MABSTA: Collaborative Computing over
Heterogeneous Devices in Dynamic Environments

Yi-Hsuan Kao*, Kwame Wright*, Po-Han Huang*, Bhaskar Krishnamachari* and Fan Baif
*Ming-Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, CA, USA
Email: {yihsuank, kwamelaw, pohanh, bkrishna} @usc.edu
TGeneral Motors Global R&D
Warren, MI, USA
Email: fan.bai@gm.com

Abstract—Collaborative computing, leveraging resource on
multiple wireless-connected devices, enables complex applications
that a single device cannot support individually. However, the
problem of assigning tasks over devices becomes challenging in
the dynamic environments encountered in real-world settings,
considering that the resource availability and channel conditions
change over time in unpredictable ways due to mobility and other
factors. In this paper, we formulate the task assignment problem
as an online learning problem using an adversarial multi-armed
bandit framework. We propose MABSTA, a novel algorithm
that learns the performance of unknown devices and channel
qualities continually through exploratory probing and makes task
assignment decisions by exploiting the gained knowledge. The
implementation of MABSTA, based on Gibbs Sampling approach,
is computational-light and offers competitive performance in
different scenarios on the trace-data obtained from a wireless IoT
testbed. Furthermore, we prove that MABSTA is 1-competitive
compared to the best offline assignment for any dynamic envi-
ronment without stationarity assumptions, and demonstrate the
polynomial-time algorithm for the exact implementation of the
sampling process. To the best of our knowledge, MABSTA is the
first online learning algorithm tailored to this class of problems.

I. INTRODUCTION

We are at the cusp of revolution as the number of connected
devices is projected to grow significantly in the near future.
These devices, either suffering from stringent battery con-
straints, or limited processing power, are not capable of run-
ning computation-intensive tasks independently. Nevertheless,
the connected devices in the network, sharing resources with
each other, provide a platform with abundant computational re-
sources that enables the execution of complex applications [1]-
[3]. Compared to traditional cloud services, the access to mo-
bile devices, road-side units (RSUs) and other local devices are
less reliable [4], [S]. Besides the communication over varying
wireless links, the current workload on a device also affects
the amount of remaining releasable resource. Hence, a system
has to identify the available resources in the network and
decide how to leverage them among a number of possibilities,
considering the dynamic environment at run time [6], [7].

Figure 1 illustrates the concept of Wireless Collaborative
Computing. Given an application that consists of multiple
tasks, we want to assign them on multiple devices, considering
the resource availability so that the system performance, in

Task Graph

—

Assignment
task

Device Network

device

Fig. 1: To leverage the resource on heterogeneous devices in
the network, a system has to find out a good task assignment
strategy, considering devices’ feature, workload and channel
qualities between them.

metrics like energy consumption and application latency, can
be improved. These resources that are accessible by wireless
connections form a resource network, which is subject to
frequent topology changes and has the following features:
Dynamic device behavior: The quantity of the released
resource varies with devices, and may also depend on the
local active processes. Moreover, some of devices may carry
microprocessors that are specialized in performing a subset of
tasks. Hence, the performance of each device varies highly
over time and different tasks and is hard to model as a known
and stationary stochastic process.

Heterogeneous network with intermittent connections: De-
vices’” mobility makes the connections intermittent, which
change drastically in quality within a short time period.
Furthermore, different devices may use different protocols to
communicate with each other. Hence, the link performance
between devices is also highly dynamic and variable and hard
to be modeled as a stationary process.

Since the resource network is subject to drastic changes
over time and is hard to be modeled by stationary stochastic
processes, we need an algorithm that applies to all possible
scenarios, learns the environment at run time, and adapts
to changes. Existing works focus on solving optimization
problems given known deterministic profile or known stochas-
tic distributions [8]-[11]. These problems are hard to solve.
More importantly, algorithms without learning ability could be
harmed by statistical changes or mismatch between the profile

data stream
| control signal

task

intense task

Fig. 2: A face recognition application [12] is partitioned into
multiple stages. The task graph without light control signal
exchange, is described by a directed acyclic graph.

(offline training) and the run-time environment. Heuristics that
adapt different strategies to dynamic environments may suffer
from significant performance loss in some scenarios [12].
Hence, we propose an online learning algorithm that is
adaptive to the environment at run-time, and provide the
performance guarantee to all practical scenarios.

We formulate the task assignment problem as an adversarial
multi-armed bandit (MAB) setting that does not make any
stationarity assumptions on the resource network. Unlike the
Exp3 algorithm proposed in [13], which treats each strategy
independently and hence becomes intractable for our problem,
we propose MABSTA (Multi-Armed Bandit Systematic Task
Assignment), which explores the environment and considers
the dependency between the strategies. We illustrate a light
implementation based on Gibbs Sampling method to approxi-
mate the sampling process, and demonstrate a polynomial-time
algorithm for the exact implementation. Moreover, we provide
worst-case analysis that MABSTA achieves 1-competitiveness
compared with the best offline assignment for all dynamic
environment. To the best of our knowledge, MABSTA is
the first online learning algorithm in this domain of task
assignment problems with provable performance guarantee.

II. PROBLEM FORMULATION

Figure 2 shows the face recognition application proposed
in [12], in which the system processes a video stream of mul-
tiple data frames in order. The stages like feature recognition
and feature classification are intensive for cell phones and
other IoT devices, considering limited computation power and
battery to run the real-time application individually.

