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Abstract: In this paper, we apply a Vector AutoRegression (VAR) based trust model over
the Backpressure Collection Protocol (BCP), a collection mechanism based on dynamic
backpressure routing in Wireless Sensor Networks (WSN) and show that the VAR trust
model is suited for resource constraint networks. The backpressure scheduling is known for
being throughput-optimal. However, it is usually assumed that nodes cooperate with each
other to forward the network traffic. In the presence of malicious nodes, the throughput
optimality no longer holds and this affects the network performance in collection tree
applications of sensor networks. We apply an autoregression based scheme to embed trust
into the link weights, making it more likely for trusted links to be scheduled. The novelty
in our approach is that the notion of trust can be easily incorporated in a new state
of the art distributed and dynamic routing Backpressure Collection Protocol in sensor
networks. We have evaluated our work in a real sensor network testbed and shown that
by carefully setting the trust parameters, substantial benefit in terms of throughput can
be obtained with minimal overheads. Our performance analysis of VAR in comparison
with other existing trust models demonstrate that even when 50% of network nodes are
malicious, VAR trust offers approximately 73% throughput and ensures reliable routing,
with a small trade-off in the end-to-end packet delay and energy consumptions.
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1 Introduction

Wireless sensor networks are providing solutions to
plenty of real world challenges at a very low cost
and are enabling applications Glisic (2006); Edgar
H. Callaway (2004); Chong and Kumar (2003); Culler
et al. (2004) in a variety of fields. They include large-
scale monitoring of the earth environment (marine, soil
and atmosphere), civil structures Xu et al. (2004), and
animal habitats Cerpa et al. (2001); Mainwaring et al.
(2002); Szewczyk et al. (2004), industrial sensing and
diagnostics Rajeev et al. (2006). They form the robust
backbone for various data collection applications like
gathering sensor information in inhospitable locations,
biochemical hazard detection, health monitoring and
situational awareness in a military environment. In
essence, wireless sensor networks provide the end
user with intelligence and a better understanding of
the environment. As these devices emerge to become
an important part of our lives, so is their rising
security concern Araujo et al. (2012). Many of the
security approaches suitable for web services cannot be
directly applied to these wireless networks, due to their
limited resources of energy, bandwidth, computation and
memory.

Numerous cryptographic schemes and techniques
Traynor et al. (2007); Zhu et al. (2003); Liu and Ning
(2003) have been applied in the wireless communication
systems, which provide data confidentiality, integrity,
access control, authentication and non-repudiation.
These techniques are categorized as hard security
approaches. There is a class of threats termed as soft
security threats, where the user will be a legitimate
compromised node in the network. These wireless nodes
may either behave selfishly by not forwarding the data
packets so as to save their resources, or maliciously
to launch a Denial of Service attack on the entire
network. Being an authenticated node, they will not
be detected by the conventional cryptographic schemes.
Hybrid security measures involving both cryptographic
and trust-based schemes are needed to ensure complete
security in a system.

A very common pattern of communication in WSN
is the collection mechanism, whereby information from
various sensor nodes will be gathered in a single sink.
One such work based on dynamic backpressure routing
is the Backpressure Collection Protocol Moeller et al.
(2010). Here, the route computation is done on a per-
packet basis, which takes into consideration the local
queue size and the link transmission parameters. A
wide variety of applications can be envisaged in wireless
sensor networks using BCP. Security services like
authentication and confidentiality are critical to secure
communications in wireless sensor networks deployed
in hostile environments. Cryptographic techniques like
SNEP, TESLA Perrig et al. (2001) and TinySec Karlof
et al. (2004) can be used to provide authentication,
confidentiality and data freshness. Even these hard
security measures does not guarantee a complete
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security solution. In defence environments and other
geographically hostile locations, the sensor devices
remain unattended for a long time after deployment and
are vulnerable to adversary attacks. Such compromised
sensor devices will act as legitimate users in the network
and cause maximum damage to network resources.

Trust based soft security schemes bridge the gap by
addressing these challenges. They detect these attacks
by monitoring neighbors for behavioral anomalies and
quantifying these results into direct trust metrics.
Through this mechanism, the misbehaving neighbors
are easily identified and alternate routing mechanisms
are employed to achieve reliable communication in the
network with minimum loss of resources. Although
numerous cryptographic and statistical schemes are
presented in the literature for wireless networks, there
is no implemented work on practical systems related
to trust models with dynamic backpressure routing in
WSN. This may be due to constraints like computational
overheads, large delays and packet losses in these
networks. Addressing these concerns, we present the
first implemented work on Vector AutoRegressive
(VAR) trust model for WSN that works with dynamic
backpressure routing.

