the expected
discounted reward with initial beliefp = (p1, p2), that is,
x1,0 = Pr[G1,0 = 1|~0] = p1, x2,0 = Pr[G2,0 = 1|~0] = p2,
with π denoting the policy followed. With discount factorβ ∈
[0, 1], the expected discounted reward is expressed as

V π(p) = Eπ[

∞
∑

t=0

βtgat
(xt)|x0 = p], (1)

whereEπ denotes the expectation given policyπ, t is the time
slot index,at ∈ {B1, B2, Bb, Br} represents the action taken
at time t. The termgat

(xt) denotes the expected immediate
reward when the belief isxt and actionat is chosen:

gat
(xt) =















x1,t(Rh + Ch)− Ch if at = B1

x2,t(Rh + Ch)− Ch if at = B2

(x1,t + x2,t)(Rl + Cl)− 2Cl if at = Bb

0 if at = Br

.

(2)
Now we define the value functionV (p) as

V (p) = max
π

V π(p) ∀ p ∈ ([0, 1], [0, 1]). (3)

A policy is stationary if it is a function mapping the state space
([0, 1], [0, 1]) into action space{B1, B2, Bb, Br}. Ross proved
in [12](Th.6.3) that there exists a stationary policyπ∗ such
that V (p) = V π∗

(p), and the value functionV (p) satisfies
the Bellman equation

V (p) = max
a∈{B1,B2,Bb,Br}

{Va(p)}, (4)

whereVa(p) denotes the value acquired when the belief isp

and actiona is taken.Va(p) is given by

Va(p) = ga(p) + βEy [V (y)|x0 = p, a0 = a], (5)

where y denotes the next belief after actiona is taken when
the initial belief isp. Va(p) for the four actions is derived as
follows.

a) Balanced(Bb): If this action is taken with initial belief
p = (p1, p2), the immediate reward isp1Rl + p2Rl and the
immediate loss is(1−p1)Cl+(1−p2)Cl. Since both channels
are used, their states during the current slot are revealed at
the end of current time slot. Therefore with probabilityp1



channel 1 will be in good state hence the belief of channel 1
at the beginning of the next slot will beλ1. Likewise, with
probability1−p1 channel 1 will be in bad state thus the belief
in the next slot will beλ0. Since both channels are identical,
channel 2 has similar belief update. Consequently, the value
function when actionBb is taken can be expressed as

VBb
(p)

= (p1 + p2)(Rl + Cl)− 2Cl

+ β[(1− p1)(1 − p2)V (λ0, λ0) + p1p2V (λ1, λ1)
+ p1(1− p2)V (λ1, λ0) + (1 − p1)p2V (λ0, λ1)]

. (6)

b) Betting on channel 1(B1): If this action is taken with
initial belief p = (p1, p2), the immediate reward isp1Rh,
and the immediate loss is(1− p1)Ch. Since channel 2 is not
used, its channel state in the current slot remains unknown.
Therefore the belief of channel 2 in the next time slot is
calculated as

T (p2) = (1 − p2)λ0 + p2λ1 = αp2 + λ0, (7)

whereα = λ1 − λ0. Consequently, the value function when
actionB1 is taken can be expressed as

VB1
(p)

= (Rh + Ch)p1 − Ch

+ β[p1V (λ1, T (p2)) + (1− p1)V (λ0, T (p2))]
. (8)

c) Betting on channel 2(B2): Similar to actionB1, the value
function when actinB2 is taken can be expressed as

VB2
(p)

= (Rh + Ch)p2 − Ch

+ β[p2V (T (p1), λ1) + (1− p2)V (T (p1), λ0)]
, (9)

where

T (p1) = (1 − p1)λ0 + p1λ1 = αp1 + λ0. (10)

d) Conservative(Br): If this action is taken, both immediate
reward and loss are 0. Since none of the channel is used, their
belief at the beginning of the next slot is given by

T (pi) = (1 − pi)λ0 + piλ1 = αpi + λ0, i ∈ {1, 2}. (11)

Consequently, the value function when actionBr is taken can
be expressed as

VBr
(p) = βV (T (p1), T (p2)). (12)

Finally, the Bellman equation for our power allocation
problem reads as

V (p) = max{VBb
, VB1

, VB2
, VBr

}. (13)

III. STRUCTURE OF THEOPTIMAL POLICY

From the discussion in the previous section, we understand
that an optimal policy exists for our power allocation problem.
In this section, we try to derive the optimal policy by first
looking at the features of its structure.