Suppose an application consists of N tasks, where their
dependencies are described by a directed acyclic graph (DAG)
G = (V,€). In the task graph, a node m specifies a task
(stage), and a directed edge (m,n) implies that data exchange
is necessary between task m and task n. Hence task n cannot
start until task m finishes. There is an incoming data stream
to be processed in order labeled by 1,--- ,t,--- ,T. For each
frame ¢, it is required to go through all the data-processing

stages. There are M available devices. The assignment strategy
of frame ¢ is denoted by a vector x' =z, --- | z%;,, where 2,
denotes the device that executes task n. Given an assignment
strategy, stage-wise costs apply to each node for computation
and each edge for communication.

We model the stage-wise costs as sequences that vary over
time. When processing frame ¢, let ci (t) be the cost of
executing task n on device i. Let 05%) (t) be the cost of
transmitting the data of between tasks m and n from device @
to j. The cost sequences are unknown but are bounded between
0 and 1. That is, we don’t make any stochastic or stationarity
assumptions on the dynamic environment and hence our for-
mulation fits a broad range of run-time scenarios. Not knowing
these sequences in advance, our proposed online algorithm
aims to learn the best strategy and remains competitive in
overall performance.

In the energy-aware environment, we aim to minimize the
total cost of processing the whole data stream. That is,

T N

Cotar =3 [S C 0+ 3 ™)].

t=1 \n=1 (m,n)€€

If the application is delay-sensitive, we aim to minimize the
total delay of processing the whole data stream,

T
Diotar = »_ D (t).)
t=1

The delay at the task n is the accumulated delay from its
preceding task,

Dy(t) = O (1) + Jmax Din(t) + cler™)(t), 3)
m,n)e
where C), denotes the computation latency and C,,,, denotes
the communication latency. When the task graph is a serial
graph, Equation (2) becomes the additive cost in (1).

III. MABSTA ALGORITHM

From Section II, our formulation implies exploring expo-
nentially many task assignment strategies (M” arms). Unlike
the Exp3 algorithm in [14] that assumes independent arms, we
propose MABSTA (Multi-Armed Bandit Systematic Task As-
signment), which probes the devices’ performance and channel
qualities by flexibly assigning tasks to available devices, learns
the best strategy and adjusts it over time. MABSTA leverages
the dependencies between arms and learns the environment
faster. Although there are M feasible assignment strategies,
our performance analysis shows that MABSTA still provides
the performance guarantee that is bounded by a polynomial of
M and N.

In the conventional Multi-armed Bandit (MAB) setting, our
assignment strategy corresponds to the arm chosen at time ¢.
The costs can be one-to-one mapped to rewards by setting
reward = maxCost — cost. When processing data frame ¢,
let Rﬁf)(t) be the reward of executing task n on device i. Let
R%Q (t) be the reward of transmitting the data between tasks

Algorithm 1 MABSTA

Algorithm 2 Gibbs Sampling for MABSTA

1: procedure MABSTA(v, o)

2 we(l) « 1Vx e F

3: for t < 1,2,---,7T do

4 Wt — er}- ’lUx(t)

5 Draw x! from distribution

wX(t) Y
«(t) = (1 — + = 4
px(t) =(1—-17) w, T 7
6 Observe { RS (61N, {RS5™ ()} mmyee-
7: Ct <+ {y € Fly, =L}, Vi
8: Cmn <y € Flym = at,,yn = 2L}, V(m,n)
9: for Vi € [M], Vn € [N] do
R (1) - _
RO = | Sveep, w0 o =0)
0 otherwise.
10: for Vi, j € [M]]][[M], V(m,n) € € do
RS (1)
o mn .f fn — .7 ﬁ" — .7
R%Jn) (t) = Zyec;j;n py(t) n n J (6)
0 otherwise.
11: Update for all x
A N A A~
Ret) =Y R+ Y. Ruw™®), (O
n=1 (m,n)eE
wx(t + 1) = wx(t) exp (al:?x(t)) . (8)

12: end procedure

(m,n) from device i to j. We assume that only the probed
rewards are observable and the rest remain unknown.

MABSTA (Algorithm 1) is a randomized algorithm. For
each frame ¢, MABSTA selects an assignment strategy (arm
x! € F) from a probability distribution that depends on
the weights of arms (wx(t)). Then it updates the weights
based on the observed performance. From (4), MABSTA
randomly switches between two phases: exploitation phase
(with probability 1—) and exploration phase (with probability
7). At exploitation phase, MABSTA selects an arm based
on its weight. Hence, the one with higher reward observed
will be chosen more likely. At exploration phase, MABSTA
uniformly selects an arm without considering its performance.
The fact that MABSTA keeps probing every arm makes it
adaptive to the changes of the environment, compared to the
case where static strategy plays the previously best arm all the
time without knowing that other arms might be performing
better currently.

After selecting an assignment strategy, MABSTA collects
the stage-wise rewards and estimates the performance on these
stages based on the observations as shown in (5) and (6).
For example, if MABSTA assigns task n to device ¢, then
it estimates how good device ¢ performs on running task n
for future reference. In order to get an unbiased estimator,

1: procedure GIBBS SAMPLING(R)

2 x? ~ Uniform{1,---,|F|}

3: forr <~ 1,2,--- ,R do

4 forn<«+1,2,--- /N do

5 Sampling z;, from the distribution

STy) ©)

r r—1

p(a?|x§, 1 Tyt

6: Return x%

7: end procedure

MABSTA updates the estimate R (t) by (5) such that
E{R{ (1)} = R (1).

n
In the end, with the estimated stage-wise performance, MAB-
STA calculates the estimated performance of each strategy,
Rx(t) in (7) and updates the scores in (8). The parameter « is
a positive number, that is to say, higher estimated performance
implies higher score and higher chance to be selected for the
next frame.