VAR models are generally used for analysis of
multivariate time series. They describe the dynamic
behavior of economic and financial time series for
forecasting. Feature classification Anderson et al. (1998),
mobility tracking Zaidi and Mark (2011) and semantic
web applications Qiu and Chen (2008) are some of the
other scenarios in which the multivariate autoregressive
models are used. Our earlier work on VAR trust
model Venkataraman et al. (2012b,a) over wireless ad
hoc routing protocols showed interesting results and
tradeoffs where the proposed trust model is compared
with SRAC Yu et al. (2009), SLSP Papadimitratos and
Haas (2003) and SMT Papadimitratos and Haas (2006).
SRAC is suited to reactive ad hoc routing protocols
where routing decisions are based on neighbor’s
trustworthiness and performance. SRAC focuses on
internal attacks caused by authenticated routers in the
network. Similarly, SLSP secures the links and when
combined with SMT offers a secure data communication
via redundant paths in an ad hoc network. In this work,
we propose to implement the VAR trust model over a
dynamic and distributed routing protocol, BCP in sensor
networks and show that the VAR trust model is very
much suited for resource constraint sensor networks. We
also present the performance analysis and results of the
VAR model in comparison with SRAC and SLSP / SMT
over an IEEE 802.15.4 network and show that the VAR
trust model outperforms these existing trust models that
are available in literature.

The collection tree applications of WSN, especially
with backpressure routing are prone to many security
attacks. First, the compromised node receives the data
packets from its neighbors and may indulge in Denial-of-
Service attacks by either dropping all the data packets
or selectively forwarding some of the data packets.
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Second, the malicious nodes may either change the
packet header information or modify the packet contents
leading to loss of data integrity in the communication.
Third, the adversaries may advertise false queue sizes
in backpressure routing. If a neighboring node does not
wish to cooperate in data forwarding, it may advertise
a maximum data queue size. Since the backpressure
routing is based on queue gradients developed from
source to sink, this non cooperating neighbor will not
receive any data packet for forwarding. On the other
hand, a node may also advertise a low queue size,
thereby attracting data traffic from its neighbors and
later on indulge in Denial-of-Service attacks. Either
way, the network performance is severely degraded in
the presence of these compromised nodes. Finally, the
malicious neighbors may not be fair in choosing its best
neighbor for forwarding of data packets. It may either
misroute the packets to random neighbors or to an
already overloaded neighbor, leading to delay and loss of
data packets.

The main contributions made in this work are as
follows. We integrate the VAR trust model into the state
of the art, low overhead, dynamic backpressure routing
protocol for sensor networks, BCP. In order to do this,
we develop custom VAR trust metrics for BCP. This is
the first time such a distributed trust mechanism has
been implemented for routing in sensor networks. We
have more-over implemented this mechanism in TinyOS
and experimentally verified its performance over a 25-
node sensor network testbed, demonstrating that it
provides good network performance in the presence of
maliciously compromised nodes, while inducing minimal
computation overhead.

The rest of this paper is organized as follows. The
related works on trust in wireless sensor networks and
the concept of BCP are explained in Section 2 . The
modified routing for BCP with trust is explained in
Section 3. The experimental results and analysis of the
VAR trust model over BCP which are carried out in a
sensor network testbed is presented in Section 4. The
performance of the VAR trust model in comparison with
other existing trust models in IEEE 802.15.4 network
scenarios are discussed in Section 5. And in Section 6, we
conclude by pointing to future extensions of this work.

2 Related Works

Trust-based routing in networks are generally used to
mitigate the soft security threats, which are lacking
in the traditional cryptographic schemes. Some of the
hard security measures, tailor-made for sensor networks
include SNEP, uTESLA Perrig et al. (2001) and TinySec
Karlof et al. (2004). SNEP was designed to provide
data confidentiality, authentication and data freshness,
while pTESLA provides broadcast authentication in
wireless sensor networks. TinySec ensures authenticity,
integrity and confidentiality of messages. However, these
schemes do not address the legitimate, authenticated
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nodes, which misbehave due to compromise. Our work is
the first implemented soft security measure on the state
of the art dynamic BCP in sensor networks.

Hybrid key distribution mechanisms, LION and
TIGER Traynor et al. (2007) for sensor networks were
proposed by Traynor et al. LION is a key distribution
scheme suited for distributed sensor networks, while
TIGER is a KDC based distribution mechanism for
sensor networks similar to the collection tree topology.
Few other key distribution schemes Zhu et al. (2003);
Liu and Ning (2003), ensure cryptographic primitives,
but they do not address the specific threats involved
after the sensor nodes are deployed in an unattended
environment. Another key distribution scheme Dai and
Xu (2010) suited for WSN ensures resilience in the event
of node capture. These schemes do not address the soft
security issues in sensor networks.