A. Properties of value function

Lemma1: Va(p), a ∈ {Bb, B1, B2, Br} is affine in both
p1 andp2 and the following equalities hold:

Va(cp+ (1− c)p′, p2) = cVa(p, p2) + (1 − c)Va(p
′, p2)

Va(p1, cp+ (1− c)p′) = cVa(p1, p) + (1 − c)Va(p1, p
′)
,

where0 ≤ c ≤ 1 is a constant, andf(x) is said to be affine
with respect tox if f(x) = ax+ c with constanta andc.

Proof: It is clear from (??) thatVBb
is affine inp1 andp2.

Also it is obvious thatVB1
is affine inp1 andVB2

is affine in
p2 from (??) and (??), respectively. Next, we will prove that
VB1

is affine inp2.
Let’s look at the right side of equation??. The

first and second terms are not related top2 so this
part is affine in p2. For the third term, the main part
V (c, T (p2)) (c ∈ {λ0, λ1}) takes one of the follow-
ing four forms: VBb

(c, T (p2)), VB2
(c, T (p2)), VB1

(c, T (p2))
or VBr

(c, T (p2)). The first form is affine inp2 because
VBb

(c, T (p2)) is affine in T (p2) and T (p2) = αp2 + λ0

is affine in p2. Similarly the second formVB2
(c, T (p2)) is

affine inT (p2) thus also affine inp2. For the latter two forms
VB1

(c, T (p2)) andVBr
(c, T (p2)), they can be written as:

VB1
(c, T (p2))

= c(Rh + Ch)− Ch

+ βcV (λ1, T
2(p2)) + β(1 − c)V (λ0, T

2(p2))
, (14)

or
VBr

(c, T (p2)) = VBr
(T (c), T 2(p2)), (15)

where T n(p) = T (n−1)(T (p)) = λ0

1−α
(1 − αn) + αnp.

Since T n(p2) is affine in p2, (??) is affine in p2 as
soon as V (λ1, T

2(p2)) takes the formVBb
(λ1, T

n(p2))
or VB2

(λ1, T
n(p2)), and V (λ0, T

2(p2)) takes the form
VBb

(λ0, T
n(p2)) or VB2

(λ0, T
n(p2)), n = 2, 3, · · · , which

is affine in p2. If V (λ1, T
2(p2)) keeps taking the form

VB1
(λ1, T

n(p2)) or VBr
(λ1, T

n(p2)) till n goes to infinity,
it will eventually becomeVB1

(λ1,
λ0

1−α
) or VBr

(λ1,
λ0

1−α
)

becauseT n(p2) →
λ0

1−α
whenn → ∞, which is a special case

of affine in p2. The same is true for the termV (λ0, T
2(p2)).

With this we show that (??) is affine inp2. Similarly we can
prove that (??) is affine inp2 thus (??) is affine inp2.

Using the same technique we can prove thatVB2
(p1, p2) is

affine in p1 and VBr
is affine in bothp1 and p2. With this

we show thatVa(p), a ∈ {Bb, B1, B2, Br} is affine in both
p1 andp2, and the equalities in Lemma 1 immediately follow.
This concludes the proof.

Lemma2: V (p) is convex inp1 andp2, and the following
inequalities hold:

V (cp+ (1− c)p′, p2) ≤ cV (p, p2) + (1 − c)V (p′, p2)
V (p1, cp+ (1 − c)p′) ≤ cV (p1, p) + (1 − c)V (p1, p

′)
.

Proof: The convexity property of the value function of
any general POMDP is proved in [11] and we will use that
result directly in this paper.



Lemma3: V (p1, p2) = V (p2, p1), that is, V (p) is sym-
metric with respect to the linep1 = p2 in the belief space.