With the aim to be light and competitive in dynamic
environment, we design a light implementation for MABSTA,
which is an approximation to the exact implementation as
Algorithm 1. In Section IV, we evaluate MABSTA’s com-
petitiveness by trace-data simulation. Finally, in Section V,
we present a theoretical analysis to MABSTA’s performance
guarantee and a polynomial-time algorithm for the exact
implementation for a subset of task graphs and cost function.

A. Implementation

We identify several bottlenecks when implementing Algo-
rithm 1. First, in (4), sampling an assignment strategy takes
exponential complexity. Second, both (5) and (6) involve sum-
ming exponentially many probability densities. Furthermore,
in (8), it requires updating the scores for exponentially many
strategies. In the following, we propose efficient implementa-
tion on each bottleneck and present empirical evaluation.

1) Sampling an Assignment Strategy: We observe in (4) that
for (1 — ~) proportion of time, we face the sampling process
considering all the scores wy(t) (MY strategies in the worst
case). Algorithm 2 describes the Gibbs sampling [15] method
that takes R iterations for each data frame ¢. We use x" to
denote the sample vector at iteration r, with its element x|,
specifying the assignment for task n. Gibbs Sampling chooses
the assignment of task n from the conditional probability.
Instead of looking at all wy(t), getting the conditional proba-
bility involves only checking M scores, that is,

—1 —1
p($|$7{a ,-132_1,%2_;,_1,"' 773;\[)
._1 ,._1
O(p(x"lﬂ7 ax2—17x7x;,+17"' 3x§\/') (10)

Hence, choosing z; from the conditional distributions is
equivalent to checking wy(t) for 2, = 1,--- , M and the rest
of components are fixed, with the new values sampled at the

Gibbs ing - Distribution Error

2‘ 4; é é 10 12 14
number of iterations

Fig. 3: The difference between the distribution given by

Algorithm 2 and the real distribution decreases drastically as

the number of iteration grows.

CPU Time Measurement

—t+—exact, M= 10
—¥—exact, M=5
--=4--MABSTA, M = 10
- MABSTA, M =5

CPU Time (ms)

Fig. 4: CPU Time measurement (log-scale) shows that
MABSTA-light achieves two orders of magnitude reduction.

current iteration up to task m» — 1 and values from the last
iteration for tasks n + 1,--- , N.

Figure 3 shows the difference between py(t), given by
Algorithm 2, and the original distribution py(¢). The Euclidean
distance ||px(t) — p.(t)|| decreases drastically as the number
of iteration grows and becomes negligible when R = 10.

2) Summing Probability Densities: Equation (5) involves
calculating the marginal probability P{z! = i}. To avoid this
computational overhead, we use the conditional probability as
an approximate to the marginal probability. That is,

P{xfz = Z} zP{x; = Z|x§7 »x;717$;+1>"' a‘rg\f}v

where zt,-- -,z are the devices chosen in the Gibbs sam-
pling process. We will use the condensed notation p(i|zf, :
m # n) for the condition probability in the following discus-
sion. By (10), this conditional probability is easy to compute.
However, the approximation assumes that the assignment on
task n is independent of other tasks. That is,

P{x! =i} = p(i|zt, : m # n) if
p(x)i?"' 53:3\7) =]P){l‘z = Z}p(xﬁv 71‘%—175&@—}-17"' ,.1‘5\[)

Although this is not true in general, in Section IV, we show
that this approximation works well in real environments.
Similarly, MABSTA approximates P{z! = i,z! = j} by

the conditional distribution, and updates the estimates by,

iy R (1)
ROy = "\ pat —
O it Ay T
(14)
(21 mn t . . .
R0 = Tt it =

p(i, jlal, - u# m,n)’

3) Updating the Scores: In Algorithm 1, we present the
update process in (8) for interpretability. In practice, it is not
necessary to update wy(t) actively. We observe that in (7),
Rx(t) relies on the estimates of each node and each edge.
Hence, we rewrite (8) as

N
w(t + 1) = exp (az REV@®) +a Y I%Esww) ,

n=1 (m,n)e&
an

where
R t R t
(1) = 30 RE (), Rz (6) = 37 R (7).
T=1 T=1

(12)
To calculate wx (), it suffices to update Rgf)(t) and R (t)
for all n € [N], (m,n) € & and 4,5 € [M], which cost
(NM + |E] M?). Hence, if we cache these values, it is not
necessary to update wy (t) for each x. Instead, we can calculate
wy (t) efficiently when needed in the Gibbs Sampling process.

B. Computation Overhead Benchmark

The MABSTA system receives probing data and updates
the assignment at run time. Figure 4 shows the MABSTA’s
average CPU overhead per data frame. We use Apple Macbook
Pro equipped with 2.4GHz dual-core Intel Core i5 processor
and 3MB cache as our testbed and use java management
package for CPU time measurement. For each problem size,
we measure the CPU time over 100 data frames and calculate
the average. In this experiment, MABSTA runs 10 iterations
in the Gibbs sampling process. We compare MABSTA with
the exact polynomial-time implementation presented in Sec-
tion V-B. The measurement result shows that the complexity
of MABSTA is light. It only induces 3 ms CPU overhead for
the largest problem size we have considered, indicating two
orders of magnitude reduction in computational overhead.