The statistical model proposed for Dynamic Source
Routing (DSR) Pirzada et al. (2006) captures neighbor’s
misbehavior in DSR and presents mitigation techniques
for dependable routing. Another scheme suited for
secure routing over reactive protocols Yu et al. (2009)
proposes a key distribution scheme and a statistical
trust model for secure routing. Similarly, a scalable
model Velloso et al. (2010) based on relationship
maturity and recommendation trust is proposed for
evaluating trust. But, these schemes are not suitable for
resource constraint sensor networks. The trust metrics
in the proposed trust model identify different types of
misbehaviors by the compromised neighbors in BCP
and ensures optimal throughput in the presence of
adversaries. Since routing is done on per packet basis in
BCP, the recommendation trust cannot be used as an
evaluation metric for judging the trustworthiness of a
node.

In all the above mentioned schemes, the evidence
is mostly based on successful and failed interactions
with the neighbors. Using VAR trust model in BCP,
misbehaving neighbors that launch multiple types of
security attacks are easily identified and trustworthy
alternate routes are taken to forward the packets.

2.1 Overview of BCP

Collection protocols in sensor networks are used
to gather data from multiple sources to a single
sink or multiple sinks. BCP is based on dynamic
backpressure routing and it is implemented and tested
on IEEE 802.15.4 Tmote Sky motes. The backpressure
routing algorithm has its roots in Utility Optimal
Lyapunov Networking Neely (2009). It comes under
the class of utility-optimal algorithms. It was shown
that Backpressure algorithm when combined with LIFO
queuing discipline is able to achieve near-optimal utility-
delay tradeoff Huang et al. (2011). Other variants
like backpressure with adaptive redundancy (BWAR)
Alresaini et al. (2012), to reduce the delay under
low network load conditions were developed for delay
tolerant networks.
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In backpressure routing, a queue gradient is
developed with the generation of packets from source,
which decreases from source to the sink. The collection
cost, measured in transmissions to the sink, and network
stability are encoded in the queue backlogs. Using this
information, routing decisions are made on a per packet
basis.

One of the key features of BCP is the per-packet
collection cost, which is captured by using the ETX
Couto et al. (2003) penalty function. Next, the queuing
discipline of packets in each node is Last-In-First-Out
(LIFO), which decreases the end-to-end packet delay,
traditionally large in backpressure algorithms. There is
98% delay reduction for moderate source rates.

Next, the concept of floating queues ensures that
BCP can scale well to large networks. The nodes which
are furthest from the sink do not suffer from queue
saturation, due to the presence of virtual queues. The
BCP floating queue lies on top of this virtual queue,
which does not store any useful data. The protocol
adapts well to the situations when the floating queue
is full/empty, by increasing/decreasing the size of the
virtual queue.

Finally, the queue backlog information of neighbors
is collected from the BCP packet headers by snooping.
To reduce the processor load on snooping, a five-packet
snoop queue is attached to the snoop interface. The BCP
packets get dropped in this queue thereby reducing the
processor overload.

The routing and forwarding decisions are made by
each node on a per-packet basis. Every node i computes
the backpressure weight, w;; of all j neighbors by
Equation (1).

wi; = (AQj — VETX, ;)R (1)

where AQ);; refers to the difference in transmission queue
size between the node ¢ and its neighbor 7, V is a constant
to weigh between backpressure and ETX minimization,
ETX,_,; is the link usage penalty, Eiﬁj refers to the
estimated link rate. The node picks the neighbor with

the highest w; ; as the next hop for routing the packet.

3 Modifications
Trust

in BCP to incorporate

3.1 Motivation behind the VAR trust Model

In the context of security, trust is defined as the staunch
belief over the competence of another entity, to perform
a set of actions reliably and sincerely. The VAR trust
model is a node-centric trust model similar to the
trust models in Pirzada et al. (2006); Theodorakopoulos
and Baras (2006) but without any recommendation
trust. Every node individually evaluates its neighbor and
makes a judgment on the trust value, which is more
realistic and similar to the trust in social networks.
The novelty in our model lies in capturing the different
behavior of the neighbor nodes, like willingness to

Trust Evidence Collection
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Trust Metrics
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Figure 1: Trust Computation Procedure

participate in routing, data forwarding, sincerity of
the neighbor nodes in forwarding the data without
modification, etc. These behaviors are termed as trust
metrics in our model and are stored as a trust vector for
each neighboring node.

In general, a VAR is a n-equation, n-variable linear
model in which each variable depends on its own lagged
values, plus current and past values of the remaining n-1
variables. Since they exhibit strong correlation between
them and their past time-lagged values, they are called as
endogenous variables. A simple two variable VAR model
with a time lag p = 1 is given in Equation (2).

Ti[1] = RuuTi—1[1] + RaoTi-1[2] + €14
Ti[2] = Ro1Ty—1[1] + RooTy—1[2] + €24 (2)

where R;; are the regression coefficients and es are

the error terms. The following are the assumptions
made while applying the VAR model for prediction
of neighboring trust. The trust metrics at different
instants of time are dependent on each other and their
past time lagged values. Hence, they are represented as
multivariate time series. This is due to the fact that
multiple attacks can be launched by a compromised
neighbor at different time intervals. The time series
is assumed to be stationary. The error terms are not
autocorrelated.