Proof: Let V n(p1, p2) denote the expected reward when
the decision horizon spans only n time slots. Whenn = 1,

V 1(p1, p2)
= max{(p1 + p2)(Rl + Cl)− 2Cl, 0,

p1(Rh + Ch)− Ch, p2(Rh + Ch)− Ch}
. (16)

V 1(p2, p1)
= max{(p1 + p2)(Rl + Cl)− 2Cl, 0,

p2(Rh + Ch)− Ch, p1(Rh + Ch)− Ch}
. (17)

Obviously we haveV 1(p1, p2) = V 1(p2, p1). Next we as-
sumeV k(p1, p2) = V k(p2, p1), k ≥ 1, we now show that
V k+1(p1, p2) = V k+1(p2, p1). Since

V k+1
Bb

(p1, p2)

= (p1 + p2)(Rl + Cl)− 2Cl + β[p1p2V
k(λ1, λ1)

+ p1(1 − p2)V
k(λ1, λ0) + (1− p1)p2V

k(λ0, λ1)
+ (1 − p1)(1− p2)V

k(λ0, λ0)

. (18)

V k+1
B1

(p1, p2)
= p1(Rh + Ch)− Ch+

β[(1 − p1)V
k(λ0, T (p2)) + p1V

k(λ1, T (p2))]

. (19)

V k+1
B2

(p1, p2)
= p2(Rh + Ch)− Ch+

β[(1 − p2)V
k(T (p1), λ0) + p2V

k(T (p1), λ1)]
. (20)

V k+1
Br

(p1, p2) = βV k(T (p1), T (p2)) . (21)

Using the assumption thatV k(p1, p2) = V k(p2, p1), we have,

V k+1
B1

(p1, p2)
= p1(Rh + Ch)− Ch+

β[(1 − p1)V
k(T (p2), λ0) + p1V

k(T (p2), λ1)]

= V k+1
B2

(p2, p1)

. (22)

Similarly, we have V k+1
B2

(p1, p2) = V k+1
B1

(p2, p1),
V k+1
Bb

(p1, p2) = V k+1
Bb

(p2, p1) and V k+1
Br

(p1, p2) =

V k+1
Br

(p2, p1). Therefore,

V (k+1)(p1, p2)

= max{V k+1
Bb

(p1, p2), V
k+1
B1

(p1, p2),

V k+1
B2

(p1, p2), V
k+1
Br

(p1, p2), }

= max{V k+1
Bb

(p2, p1), V
k+1
B2

(p2, p1),

V k+1
B1

(p2, p1), V
k+1
Br

(p2, p1), }

= V (k+1)(p2, p1)

. (23)

Hence we haveV (p1, p2) = V (p2, p1) for all (p1, p2) in the
belief space.

B. Properties of the decision regions of policy π∗

We useΦa to denote the decision region of actiona. That
is, Φa is the set of beliefs under which it is optimal to take
actiona:

Φa = {(p1, p2) ∈ ([0, 1], [0, 1])|V (p1, p2) = Va(p1, p2)}
a ∈ {Bb, B1, B2, Br}

.

(24)

Definition 1: Φa is said to be contiguous alongp1 dimen-
sion if given (x1, p2), (x2, p2) ∈ Φa, then∀x ∈ [x1, x2], we
have(x, p2) ∈ Φa. Similarly, we sayΦa is contiguous alongp2
dimension if given(p1, y1), (p1, y2) ∈ Φa, then∀y ∈ [y1, y2],
we have(p1, y) ∈ Φa.

Theorem1: Φa is contiguous in bothp1 and p2, where
a ∈ {Bb, B1, B2, Br}.

Proof: We will proveΦB1
as an example, and the results

for other actions can be proved in a similar manner. First we
prove thatΦB1

is contiguous inp1. Let (x1, p2), (x2, p2) ∈
ΦB1

, next we show that((cx1 + (1 − c)x2), p2) is also in
regionΦB1

, where0 ≤ c ≤ 1.

V ((cx1 + (1− c)x2), p2)
≤ cV (x1, p2) + (1− c)V (x2, p2)
= cVB1

(x1, p2) + (1− c)VB1
(x2, p2)

= VB1
((cx1 + (1− c)x2), p2)

≤ V ((cx1 + (1− c)x2), p2)

, (25)

where the first inequality comes from the convexity in
lemma 2; the first equality follows from the fact that
(x1, p2), (x2, p2) ∈ ΦB1

; the second equality follows from
the affine linearity ofVB1

(p) in p1; the last inequality fol-
lows from the definition ofV (p). We haveV ((cx1 + (1 −
c)x2), p2) = VB1

((cx1 + (1 − c)x2), p2), that is, ((cx1 +
(1 − c)x2), p2) is also in the regionΦB1

. Therefore,ΦB1
is

contiguous inp1. Similarly ΦB1
is contiguous inp2.