IV. NUMERICAL EVALUATION

We examine how MABSTA adapts to dynamic environment,
and perform trace-data simulation to verifty MABSTA’s com-
petitive performance to the offline optimal strategy. Finally, we
show that MABSTA with the Gibbs Sampling method matches
the performance of the exact implementation very well.

A. MABSTA’s Adaptivity

We examine MABSTA'’s adaptivity to dynamic environment
and compare it to the optimal strategy that relies on the
existing profile. We use a two-device setup, where the task
execution costs of the two devices are characterized by two
different Markov processes. We neglect the channel commu-
nication cost so that the optimal strategy under stationary

T T
——MABSTA = ";w .,-.l W O a0 ~,; 7 u.. ose
* myopic
soolL-++- offline opt

g
8
8

n| ”W ‘ j; ;_'*'

latency (ms)

o
0 50 100 150 200 250 300 350 400 450 500
frame number

Fig. 5: MABSTA adapts to the changes at the 100" frame,
while the myopic policy fails to adjust its assignment strategy.

device 18

— T
E 6000 avg = 1881, std = 472 |
>. 4000 |
o
£ 000 A BN A e N
L

0 200 400 600 800 1000

device 28

— T T . T
2 6000 avg = 2760, std = 11227
> 4000}
2 ool I
& 2000
. . . . h

0 200 400 600 800 1000

x10* channel 21 -> 28

T T

T
avg = 1798, std = 2093

0 200 400 600 800 1000
frame number

Fig. 6: Snapshots of measurement result: (a) device 18’s
computation latency (b) device 28’s computation latency (c)
transmission latency between them.

TABLE I: Parameters Used in Trace-data measurement

[Device ID [# of iterations H Device ID [# of iterations [
18 (14031, 32989) 28 (10839, 58526)
21 U(37259,54186) 31 U(10868,28770)
22 U (23669, 65500) 36 U(41467,64191)
24 U(61773,65500) 38 (12386, 27992)
26 U(19475, 44902) 41 U(15447,32423)

environment is the myopic strategy. That is, assigning the
tasks to the device with the highest belief that it is in “good”
state [16]. We run our experiment with an application that
consists of 10 tasks and processes 500 frames in serial. The
environment changes at the 100™ frame, where the transition
matrices of two Markov processes swap with each other.
From Figure 5, there exists an optimal assignment so that the
performance remains as good as it was at the first 100 frames.
The myopic strategy fails to adapt to the changes. From (4),
MABSTA not only considers the previous observation but
also keeps exploring uniformly (with probability /% for each
arm). Hence, when the performance of one device degrades at
100% frame, this feature enables MABSTA to explore another
device and adapt to the best strategy.

B. Trace-data Emulation

To obtain trace data representative of a realistic environ-
ment, we run simulations on a large-scale wireless sensor
network / IoT testbed [17]. We create a network using 10 IEEE

802.15.4-based wireless embedded devices, and conduct a set
of experiments to measure two performance characteristics
utilized by MABSTA, namely channel conditions and compu-
tational resource availability. To assess the channel conditions,
the time it takes to transfer 500 bytes of data between every
pair of motes is measured. To assess the resource availability
of each device, we measure the amount of time it takes to
run a simulated task for a uniformly distributed number of
iterations. The parameters of the distribution are shown in
Table I. We use these samples as the cost sequences in the
following emulation.

We present our evaluation as the regret compared to the
offline optimal solution in (14). For real applications, the
regret can be extra energy consumption over all nodes, or
extra processing latency over all data frames. Figure 7 shows
that, as time increases, the performance loss will grow slower
and will finally flat out, which implies MABSTA matches the
optimal performance. The ratio to the optimal performance, in
the aspect of accumulated reward, also approaches to 1. The
randomized baseline selects an arm with equal probability for
each data frame, hence, the regret grows linear with 7.

In addition to original MABSTA, we propose a more
aggressive scheme by tuning the parameter v provided in
Algorithm 1. That is, for each frame ¢, setting

M(N + €] M) ln MN
(e—1)(N+ &t

From (4), the larger the ~, the more likely that MABSTA will
do exploration. Hence, by exploring more aggressively at the
beginning and exploiting the best arm as ~ decreases with t,
MABSTA with varying « learns the environment even faster
and remains competitive with the offline optimal solution,
where the ratio reaches 0.9 at early stage.

We compare MABSTA with the exact implementation for
larger network size in Figure 8. We also present the per-
formance for running different numbers of iterations in the
Gibbs sampling process. The more iterations it takes, the more
accurately it approximates the original distribution. From our
observation, when R = 10, MABSTA performs as well as the
exact implementation.

13)

¢ = min

V. PERFORMANCE ANALYSIS

In this section, we analysis MABSTA’s performance guar-
antee and design a polynomial time algorithm to the exact
implementation. We follow the tradition in MAB literature and
focus on maximizing a positive reward instead of minimizing
the total cost. When processing data frame ¢, let RY)(t) be
the reward of executing task m on device i. Let R)(t)
be the reward of transmitting the data of edge (m,n) from
device ¢ to j. The reward sequences are unknown but are
bounded between 0 and 1. Our goal is to compare MABSTA’s
performance to a genie who always uses the best but fixed
assignment strategy for all data frames as follows,

Ribtar = maxz ZR(’W Z RGEm=n) (7)

(m,n)e&

(14)

3 +10° Application N = 5, Network Size M = 5
Bosl === Randomized i
E” —+— MABSTA, fixed
a2 ol —— MABSTA, varing 7|1
Ke]
815F]
< "
©
E 1p 1
£
gos5+ o

0 .