Our notion of trust relies on direct observations of
neighboring nodes. Hence, there is no propagation of
trust and no recommendations of neighbor trust. This
assumption is more suitable for implementing our trust
in BCP as the routing decision is on per packet basis. The
process of VAR trust computation is shown in Figure 1
and details of trust computation in BCP are presented
in the next section.

3.2 Trust Metrics for BCP

In wireless sensor networks with packet transmission
using BCP, the malicious nodes are assumed to indulge
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in four types of attacks as mentioned in Section 1. To
capture the neighbor’s behavior related to these attacks,
five trust metrics are required in the VAR model.

The trust metrics to monitor the successful
forwarding of data packets, without content modification
are shown in Equations (3) and (4) respectively.

T[] = %” (3)
7l = 7 (@

where N is the number of packets forwarded to the
neighbor, T is the total number of packets forwarded
to the neighbor and Ngp is the number of packets
forwarded by the neighbor without content modification.

A compromised node involved in no/selective
forwarding attack and header modification attack, can
be promiscuously detected by the neighbors and its
behavior captured in the VAR trust metric T[1] of
the evaluating neighbor. Similarly, misbehavior of the
neighboring node with regard to content modification is
captured in T[2].

If a compromised node indulges in false queue size
advertisements, its behavior is captured in trust metrics
T[3] and T[4] and they are given in Equations (5) and
(6). The queue size advertised by a cooperating node
should be in the range [Qmin, Qmaz]- The advertised
queue values outside this range are considered as false
advertisements and they are appropriately captured in
these trust metrics.

T3] =1- N(Jﬁg)") (5)
T[4 =1-— W (6)

where N(Qmin) refers to the number of occurrences
wherein the advertised queue size by neighbor is <
Qmin, N(Qmaz) refers to the number of occurrences
wherein the advertised queue size is > Quua. and N(Q)
denotes the total number of queue advertisements. A
malicious node’s bad impact is restricted by the number
of occurrences of false queue advertisements, after which
it loses the trust of its neighbors and it may not be
chosen as a good neighbor for data forwarding. Moreover,
the regression coefficients detect those malicious nodes
indulging in more than one type of attack in a specified
time interval. For instance, a node may attract traflic
by advertising low queue size and later on, indulge in
blackhole attack. These malicious behaviors are easily
captured as the correlation between the trust metrics
at different time units are reflected in the regression
coefficients of the VAR model.

To identify a mneighbor indulging in malicious
misrouting, the trust metric T[5] is used as shown in
Equation (7).

(7)

5

where Npg is the number of matched routing decisions
made by the neighbor with the evaluating entity and T
is the total number of routing decisions made for the
neighbor.

3.8 VAR FEquation for BCP

The selection of the VAR model order plays a critical role
in evaluating the accuracy of the model estimation. The
time lag coefficient p is the order of the VAR model and
Akaike’s Information Criterion (AIC) Priestley (1981) is
used to determine the order that best fits the model.
Sample observations of neighbor’s trust metrics are
collected and AIC values are computed for different
orders of the VAR model as shown in Figure 2. The
minimum value of the AIC indicates the order that best
fits the model and it was found to be 2.

The VAR trust model of order 2 for BCP is
represented in simple linear regression form as shown
in Equation (8). The regression coefficient matrices are
estimated by Ordinary Least Squares (OLS) technique
Gujarati (2003) using MATLAB simulations with a
sample data size of 250 observations.

Tyl = aCy| +ZRu y—1) [z +ZR1x y(t—2)[7]
+ €[]
R 5
Tyw[2] = aCy[2] + Zsz ye—vlz] + > RYTy—o)2]
=1

+ €[2]

Ty(t)[ 3] = aCy| +ZR3w y(t—1)

Z 50 Ty(t—2) (7]

+ €[3]
. 5
Tywl4] = aCyl4] + Z Ry, Tyu—v)lz] + Z Ry, Ty—2)[x]
=1
+ €e[4]
A 5
Ty(t)[ - aC + Z Roz y(t—1) } + Z Rgg;Ty(t72) [CC]
x=1
+ €[5)

(8)

where « is a parameter to weigh between computed trust
and confidence, [Ty(t)]le represents the five estimated
trust metrics for neighbor y, [Cy)lsx1 denotes the
confidence vector corresponding to these trust metrics,
[R'])5x5 refers to the regression coefficient matrix for the
first time lag, [R"]5x5 denotes the regression coefficient
matrix for the second time lag and [e]sx1 refers to the
error vector. The estimated trust is normalized using
Equation (9) and categorized into trust ranges as shown
in Table 1.