Theorem2: ΦBb
andΦBr

are self-symmetric with respect
to the linep1 = p2, that is, if(p1, p2) ∈ Φa, a ∈ {Bb, Br} then
(p2, p1) ∈ Φa. ΦB1

andΦB2
are mirrors with respect to the

line p1 = p2, that is, if (p1, p2) ∈ ΦB1
then (p2, p1) ∈ ΦB2

.
Proof: If (p1, p2) ∈ ΦBr

, then we have

V (p1, p2) = VBr
(p1, p2). (26)

Using lemma 3, we have

VBr
(p2, p1)

= βV (T (p2), T (p1)) = βV (T (p1), T (p2))
= VBr

(p1, p2) = V (p1, p2) = V (p2, p1)
, (27)

hence(p2, p1) also belongs toΦBr
. Similarly, we can show

that if (p1, p2) ∈ ΦBb
, then(p2, p1) also belongs toΦBb

.
If (p1, p2) ∈ ΦB1

, then we have

V (p1, p2) = VB1
(p1, p2)

= p1(Rh + Ch)− Ch

+ β[p1V (λ1, T (p2)) + (1− p1)V (λ0, T (p2))]
. (28)

Using lemma 3, we have

VB2
(p2, p1)

= p1(Rh + Ch)− Ch

+ β[p1V (T (p2), λ1) + (1− p1)V (T (p2), λ0)]
= p1(Rh + Ch)− Ch

+ β[p1V (λ1, T (p2)) + (1− p1)V (λ0, T (p2))]
= VB1

(p1, p2) = V (p1, p2) = V (p2, p1)

, (29)

hence(p2, p1) belongs toΦB2
which concludes the proof.



C. Structure of the optimal policy

Based on the properties discussed above, we are now ready
to derive the structure of the optimal policy.

From the belief update in (??), (??),(??) and (??), it is clear
that the belief state of a channel is updated to one of the
following three values after any action:λ0, λ1, or T (p), where
p is the current belief of a channel. For all0 ≤ p ≤ 1, λ0 ≤
T (p) = λ0 + (λ1 − λ0)p ≤ λ1. Since0 ≤ λ0, λ1 ≤ 1, the
belief space is the rectangle area determined by four vertices
at (0, 0), (0, 1), (1, 1) and (1, 0).

First we consider the four vertices and it is easy to obtain
the following results,















V (0, 0) = VBr
(0, 0)

V (0, 1) = VB2
(0, 1)

V (1, 0) = VB1
(1, 0)

V (1, 1) = VBb
(1, 1)

⇒















(0, 0) ∈ ΦBr

(0, 1) ∈ ΦB2

(1, 0) ∈ ΦB1

(1, 1) ∈ ΦBb

. (30)

Next we consider the four edges. On the edgep1 = 0, the
partial value functions are






























VB1
(0, p2) = −Ch + βV (λ0, T (p2))

VB2
(0, p2) = p2(Rh + Ch)− Ch+

β[(1 − p2)V (λ0, λ0) + p2V (λ0, λ1)]
VBb

(0, p2) = p2(Rl + Cl)− 2Cl+
β[(1 − p2)V (λ0, λ0) + p2V (λ0, λ1)]

VBr
(0, p2) = βV (λ0, T (p2))

.

(31)
Using our assumptionCl < Ch < 2Cl, Rh > Ch, Rl >
Cl, and convexity of value functionV (p1, p2), we have
VB1

(0, p2) < VBb
(0, p2) < VB2

(0, p2). With this we say
that on the edgep1 = 0, only two actionsB2 and Br are
possible. Since(0, 0) ∈ ΦBr

and(0, 1) ∈ ΦB2
, we know there

exists a thresholdρ such that∀p2 ∈ [0, ρ), (0, p2) ∈ ΦBr
and

∀p2 ∈ [ρ, 1], (0, p2) ∈ ΦB2
. To deriveρ we define















δ1,λ0
(p) = (1− p)V (λ0, λ0) + pV (λ1, λ0)− V (T (p), λ0)

δ1,λ1
(p) = (1− p)V (λ0, λ1) + pV (λ1, λ1)− V (T (p), λ1)

δ2,λ0
(p) = (1− p)V (λ0, λ0) + pV (λ0, λ1)− V (λ0, T (p))

δ2,λ1
(p) = (1− p)V (λ1, λ0) + pV (λ1, λ1)− V (λ1, T (p))

.