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

coveeeeseess

09

ratio to opt

08

—— MABSTA, varying v
—+— MABSTA, fixed v |
. . . h | | |

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
frame number x10°

Fig. 7: MABSTA compared with other algorithms for 5-
device network.

x10°

——bound (10,5)
—%—MABSTA (10,5)
3:5/) — — bound (10,3)
—%— MABSTA (10,3)
3| -—- bound (5,5)
---MABSTA (5,5)
----- bound (5,3)
- - MABSTA (5,3)

4

-
-
-

regret

PRt
—

Fig. 9: MABSTA’s performance with upper bounds provided
by Corollary 1

where F represents the set of feasible solutions. The regret
compared to always playing the best arm is called weak regret.
The best offline policy relaxes the constraint so that the genie
can switch between arms. Here, we focus on the weak regret
and additive rewards. We leave the strong regret and more
general metrics like non-linear latency in (2) for future works.

Theorem 1. Assume all the reward sequences are bounded
between 0 and 1. Let Rioiq; be the total reward achieved by

Algorithm 1. For any v € (0,1), let o = m we have

M(N + €] M) In MY
5 .
In Theorem 1, N is the number of nodes (tasks) and |£]
is the number of edges in the task graph. By applying the
appropriate value of v and using the upper bound R7¢: <
(N + |€])T, we have the following Corollary.

]E{Rtotal} S (6 - 1)7Rzrol?(fl +

max
Rtotal -

M(N+|E[M)In MN
(efl)(N+|£|)T7} then

— E{Riotar} < 2.63v/(N + |E])(N + [E| M)MNT In M.

Corollary 1. Let v = min{1,

max
Rtotul

«10* Application N = 5, Network Size M = 10

15 i
:Eu? —+—exact
< ||—~—MaBSTAr=2 e
810 |- MABSTA T = 10 et J
° Randomized -
2
@
E 5
o
2
[
Q
. .
o 1t 2 3 4 5 & 7 8 9 10
1 x10*
1 |[——exact
= ——MABSTAr=2
209 =+MABSTA =10
o S
il B
ELE]
o ‘ ‘)
0 1 2 3 4 5 6 7 8 e 10
frame number x10*

Fig. 8: MABSTA compared with other algorithms for 10-
device network.

If we look at the worst case, where |£| = O(N?). The
regret can be bounded by O(N?2-5MT??). From our trace-
data simulation, Figure 9 validates MABSTA’s performance

guarantee for different problem sizes. For the cases we have
considered, MABSTA’s regret scales with O(N1-5MT9-2).

A. Proof of Theorem 1

We generalize the proof from Exp3 [14], where Lemma 1
and 2 are the direct result. However, Lemma 3 and 4 are non-
trivial. We will use more condensed notations like R%z") for
R (4), Rm™) for R\m®)(t) and px for px(t) in the
prove where the result holds for all ¢.

Lemma 1.

Z Dx (t)Rx (t) =

xeF

S RS ().

(m,n)e€

N t
SRV (@) +

n=1

Lemma 2. For all x € F, we have

N
E{fa(t)} = Y R0+ Y R
n=1 (m,n)€€

Lemma 3. For M > 3 and |E| > 3,

; €]
pr £) B (MN 2
xEF

> Ra(t)

xeF

Proof. We first expand the left-hand-side of the inequality as
shown in (15). Then we derive the upper bound for each term
in (15) for all n € [N], (m,n) € £.

>

xeCmNCr,

ot 2t
) Ry RE
Zygc;zC Py - Zyecgm Py

S pe RS R =

(=4,)
() Rp™ (=4) plat,) 1 A (@m)
<R "W—e=——"—=Ry,"Ryp™ < g R™
Zyecg‘% Py]\11\771

(16)

> plt) Rt

xeF

=Y o | S RERED ¢

xeF m,n

>

(mn),(u,v)

R R 4230 3 R R

m (u,)

15)

The first inequality in (16) follows by C. NCZ, is a subset of

C?. and the last inequality follows by R(afm) R(x’") for all

x in C. Hence,
A ~ 1 A
Sl R < LSS R an
Similarly,

Z Z pxR($mmn R(wu;ﬂu

(m;n),(u,v) X

X (m,n)
(18)
For the last term in (15), following the similar argument gives

It flJt flJt
R plal)
g Px
xecr,Newy Dyecm Py Diyecpy Py

S B R =

R_S‘i' :n)

yecm Py

< R

Hence,
AN A &
503 Yone R < L ST R,
m (u,w) X X m
(19)
Applying (17), (18) and (19) to (15) gives

¢
7
=

£
< i)

xEF m (m,n)
€] > Ra(t) (20)
= N2 X
xeF
The last inequality follows by the fact that ==t MQ I‘VS,‘I <
% for M > 3 and |£] > 3. Since this is the interesting

regime, we will use this result in our proof of Theorem 1. [

Lemma 4. Let o« =
t=1,--

m then for all x € F, all

,T, we have aRy(t) < 1.
Proof. Since [C™| > MN~1 and |C2"| > MY 2,

(mn)

REn) < B < 1 - M (21)

no = = MN-1)

yecn Py MN Y

- R 1 M2
R < ™ S ey = . (22)

yecpn Py My Y

Hence, we have
M M2 M

R()<N7+|5|f (N+|5|M) (23)

Let o = W\E\M)’ we achieve the result.]

g .
<SS R,

_ pEhel) plh) 1 A(em)

x g D(TmTn
R+ 3 M|N\72R5ngl g

By using the above lemmas, we prove Theorem 1 as follows.