_ 2(T, y) —

y =
Amam

NT -1 9)
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Figure 2: AIC values showing the best fit model order

Table 1 Trust Levels

Trust Ranges Meaning  Weights for computing
Confidence

T<0 Distrust -0.1

T=0 Ignorance 0.2

0<T <05 Marginal 0.4

05<T <1 Complete 0.5

where NT is the normalized trust vector, A,,;, is the
minimum possible trust and A,,., is the maximum
possible trust. The normalized trust value is used to
compute the confidence value of the neighboring node in
the next time slot.

The confidence value of the neighboring node y, for
the nt" trust metric, at time ¢, is given by Equation (10).

_ Yay Nows
7

where z is a trust level as shown in Table 1, N, is the
number of times the neighboring node has acquired the
trust level x, w, is the weight associated with this trust
level and p is the maximum length of association between
the neighboring nodes. The weights are computed by
numerous trial evaluations and the values shown in Table
1 are found to model the implications of trust in social
networks. Higher trust levels gain more weightage than
the lower ones. Distrust is assigned a negative weight.

The aggregated trust 7 for a neighboring node is
computed by weighted averaging of trust metrics as in
Equation (11).

Cy(t) [n] (10)

=2 () (1)

where w; are equal positive weights associated with each
trust metric and -7, w; = 1

3.4 Trusted Routing in BCP

Initially, the neighbor nodes will have unknown trust
with each other. Hence, their default trust values against
each other will be zero. As time progresses, the neighbors

will start evaluating each other’s behavior by listening
to their transmissions promiscuously. The snoop queue
attached to the snoop interface of BCP is increased to
8 and no additional snooping interfaces are required for
the trust model.

In steady state, the trust values of the neighboring
node will play a significant role in making routing
decisions of the packets along with backpressure weights.
By this way, good neighbors will earn higher trust and
confidence. The malicious nodes will be easily detected
by their neighbors. For detecting content modification
attacks, we have used the SHA-1 source code from
TinyECC Liu and Ning (2008) which computes the
hash of header and data for a BCP packet. Before
forwarding a packet, the sender node computes the hash,
H(Origin,Origin-Sequence-No,Data) and stores it locally.
Later, it snoops its neighbor’s transmission and re-
computes the hash. If the hash value matches, the node
increases the corresponding trust metric of its neighbor.

In order to integrate the trust value into backpressure
routing, the weight computation procedure is modified to
include the trust of the neighboring nodes. The modified
weight calculation for BCP is given in Equation (12).

Wij = (AQ” - VETXZ‘)j + ﬁTj).EiHj (12)

where 7; is the aggregated trust of the neighboring node
and [ is the weighing factor between backpressure weight
and trust weight. According to the backpressure routing
policy, each node ¢ computes the backpresssure weight,
w;; for all its neighbors and chooses that neighbor
with the highest backpressure weight for forwarding
the packets. The integration of VAR into backpressure
routing is shown in Algorithm 1.

The key challenge lies in choosing an appropriate
value for 3, wherein too low a value will downplay the
significance of trust, and too high a value will outweigh
the advantages of backpressure routing, When £ value
is high, the trusted neighbors will have an overflowing
floating queue, leading to many packet drops. The
ETX penalty cost included in the backpressure weight
estimation will become negligible, which will lead to
more transmissions over lossy wireless links, leading to
reduction in throughput and efficiency of the sensor
network. Hence, the value of 8 should be just enough
to aid in choosing the best neighbor, given their queue
differentials and link estimation costs for backpressure
routing. Our empirical results in Figure 3 (c) with 40
sensor motes in Tutornet testbed shows the optimum
value of 3 at 2.

In Figures 3 (a) and (b), we illustrate the notion of
trusted routing in BCP with VAR, using an intuitive
example of a four node network. For simplicity, we have
considered the trust metrics T[1] and T[2] alone for every
neighbor. We assume that the backpressure gradient
from A= B and A= C is formed so that node A
transmits 2 packets every 2 secs, alternatively to node B
and node D. Let the trust update interval A be 12 secs.
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Figure 3: (a) A four node scenario using BCP with VAR where node A alternatively transmits 2 packets, every
two time units to B and D. (b) Trust metrics as computed by node A for its neighbors B and D. Neighbor B is a
compromised node and drops both the packets at t= 2. At t=6, node B indulges in packet modification attack. At
t=8, one packet is not received by node D due to link failure. (¢) Empirical results showing maximum throughput at
B = 2 (d) Trust evaluations done by node A for its neighbors
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Initialization;
Initialize the confidence vector, error vector and
regression coefficients;
if trust update interval = A then
for every neighbor y do
Compute the trust metrics T),[1]...T}[5]
using Equations 3 - 7;
Estimate the trust, Ty(t) [1..5] for this
neighbor using