(32)
From the symmetric property ofV (p1, p2), we have
δ1,λ0

(p) = δ2,λ0
(p) = δλ0

(p) and δ1,λ1
(p) = δ2,λ1

(p) =
δλ1

(p). Using the fact thatVB2
(0, ρ) = VBr

(0, ρ), we have

VB2
(0, ρ)− VBr

(0, ρ)
= ρ(Rh + Ch)− Ch + βδλ0

(ρ) = 0
(33)

ρ =
Ch − βδλ0

(ρ)

Rh + Ch

. (34)

Using the results in Theorem 2, we can easily derive similar
structure on the other three edges. The structure of the optimal
policy on the boundary of the belief space is shown in Fig.1
The thresholdsTh1 andTh2 in Figure 1 are given by

{

Th1 =
Ch−βδλ0

(Th1)

Rh+Ch

Th2 =
(Rh−Rl)+Cl−βδλ1

(Th2)

Rl+Cl

. (35)

1

1
p1

p2

|

|

|

|

Th1

Th2

Th1

Th2

ΦBr

ΦB2

ΦB2

ΦBb

Fig. 1: Structure of the optimal policy on the boundary of
belief space

A simple threshold structure on each edge is clear from
Figure 1. Next we will derive the structure of the optimal
policy in the whole belief space.

Theorem3: Φa is a simple connected region extended from
da in the belief space([0, 1], [0, 1]), where

da =















(0, 0) a = Br

(0, 1) a = B2

(1, 0) a = B1

(1, 1) a = Bb

,

and∀(p1, p2) ∈ ΦB1
, p1 ≥ p2; ∀(p1, p2) ∈ ΦB2

, p1 ≤ p2.
Proof: At the beginning of this section we already show

that da ∈ Φa, and from Theorem 1,Φa has at least one
connected region extended fromda. Therefore next we need
to show that eachΦa has only one connected region.

For ΦBr
, let Φ′

Br
denote the connected region extend-

ed from (0, 0), then we will show that there exists no
other connected regionΦ′′

Br
. Since Φ′

Br
is symmetric, let

([0, th1], [0, th1]) be the minimum rectangle to includeΦ′
Br

(no
other connected region in this rectangle)(Figure 2(a)). Sup-
pose there is another connected regionΦ′′

Br
in the area

([0, th1], [th1, 1]) or ([th1, 1], [0, th1]). Take the former for
example, then we have∀(x, y) ∈ Φ′′

Br
, line p1 = x will pass

across bothΦ′
Br

and Φ′′
Br

, thus at least two separate parts
of ΦBr

exist on linep1 = x, which contradicts the result in
theorem 1. Therefore, no connected regionΦ′′

Br
exists in area

([0, th1], [th1, 1]) or ([th1, 1], [0, th1]).
Suppose another connected regionΦ′′

Br
exists in

([th1, 1], [th1, 1]). Let V p2=y
a (p1) denoteVa(p1, p2) whenp2

is a fixed valuey. From lemma 1, the slope of lineV p2=y
a (p1)

is given by






∂V
p2=y

Br
(p1)

∂p1

= β ∂V (T (p1),T (y))
∂p1

∂V
p2=y

B2
(p1)

∂p1

= β ∂[(1−y)V (T (p1),λ0)+yV (T (p1),λ1)])
∂p1

. (36)

From (??) we have
∂V

p2=y

Br
(p1)

∂p1

<
∂V

p2=y

B2
(p1)

∂p1

and from the
structure of optimal policy on the boundary of the belief space,
we have∀(x, y) ∈ Φ′′

Br
, we haveVB2

(0, y) > VBr
(0, y)

(Figure 2 (b)).
It is clear from Fig.2(b) that there exists nop1 = x such

that V p2=y
B2

(x) < V p2=y
Br

(x). Therefore(x, y) /∈ ΦBr
, which

contradicts our assumption that(x, y) ∈ Φ′′
Br

⊂ ΦBr
. From



p1

p2

th1

th1

Φ
′

Br

(a)
p1

V p2=y
a (p1)

V
p2=y

Br
(p1)

V
p2=y

B2
(p1)

(b)

Fig. 2: (a)Belief space region segmentation (b)V p2=y
a (p1)

p1
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ΦBr
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(a) 1-threshold Structure
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p2

ΦBr

ΦB2
ΦBb

ΦB1

(b) 2-threshold Structure

Fig. 3: The structure of optimal policyπ∗

this we show there is no other connected regionΦ′′
Br

in
the area([th1, 1], [th1, 1]). In other words,Φ′

Br
is the only

connected region ofΦBr
.