Proof. Let Wy = »_ . »wx(t). We denote the sequence of
arms drawn at each frame as x = [x!,--- ,xT]. Then for all
data frame ¢,

k2

Wt+1 o px(t) —IF ~
W, — ze; 15 exp (aR(x) (t))
px - x4 ~ ~
e Patal (1 +aRu () + (e — 2)a’ Rix) (t)z)
xeF
(24)
a [~ piet (at,at)
— ZRn m(t) + Z R ™ (t)
v = (m,n)e€
(e—2)a” [¢]
T MN2ZRX (25)

xXEF

Equation (24) follows by the fact that e* < 1+ 2+ (e — 2)?
for x < 1. Applying Lemma 1 and Lemma 3 we arrive at
(25). Using 1 + =z < e” and taking logarithms at both sides,
then summing from ¢t =1 to T" gives

Wi o a (e—2)a* |€]
In —— < ota [A— A
n A _1_’thtl+ — MNQ;xez}_R
(26)
On the other hand,
Wri1 (T + 1) N
In W > Y ZRX — MY, vxe F.
27)
Combining (26) and (27) gives
T N
- - & lnM
Rtotal 2 (1_7) Z Rx(t)_(e]\4|N|) Z Z Rx .
t=1 t=1 xeF (28)

Equation (28) holds for all x € F. Choose x* to be the
assignment strategy that maximizes the objective in (14). Now

we take expectations on both sides based on x',--- ,x” and
use Lemma 2. That is,
T
S E{Re (1)} = Z ZR“” D+ Y RG] = Rita
t=1 t=1 n=1 (m,n)e€
Hence,
T
> D E{R«()} < MVREI.
t=1 xeF
Applying the result to (28) and let o = m gives
max D mazx N g M)1 MN
Rtotal -]E{Rtotal} S (6 - l)fYRtotal + (+ | "Y) 1 .
O

Algorithm 3 Calculate w%) for tree-structured task graph

1: procedure Q(N, M, G)
2: q < BFS (G, N) v run BFS and store visited nodes
3: for n < g.end, g.start do> start from the last element

{”H 2

mMmEDp ym €[M]

if n is leaf,

(Ymi) ,(ym)

e Wy otherwise.

4: end procedure

B. Polynomial Time Exact Implementation

In Section III, MABSTA approximates the marginal prob-
ability in (5), (6) and the sampling process in (4) to miti-
gate the computation complexity. In the following, we pro-
pose polynomial-time algorithms for the exact implementation
when the structure of the task graph is a subset of DAGs.

1) Marginal Probability: Equation (5) and (6) require the
knowledge of marginal probabilities P{z! = i} and P{z!, =
i,xt, = j}. From (4), without calculating W, we have

dTowy(t): > wy(t).

Y:iyn=i Y:iyn=J
(29)

To calculate the sum of weights efficiently depends on the
structure of the task graph.

We start from tree-structure task graphs and solve the more
general graphs by calling the proposed algorithm for trees a
polynomial number of times.

We drop time index ¢ in our derivation whenever the result
holds for all ¢ € {1,--- ,T}. For example, Rgf)) and R%ﬁ))
denote the sum of estimated rewards up to ¢, as described in 12.
Furthermore, let e,(f) — exp(aRﬁf)) and 65,?,2 = exp(a]%ﬁ,%)).
Then, from (11), the sum of weights can be written as

N
Sy = [Tet T1 e
y

y n=l1 (m,n)e€
We assume that the task graph is a tree with nodes 1,--- | N,
following the topological ordering, where the N " node is the
root (final task). We define the sub-problem, wﬁf’), as the sum
of weights of all possible assignment on task n’s preceding
tasks, given task n is assigned to device ¢. That is,

a0 pegt =
Pt = i} - L i Plah =} -

n—1

e 11

(u,v)e€

Wi = e 3

ye[A{n 1m=1

ey (30)

Hence, the relation of weights between task n and its children
Cn, =m: (m,n) € & is given by the following equation.

Z H elym®) y(ym)

{ym }mEcn meCn

LRI

meCn ym €[M]

o) =)

ym i) (ym

€29

Algorithm 4 Efficient Sampling Algorithm

1: procedure SAMPLING(7)

2: forn+1,---,N do
3 Wit o e Q(N M, Gyt g

1 .’ n—1 () Tp—1
4: P{xl =ila}, - 2t _ 1} o [wn } et

5: end procedure

As illustrated in Algorithm 3, we first run breadth first
search (BFS) from the root node. Then we start solving
the sub-problems following the topological ordering. Let d;,
denote the maximum in-degree of G. For each sub-problem,
there are at most d;,, products of summations over M terms.
In total, Algorithm 3 solves N M sub-problems. Hence, it runs
in O(d;, NM?) time.