Equation 8 with confidence vector
Cya|L.3];
Normalize the trust vector into the range
[-1,1] using Equation 9;
Compute the confidence vector C’y(t) [1..5]
using Equation 10;
Compute aggregated trust 7 using
Equation 11;
Compute the backpressure weight w; , for
this neighbor link

using Equation 12;

end

end
Routing decision;
Choose the link with maximum positive
backpressure weight w; ; as the best trustworthy
neighbor for forwarding the packets;
Algorithm 1: VAR trust computation with
backpressure routing

Assuming zero confidence and error vectors and unit
regression coefficient matrices, the estimated trust of the
nodes B and D are computed using Equation 8. These
values are normalized in the range [-1,1] using Equation
9 with A0 = 2 and A, = 0. Assuming equal weights
for T[1] and T[2], the aggregated trust 7 is computed
using Equation 11 and their values are shown in Figure
3 (d). With all other backpressure routing parameters
being equal for the weight computation process, node D
will have higher backpressure weight when compared to
node B. Hence, node D will be chosen as a trustworthy
neighbor for forwarding the data packets in the next
trust update interval.

4 Experimental setup and Performance
Analysis over BCP

The VAR model is integrated with BCP and the
proposed modifications in BCP are implemented in
Tutornet, a IEEE 802.15.4 wireless sensor network
testbed comprising of TmoteSky motes. Table 2
describes the VAR trust and experimental setup
parameters. Figure 4 represents the topologies used for
experimentations and their average node degrees are 3.36
and 5.76 respectively. They serve as a representative
network to evaluate the memory and computational
complexity of the VAR trust model over BCP. BCP-VAR
refers to the modified BCP with the VAR trust model.

(a)

2 10 14 18 22

5 9 13 17 21 25
(b)

Figure 4: (a) Mesh topology with average node degree
3.36. (b) Mesh Topology with node id column ordered
and average node degree 5.76

Table 2 Experimental Setup and VAR trust parameters

Parameters Values
Number of motes 25
Transmit Power -18 dBm
Packet Size 34 bytes
Inter packet arrival time  Exponential
Constant used in BCP 2

weight computation, V
Number of trust metrics 5
(n)

VAR time lag (p) 2

weight for T[1] 0.2

weight for T[2] 0.2

weight for T[3] 0.2

weight for T[4] 0.2

weight for T'[5] 0.2

o 0.5

3 2

Qmaz 10

I 30 minutes

Source Rate variable - 0.25 to 2
pkts/sec (pps)

Trust update interval (A) 20 secs

The regression co-efficients of the VAR trust model
for BCP are computed using MATLAB simulations for
more than 1000 observations. Hence, the time complexity
of VAR trust model with BCP depends on the number
of trust metrics (n) and the number of neighbors (y)
and it is found to be O(ny). The code size for the
BCP-VAR including the test application is found to be
around 29KB, which is larger than BCP without trust
by approximately 6KB.

4.1 Performance Analysis of BCP and BCP-VAR
without any attacks

Firstly, the performance of these two protocols is studied
under normal circumstances where no compromised
nodes are present in the network. The efficiency of
BCP and BCP-VAR is evaluated with three metrics:
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throughput, end to end delay experienced by packets and
the average retransmission counts. The sensor nodes are
arranged in topology as shown in Figure 4 (b).

Figure 5 (a) shows that BCP-VAR is able to offer
the same throughput as BCP at different source data
rates. But, the end-to-end delay experienced by the
packets in BCP-VAR is 0.5 seconds higher than in BCP
which is shown in Figure 5 (b). The increase in delay is
attributed to the execution of trust computation logic in
the individual sensors of the network. Next, the average
retransmission counts in the network is analyzed for BCP
and BCP-VAR. The retransmission count is a metric
which signifies the number of attempts made by the
node to forward a data packet to its designated neighbor
before making a successful transmission. Hence, it is
desirable to minimize the average retransmission counts
which indicates the stability of links in the network. In
Figure 5 (c), it was found that the average retransmission
counts experienced by the packets in BCP-VAR is very
close to that in BCP.

In Figure 5 (d), the average energy consumed by the
sensor devices is analyzed in the network for a random
topology at different trust update intervals. BCP-VAR
shows a near linear increase in the average energy
consumption when compared to the sub-linear increase
in BCP against increments in source data rate by 0.5
pkts/sec (pps). This is predominantly due to the energy
spent on neighbor packet snooping. It is also evident that
the average energy consumption in BCP-VAR does not
vary much with the variations in trust update intervals.
Hence, the trust computation algorithm does not add
much overhead to energy consumption.