We can prove thatΦB1
,ΦB2

or ΦBb
has only one connected

region in a similar manner and the detail is omitted due to
space limit.

Next we prove∀(p1, p2) ∈ ΦB2
, p2 ≥ p1. ObviouslyΦB2

has a connected region extended from(0, 1). If ∃(x, y) ∈ ΦB2

andx > y, we can find a mirror point of(x, y) with respect
to line p1 = p2 according to the convexity ofΦB2

. Then
both points(x, y) and(y, x) belong toΦB2

, which contradicts
theorem 2. Hence∀(p1, p2) ∈ ΦB2

, we havep1 ≤ p2.
Similarly, ∀(p1, p2) ∈ ΦB1

, p1 ≥ p2.

When we prove the extended region ofΦBb
in theorem 3

(refer to [18] for detail), two types of structures are foundon
the line p1 = p2. (1) one threshold structure:∃0 < ρ1 < 1,
such that∀y ∈ [0, ρ1], (y, y) ∈ ΦBr

, and∀y ∈ [ρ1, 1], (y, y) ∈
ΦBb

. (2) two threshold structure:∃0 < ρ1 < ρ2 < 1, such that
∀y ∈ [0, ρ1], (y, y) ∈ ΦBr

; ∀y ∈ [ρ1, ρ2], (y, y) ∈ ΦB1
(ΦB2

);
and∀y ∈ [ρ2, 1],(y, y) ∈ ΦBb

. From theorem 3, the structure
of the optimal policy is illustrated in Figure 3.

For the one threshold structure,ρ1 can be obtained by
solving VBr

(ρ1, ρ1) = VBb
(ρ1, ρ1). For the two threshold

structure,ρ1 andρ2 can be obtained by solvingVBr
(ρ1, ρ1) =

VB1
(ρ1, ρ1) and VB1

(ρ2, ρ2) = VBb
(ρ2, ρ2). Therefore for

this power allocation problem, we are able to give the basic
structure of the optimal policy and derive the thresholds on
four edges and on the linep1 = p2. However, so far we are
unable to derive a closed form expression for the boundary of
eachΦa. In the next section, we will use simulation based on

(a) 1-threshold form (b) 2-threshold form

Fig. 4: Value function and Structure of optimal policy

linear programming to construct the optimal policy and verify
its features.

IV. SIMULATION BASED ON L INEAR PROGRAMMING

Linear programming is one of the approaches to solve the
Bellman equation in (4). Based on [13], we model our problem
as the following linear program:

min
∑

p∈X
V (p),

s.t. ga(p) + β
∑

y∈X
fa(p,y)V (y) ≤ V (p),

∀p ∈ X, ∀a ∈ Ap

(37)
whereX denotes the belief space,Ap is the set of available
actions for statep. The state transition probabilityfa(p,y) is
the probability that the next state will bey when the current
state isp and the current action isa ∈ Ap. The optimal policy
is given by

π(p) = arg max
a∈Ap

(ga(p) + β
∑

y∈X

fa(p,y)V (p)). (38)

We used the LOQO solver on NEOS Server [14] with
AMPL input [15] to obtain the solution of equation (37).
Then we used MATLAB to construct the policy according
to equation (38).

Figure 4 shows the AMPL solution of the value function
and the corresponding optimal policy. In Fig 4(a), we use
the following set of parameters:λ0 = 0.1, λ1 = 0.9, β =
0.9, Rh/Rl = 3/2 = 1.5, Ch/Cl = 1.2/0.8 = 1.5 and the
“1-threshold structure” of the optimal policy is observed;In
Fig 4(b), we use the same set of parameters as in (a) except



(a) NormalizedΦa with increasingλ0 (b) NormalizedΦa with decreasingλ1

Fig. 5: NormalizedΦa(Rh/Rl = 3/2, Ch/Cl = 1.2/0.8)

Rh/Rl = 3.7/2 = 1.85 and the “2-threshold structure” of the
optimal policy is observed. The optimal policy in Figure 4
clearly shows the properties we gave in Section 3.