To generalize, for a task graph that consists of serial trees
rooted by ny,-- - ,npg in order, let the sub-problem, w(“l‘:f 11),
denote the sum of weights given that n,. is assigned to 7, and
n,—1 1S assigned to 7,._1. We can solve wff,f'), given previously

solved w!irltr=1)

nplne_1 "
(ir]5) w@
Z wnr‘nr 1 nr 1
JE[M]
To solve wﬁfr’), we have to solve wff?‘fl“ll) for
ir—1 € {1,---,M}. Hence, it takes O(d;, N, 1M2)

O(Md;, N, M 2) time, where N, is the number of nodes in
tree n,. In sum, to solve a serial-tree task graph, it takes
O(d;,, NM?3) time. This approach can be generalized to more
complicated DAGs, like the one that contains parallel chains
of trees, in which we solve each chain independently and
combine them from their common root V.

Now we use Algorithm 3 to calculate the marginal probabil-
ity. From (29), if task n is the root (node IV), then Algorithm 3

solves wj(f,) = i wy(t) exactly. For n # N, we still run
(i)

Algorithm 3 to solve [wy ']y, =i, by fixing the assignment of
task n to device ¢ when solving from n’s parent p. That is,

(g Myumi = e Vel [T D el wlim).
meCy\{n} ¥m

In the end, we can solve [wj(\i,/)

Z wy(t) = Z [w%/)]yn=i-

Yiyn=t i €[M]

Jy,.—i from the root and

Similarly, P{x! =i, z! = j} can be achieved by solving the
conditional sub- problems on both tasks m and n.

2) Sampling: We propose an efficient sampling policy
summarized in Algorithm 4. During the exploitation phase
(I — 7), MABSTA selects an arm based on the probability
distribution py (t), which can be written as

=P{z} =y} - P{ah = yolz] =y}
~-P{x§v = ZUN|9Ct1 =Y1,- - ,$§V_1 = yN—1}-

py(t)

Hence, MABSTA assigns each task in order based on the
conditional probability given the assignment on previous tasks.
For each task n, the conditional probability can be calculate
efficiently by running Algorithm 3 with fixed assignment on
task 1,---,n — 1.

Assuming the task graph belongs to the family of par-
allel chains of trees, calculating each marginal probability
takes O(d;,, NM?3) time. Hence, the sampling process takes
O(d;, N M?3) time in total, which dominates the overall
complexity of the exact implementation in each time frame.

VI. RELATED WORKS
A. Multi-armed Bandit Problems

The multi-armed bandit (MAB) problem is a sequential
decision problem where at each time an agent chooses over
a set of “arms”, gets the payoff from the selected arms and
tries to learn the statistical information from sensing them.
Given an online algorithm to a MAB problem, its performance
is measured by a regret function, which specifies how much
the agent loses due to the unknown information at the begin-
ning [18]. For example, we can compare the performance to a
genie who knows the statistics of payoff functions in advance
and leverages the bast policy.

The MAB formulations have been considered in the context
of opportunistic spectrum access for cognitive radio wireless
networks [19], [20], which focus on the channel selection. Our
formulation, considering both computation cost and channel
cost, makes the total payoff become a non-linear function
of the action vector. Adding the interaction terms to the
existing framework [21] for linear payoff function significantly
degrades the performance guarantee on the regret bound.
Hence, we propose MABSTA to address both computation
allocation and channel selection, and present a provable and
competitive performance guarantee.

Adversarial MAB problems do not make any assumptions
on the stationarity of payoffs. Instead, an agent learns from
the sequence given by an adversary who has complete control
over the payoffs [13]. Hence, algorithms of the adversarial
MAB problems apply to all bounded payoffs in dynamic
environment. Auer et al. [14] propose Exp3 that yields a
sub-linear regret with time (O(vTK In K)), where T is the
length of time and K is the number of independent arms.
That is, compared to the optimal offline algorithm (always
choose the best but fixed arm), Exp3 achieves asymptotically
1-competitive. However, our task assignment strategies are not
independent. Direct applying Exp3 to our problem results in
exploring exponentially many arms in the space, hence, the
performance is not competitive. Our contribution is to consider
the dependencies of the assignment strategies and provide the
regret that is bounded by O(+/T') and a polynomial function
of network size and graph size.

B. System Prototypes

We classify the existing systems or prototypes by the types
of remote computational resources that a local device has
access to. One extreme is the traditional cloud-computing

services where a local device sends a request to a cloud that
has remote servers set up by a service provider. MAUI [22]
and CloneCloud [23] are systems that leverage the resources in
the distant cloud. Odessa [12] is a heuristic that identifies the
bottleneck stage and suggests offloading strategy and leverages
data parallelism to mitigate its load. Another extreme is to
exploit the computational resources on nearby devices. Instead
of targeting one service provider in the cloud, Shi et al. [24]
investigate the nearby mobile helpers reached by intermittent
connections. Between these two extremes, MapCloud [25] is
a hybrid system that makes run-time decision on using “local”
cloud with less computational resources but faster connections
or using remote “public” cloud with more powerful servers but
longer communication delay. There are hybrid systems that
make best decision on offloading tasks to nearby helpers or
remote cloud servers, like Cloudlets [26] and OSCC [27].

Existing systems either rely on solving optimization prob-
lems for optimal strategy based on known profiling data [9],
[28], or propose heuristics that adapts different strategies to dy-
namic environments based on simple metrics, like Odessa [12].
First, solving the optimization problems induces considerable
computation overhead. Second, lack of learning ability results
in significant performance degradation due to mismatch be-
tween profiling data and the variant run-time environment.
Hence, to address these issues, we propose MABSTA, an
online algorithm that learns the unknown environments and
globally adjusts the strategy to the changes.