4.2 Performance of BCP-VAR in the presence of
no forwarding nodes

Next, we consider a scenario where the compromised
nodes partially drop few data packets. The sensor motes
are arranged in topology as shown in Figure 4 (a).
Few sensor motes are chosen at random to behave as
malicious nodes that drop data packets. Figure 6 shows
the throughput of the network under BCP and BCP-
VAR amidst no forwarding nodes at source data rates
of 0.25 pps and 1.25 pps. In the presence of 40% no
forwarding nodes, BCP-VAR offers around 75% packet
delivery ratio. The average end-to-end delay experienced
by the packets generated from all sources for BCP-VAR
was analyzed at 95% confidence intervals for source data
rates of 0.25 pps and 1.25 pps. It was found be greater by
0.5 seconds, amidst 40% compromised sensors, as shown
in Figure 7. This is the overhead associated with the
trust computation algorithm.

The average retransmission counts experienced by the
packets is presented in Figure 8 (a). This shows that
BCP-VAR, amidst 40% malicious nodes increases the
average retransmission attempts by 2 at source data
rates of 1.25 pps. This is due to the fact that the
trustworthy neighbors are selected to be forwarders, in

100
80
- .
a
Bl e e e S
£
© 40 |- +BCP-0.25pps - T e
= =BCP-VAR 0.25 pps
20 |- BCPL:25pps T
0 ~BCP-VAR 1.25 pps

0 2 4 6 8 10
Number of blackhole nodes

Figure 6: Throughput of the network for BCP and
BCP-VAR in the presence of blackhole nodes

=
o
el
2
¢ __3
2 8 +BCP 0.25 pps
g 2, #BCP-VAR 0.25 pps
g BCP 1.25 pps
1 : ~BCP-VAR 1.25 pps
[
2

0

0 2 4 6 8 10

Number of malicious nodes

Figure T7: Average End-to-end delay experienced by
packets at 95% confidence intervals

spite of high backpressure, leading to packet drops and
retransmission.

The predominant source of energy consumption
in wireless sensor networks is the radio when it is
transmitting or receiving packets. In BCP-VAR, there
are no additional trust related packet transmissions.
With all other energy consumption sources being the
same, BCP-VAR spends extra energy on snooping its
neighbor’s packets. Hence, the energy consumed on
neighbor packet snooping largely depends on the number
of neighbors in the vicinity. Figure 8 (b) shows the
average energy consumed by sensors, on packet snooping
arranged in topologies, as shown in Figures 4 (a) and (b)
respectively, with average node degrees 3.36 and 5.76 . It
was found that the energy consumed on packet snooping
for BCP-VAR is approximately average node degree X
the energy consumed on packet reception for normal
BCP.

4.3 Performance of BCP-VAR with malicious
misrouting

To evaluate the performance of BCP-VAR amidst
malicious nodes indulging in packet misrouting, the
sensor motes are arranged in a mesh topology as
shown in Figure 4 (b). Eight sensor motes are chosen
randomly to misroute data packets to random neighbors.
Remaining sensors, except sink, are sources generating
data packets at 1.0 pps.
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Figure 8: (a) Average retransmission counts experienced by the packets (b) Average Energy consumed on packet
snooping for the topologies in Figure 4 at 95% confidence intervals. BCP-T1 refers to BCP-VAR. using topology in
Figure 4 (a). BCP-T2 refers to BCP-VAR using topology in Figure 4 (b)

In the mesh topology considered for experimentation,
there are ten interior motes which are surrounded by
other motes. These motes can judge the routing decisions
of the neighboring motes present in the border of the
network with full neighbor visibility. The false positive
and false negative rates along with the detection rates
of individual nodes in the sensor network are shown
in Figure 9. It can be seen that the border nodes can
evaluate the routing decisions of interior nodes with
partial visibility whereas the interior nodes can better
judge their neighbors in the border of the network. In
spite of this limitation, it was found in Figure 10 (a) that
the packet loss percentage is greatly minimized in BCP-
VAR trust to 30% at source data rates of 2 pps. Figure
10 (b) shows that the packet delay for BCP-VAR is also
minimal in the presence of malicious misrouters at 4.9 sec
for source data rates of 2 pps, whereas in normal BCP,
the packets take a circuitous path to the sink, incurring
a delay of 7.8 secs.

4.4 Performance of BCP-VAR amidst

header/content modification attacks

Compromised nodes which modify the header or data
of the message are introduced into the network with
random topology and the performance of BCP-VAR is
shown in Figure 10 (c) for source data rate of 1.0 pps.
In the presence of 40% malicious nodes, the protocol
performs reasonably well, with less than 15% of modified
packets arriving at the sink. Few modified packets still
arrive at the sink because the nodes learn about data
modification attacks by promiscuously listening to its
malicious neighbor over a period of time. In due course,
the node lowers its trust for their malicious neighbors.