For our power allocation problem, it is interesting to in-
vestigate the effect of parameters (such asλ0, λ1, Rh, Rl, Ch

andCl) on the structure of optimal policy. For this purpose,
we conducted simulation experiments with varying parameters.
First, we increaseλ0 from 0.1 to 0.8 while keeping the rest
of parameters the same as in experiment in Fig 4(a). Let|Φa|
denote the area ofΦa in total belief space and we normalize
all Φa with total belief space as|Φa|/|X|. Fig 5(a) shows
how the normalizedΦa changes with differentλ0. We can
observe in Fig 5(a) that initiallyΦBb

has the biggest area
with λ0 = 0.1. When gradually increasingλ0, ΦBb

becomes
smaller, whilstΦB1

(ΦB2
) and ΦBr

become bigger. When
λ0 ≥ 0.5, ΦB1

(ΦB2
) occupies the major part of the belief

space, meaning thatλ0 is big enough and it is more optimal
to “gamble” on one channel. Similarly, Fig 5(b) shows the
results when we decreaseλ1 from 0.9 to 0.2.|ΦB| changes
in a similar manner as in Figure 5(a). We can see that only
whenλ1 is as small as 0.3,|ΦB1

|(|ΦB2
|) is bigger than|ΦBb

|.
Interestingly,|ΦBr

| is always the smallest in both experiments,
which means the system likes “gambling” instead of “being
conservative”.

In Figure 4 we already observed that differentRh/Rl ratio
leads to different structure of optimal policy (1-threshold or
2-threshold structure). Therefore we believe the optimal policy
is closely related to the immediate reward and loss of the four
actions. And we believe the ratio ofRh/Rl andCh/Cl has
more effect on the structure of optimal policy than their real
value. Therefore, in the next experiment we increase the ratio
of Rh/Rl with differentCh/Cl.

Figure 6(a)(c)(e) show the normalizedΦBr
,ΦB1

,ΦBb
with

increasingRh/Rl from 1.05 to 1.95. We can see that when
Rh/Rl increases,|ΦBr

| and |ΦBb
| become smaller while

|ΦB1
| grows bigger, meaning that the immediate reward of us-

ing one channel(Rh) is big enough to justify “gambling”. Sim-
ilarly Figure 6(b)(d)(f) show the normalizedΦBr

,ΦB1
,ΦBb

with increasingCh/Cl from 1.05 to 1.95. In contrast to Figure
6(a)(c)(e), whenCh/Cl increases,|ΦBr

| and |ΦBb
| grows

bigger while |ΦB1
| becomes smaller, meaning that the the

immediate loss of using a channel(Ch) is big enough and the

(a) ΦBr
with increasingRh/Rl (b) ΦBr

with increasingCh/Cl

(c) ΦB1
with increasingRh/Rl (d) ΦB1

with increasingCh/Cl

(e) ΦBb
with increasingRh/Rl (f) ΦBb

with increasingCh/Cl

Fig. 6: NormalizedΦa (λ0 = 0.1, λ1 = 0.9)

system decides to “play safe”.
From above observation we understand that “1-threshold

structure” may occur with smallRh/Rl, big Ch/Cl and
λ1 − λ0; “2-threshold structure” may occur with bigRh/Rl,
small Ch/Cl andλ1 − λ0. Figure 7 verifies our speculation.
We can see that in all experiments with a wide range of
parameters, no other policy structure than 1-threshold and
2-threshold structure is observed. So we can conclude that
with the help of linear-programming simulation, once the
parameters (λ0, λ1, Rh, Rl, Ch, Cl, β) are known, the structure
of optimal policy can be derived like in Figure 7(a)(b).

V. CONCLUSION

In this paper we have derived the structure of optimal policy
for our power allocation problem by theoretical analysis and
simulation. We have given the structure of optimal policy on
total belief space and proved that the optimal policy for this
problem has a 1 or 2 threshold structure. With the help of
linear programming, we can derive the optimal policy with
key parameters. Further, we would like to find a closed form
expression for the boundary of action region. Also, we would
like to investigate the case of non-identical channels like[16],
or derive useful results for more than 2 channels.



(a) 1-threshold structure (b) 2-threshold structure

Fig. 7: (a)Rh/Rl = 1.25, Ch/Cl = 1.95, λ0 = 0.1, λ1 = 0.9;
(b)Rh/Rl = 1.95, Ch/Cl = 1.5, λ0 = 0.4, λ1 = 0.6
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