VII. CONCLUSION

As increasing number of devices capable of computing
and communicating, the concept of Wireless Collaborative
Computing enables complex applications which a single de-
vice cannot support individually. However, the intermittent
and heterogeneous connections and diverse device behavior
make the performance highly-variant with time. In this paper,
we have proposed a new Multi-armed Bandit formulation
for the task assignment problem over heterogeneous network,
without any stationarity assumptions on channels and devices’
performance. Unlike the existing algorithm, we have presented
MABSTA, which considers the dependency between different
assignment strategies and makes the decision at run time.
To the best of our knowledge, MABSTA is the first online
learning algorithm tailored to this class of problems. We have
implemented a light approximation of MABSTA using Gibbs
Sampling method, and have demonstrated that it is competitive
and adaptive to changes of the environment via trace-data
simulation. Moreover, for a subset of task graphs and cost
metric, we have demonstrated a polynomial-time algorithm for
the exact implementation and have proven that MABSTA’s
performance matches asymptotically to the performance of
the best offline assignment strategy. Interesting future work
includes deriving the stronger performance guarantee for more
general cost metric and more flexible offline strategy.

REFERENCES

[1] D. Datla, X. Chen, T. Tsou, S. Raghunandan, S. Shajedul Hasan, J. H.
Reed, C. B. Dietrich, T. Bose, B. Fette, and J. Kim, “Wireless distributed

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

computing: a survey of research challenges,” Communications Magazine,
IEEE, vol. 50, no. 1, pp. 144-152, 2012.

M. Y. Arslan, L. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan,
and S. V. Krishnamurthy, “Cwc: A distributed computing infrastructure
using smartphones,” IEEE Transactions on Mobile Computing, 2014.
X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Networks and Applica-
tions, vol. 16, no. 3, pp. 270-284, 2011.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in
2015 IEEE 8th international conference on cloud computing. 1EEE,
2015, pp. 9-16.

C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“Cosmos: computation offloading as a service for mobile devices,” in
ACM MobiHoc. ACM, 2014, pp. 287-296.

A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing
public cloud providers,” in ACM SIGCOMM. ACM, 2010, pp. 1-14.
X. Chen, S. Hasan, T. Bose, and J. H. Reed, “Cross-layer resource
allocation for wireless distributed computing networks,” in RWS, IEEE.
IEEE, 2010, pp. 605-608.

Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Transactions on Mobile Computing, 2017.

Y.-H. Kao and B. Krishnamachari, “Optimizing mobile computational
offloading with delay constraints,” in /JEEE GLOBECOM. 1EEE, 2014,
pp. 8-12.

Y. Tao, C. You, P. Zhang, and K. Huang, “Stochastic control of
computation offloading to a helper with a dynamically loaded cpu,”
IEEE Transactions on Wireless Communications, vol. 18, no. 2, pp.
1247-1262, 2019.

M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in ACM MobiSys. ACM, 2011, pp. 43-56.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling
in a rigged casino: The adversarial multi-armed bandit problem,” in
Foundations of Computer Science. 1EEE, 1995, pp. 322-331.

——, “The nonstochastic multiarmed bandit problem,” SIAM Journal
on Computing, vol. 32, no. 1, pp. 48-77, 2002.

E. I. George and R. E. McCulloch, “Variable selection via gibbs
sampling,” Journal of the American Statistical Association, vol. 88, no.
423, pp. 881-889, 1993.

Y. M. Dirickx and L. P. Jennergren, “On the optimality of myopic
policies in sequential decision problems,” Management Science, vol. 21,
no. 5, pp. 550-556, 1975.

anrg, “Tutornet: A low power wireless iot testbed,” February 2014,
online; accessed 11-January-2020.

S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems,” arXiv preprint
arXiv:1204.5721, 2012.

W. Dai, Y. Gai, and B. Krishnamachari, “Online learning for multi-
channel opportunistic access over unknown markovian channels,” in
IEEE SECON. 1EEE, 2014, pp. 64-71.

K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE
Transactions on Information Theory, vol. 56, no. 11, pp. 5547-5567,
2010.

J.-Y. Audibert, S. Bubeck, and G. Lugosi, “Regret in online combinato-
rial optimization,” Mathematics of Operations Research, vol. 39, no. 1,
pp. 3145, 2013.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in ACM MobiSys. ACM, 2010, pp. 49-62.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in ACM Computer
systems. ACM, 2011, pp. 301-314.

C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in ACM MobiHoc. ACM, 2012, pp. 145-154.

[25]

[26]

(27]

(28]

M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasi-
lakos, “Mapcloud: mobile applications on an elastic and scalable 2-tier
cloud architecture,” in IEEE/ACM UCC. 1EEE, 2012, pp. 83-90.

M. Satyanarayanan, “Cloudlets: at the leading edge of cloud-mobile
convergence,” in ACM SIGSOFT. ACM, 2013, pp. 1-2.

M. Chen, Y. Hao, C.-F. Lai, D. Wu, Y. Li, and K. Hwang, “Opportunistic
task scheduling over co-located clouds in mobile environment,” /[EEE
Transactions on Services Computing, 2017.

Y. Tao, C. You, P. Zhang, and K. Huang, “Stochastic control of
computation offloading to a dynamic helper,” in 2018 IEEE International
Conference on Communications Workshops (ICC Workshops). 1EEE,
2018, pp. 1-6.

ACKNOWLEDGMENT

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract

No.

HRO01117C0053. Any views, opinions, and/or findings

expressed are those of the author(s) and should not be in-
terpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