4.5 Performance of BCP-VAR with nodes

advertising false queue sizes

The performance of BCP-VAR is tested by varying the
number of sensor devices which advertise low queue sizes
in a network with random topology at source data rates
of 1.0 pps. After attracting the traffic, these sensors are

Table 3 Simulation parameters

Parameter Value

Simulation Area 800 * 800m?
Transmit Power -18dBm

Number of devices ~ 300

Inter-packet arrival time  Exponential

Data Packet Size 27 bytes (constant)
Data Rate 250 Kbps

Number of trust metrics 6

considered (n)

VAR time lag (p) 2

Epoch duration ( 4 ) 30 minutes

Trust metric weight 0.17 (equal weights)
Parameter to weight 0.5

between trust and

confidence ()

made to drop the data packets. The neighboring nodes
quickly sense the behavior of these malicious nodes and
lower their trust and confidence values. The rest of the
packets are forwarded through trustworthy neighbors
and the throughput of the network is maintained at 75%,
in the presence of 40% compromised sensors as shown in
Figure 10 (d).

5 Performance Analysis of the VAR trust
model

The performance analysis of the VAR model is compared
with SRAC and SLSP/SMT in an IEEE 802.15.4
network scenario and the results are presented in this
section. Simulations are carried out using OPNET
Modeler for wireless networks. The link encryption key
size for SRAC is 256 bits. The nodes are deployed
in a random manner in an area of 800 X 800 m?2.
Other simulation setup parameters and the VAR trust
parameters are listed in Table 3.

First, we consider the average time taken to detect
malicious behavior and it is compared for VAR, SRAC
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and SLSP/SMT trust models in a scenario where
multiple attacks are launched at different instants of
time. Figure 11 shows the performance in a network
where 40% of the malicious nodes launch different
attacks like no forwarding attacks, flooding attacks,
content modification attacks, etc. It can be seen that
the VAR trust model takes minimum time to detect
these malicious behaviors, due to the presence of a strong
evidence collection phase in the trust evaluation process.
It can also be seen that this detection time is further
reduced when the source data rate is increased. This
can be attributed to the fact that with more number of
evidences in a given time interval, the trust metrics will
be able to quickly identify the malicious behavior of the
neighboring nodes.

Next, the throughput of the network is measured
for these trust models by varying the percentage of
malicious nodes, which launch multiple attacks at
different simulation time intervals. Figure 12 shows that
SRAC is not equipped with handling multiple attacks
and hence, the throughput of the network reduces to
42% in the presence of 50% malicious nodes. Similarly,
in SLSP / SMT, the path survival probabilities are
computed for every path from source to the sink. Both
SRAC and SLSP / SMT are efficiently able to handle
attacks where the adversaries dropped all or part of
the data packet transmission. But, they are unable to
detect those adversaries that launch other attacks like
corrupting the data packet or data flooding attack. It
was found that VAR model was able to rightly identify
the compromised nodes at a very early stage and choose
those paths with trustworthy nodes to reach the sink.
Hence, with VAR model, 73% throughput was achieved
in the presence of 50% malicious nodes.

Finally, we examine the energy consumption of the
nodes using various trust models under consideration
and the results are shown in Figure 13. It was
found that the VAR trust model, when compared
to SRAC and SLSP / SMT offers minimum average
energy consumption at different source data rates. This
is achieved in spite of the additional energy spent
on neighbor packet snooping. The energy consumed

13
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Figure 12: Throughput of the network varying the
percentage of malicious nodes
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Figure 13: Average Energy Consumption for different
trust models

in nodes using SRAC is due to the computational
complexity involved in extensive use of cryptographic
algorithms and authentication mechanisms employing
digital signatures. The encryption and decryption
procedures in every link is the cause of this increased
overhead. In SLSP / SMT, the increased energy
consumption is due to the increase in routing packet
size for every link state updates by wusing public
key infrastructure and the redundancy of data packet
transmission in multiple paths to ensure reliable
communication.

6 Conclusion

We have incorporated the VAR trust model into the
state of the art dynamic backpressure routing protocol
and shown that this model is also suited for resource
constraint wireless networks. By adjusting the trust
parameters in the backpressure weight computation,
we have shown that the performance can be greatly
improved in the presence of malicious nodes. We have
also demonstrated that trust mechanisms can indeed be
easily incorporated into a resource-constrained sensor
network by implementing and testing our code in a
real sensor network testbed. We found that with VAR
trust, the nodes in a wireless sensor network are able to
quickly learn the malicious behavior of any neighboring
node present in the network. Accordingly, they chose
an alternate trustworthy path for routing the packets.
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This leads to an overall increase in the throughput
performance of the network. Our simulation results show
that in the presence of 50% malicious nodes that launch
multiple attacks, the VAR trust model outperforms other
existing trust models. Some of the interesting extensions
to this work include experimentation with wireless sensor
devices with multimode radios so as to enhance the
snoop capabilities and integration of the VAR trust
model to other routing mechanisms in wireless network
applications.
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