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Abstract 
We study a set of inventory control problems with correlated demands over different time periods. On the 
other hands, we relax the assumption of fully observation of the demand at the end of each time period. In 
other words, we consider the case of partially observed (censored) demand in the context of a multi-period 
inventory problem. If the demand in a period is larger than the inventory level, we don’t observe the unmet 
demand. Otherwise, the demand is fully observed and the leftover inventory is carried over to the next 
period. Formulating the problem as a Partially Observable Markov Decision Process provides a dynamic 
program (DP) to minimize the total expected cost. Unfortunately, the corresponding DP is defined on an 
uncountable state space, with little hope for a computationally feasible solution. We present an interesting 
heuristic policy with a percentile threshold structure which outperforms the myopic policy and performs 
close to the optimal policy. We derive its performance guarantee and evaluate it using numerical 
simulations.  
 
Keywords 
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1.   Introduction 
Inventory control is one of the important topics in operations research and management and it has been studied by 
many researchers (Qin, 2011). In this kind of problems, the demand for some good is assumed to follow a stochastic 
process and at the beginning of each decision epoch the decision-maker decides on the inventory level (i.e. how many 
items to store) in order to satisfy the demand. As one of the challenging problems in inventory control, many studies 
have been focused on different distributions of the demand. Most inventory models in these studies assume that 
demands are independent and identically distributed over different time periods (e.g. Besbes 2010). However, in recent 
years, it has been observed that this assumption might not hold in practice (Tai 2016), thus, there have been research 
papers on the inventory problems with correlated demands over time (Hu 2016, Alwan 2016). For instance, in some 
studies the demand is assumed to be Markov-modulated (Hu, 2016), or Autoregressive (Alwan 2016).  

Another challenging problem in this field is about the observability of the demand. In other words, if the demand is 
higher than the sale, the unmet demand might not be fully observable. In some inventory systems such as retail stores, 
unmet demand of inventory is lost and cannot be observed or recorded. In literature, this problem is referred as 
censoring or partial observability (e.g. Lu 2008, Bisi 2011).  

In this paper, we address the two aforementioned challenging problems. We study the inventory control problem when 
the demand is partial observable, and correlated over time periods as a Markovian process. Therefore, we face with a 
Partial Observable Markov Decision Process (POMDP) problem. As such the solution of this problem can be 
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characterized via a dynamic programming (DP), however, it is computationally complex and a POMDP is generally 
known to be P-SPACE hard (Papadimitriou 1987). In literature, e.g. Bensoussan 2007 and 2008, a similar problem set 
is studied and the “existence” of an optimal policy is shown. In our previous work, we proposed a sub-optimal solution 
for a POMDP to solve the perishable inventory control problem (Mansourifard 2017).  In particular, we introduced a 
new class of heuristic percentile policies with percentile threshold structure, and evaluated their performance. In this 
paper, we consider an extension to a multi-period inventory control with censored Markovian demand in which the 
leftover inventory is carried over to the next period. We present the heuristic policy for this problem and evaluate its 
performance using the lower bound derived on the cost of the optimal policy.  

The remainder of the paper is organized as follows: In section 2, we review the related works. The problem formulation 
is given in section 3 followed by the dynamic programming formulation in section 4. Section 5 presents the heuristic 
policy and its performance bound. The simulation results are given in section 6. Finally, we conclude the paper in 
section 7.  

2.   Related Literature 
Most of the inventory control literature (e.g. Ding 2002, and Bensoussan 2009) assume that the demand process is 
independent and identical distributed (i.i.d) at different time periods. Some prior works (such as Negoescu 2008, 
Besbes 2013) consider the case where the demand distribution is i.i.d but unknown, so the learning plays an important 
role in estimating the distribution and making the decision. For instance, in Besbes 2013, the demand distribution is 
estimated from historical data. They show that the optimal policy has a percentile structure and characterize the 
implications of partial observations on the performance of the optimal policy in both discrete and continuous settings. 
However, in recent years, it has been observed that the demand distribution is not necessarily i.i.d and it can have 
correlation over time (Tai 2016). For example, Hu 2016 studied the inventory control problem with Markov-
modulated demand. Note that in most of these papers, the demand is assumed to be fully observed. 

In some other literature works such as Lu 2008, Chen 2010, and Bisi 2011, the inventory problem with partially 
observed (censored) i.i.d. demand has been studied. In Bisi 2011, a Bayesian scheme is employed to dynamically 
update the demand distribution for the problem with storable or perishable inventory. They show that the Weibull is 
the only newsvendor distribution for which the optimal solution can be expressed in scalable form. In Lu 2008, the 
perishable inventory control problem with censored demand is studied in which the demand distribution is assumed 
to be i.i.d. but unknown. They use Bayesian approach to update the distribution parameters periodically based on the 
censored historical sales data. Chen 2010 studied the non-perishable inventory control problem with censored and 
i.i.d. demand. They developed bounds and heuristics for such a problem. 

Furthermore, there are some research papers which study the inventory control problem with censored and temporally 
correlated demands. In Bensoussan 2007, a perishable inventory management problem with memory (Markovian) 
demand process is considered. In their work, some structural properties of the optimal actions relative to the 
myopically optimal actions are obtained. And in Bensoussan 2008, they extended the work to the non-perishable 
inventory. In these papers, the existence of an optimal policy is shown. In their work, some structural properties of the 
optimal actions relative to the myopically optimal actions are obtained. In this paper, in contrast, we focus on the 
design and analysis of a class of heuristic policies. In particular, we present the class of percentile policies and evaluate 
their performance. In addition, we present a lower bound on the cost of the optimal policy which can be computed 
with low complexity and give a measure for how close our heuristic policies are to the optimal policy.  

In our previous works (Mansourifard 2013, and 2015), we studied another version of this problem with no carry-over 
in a network congestion control context and derived lower and upper bounds on the optimal policy. In this work, we 
study the inventory control problem in which the demand is censored and Markovian and the left-over inventory is 
carried over to the next time period. 
3.   Problem Formulation  
In this problem, the demand is a Markovian process which is only partially observable to the decision-maker and the 
action that the decision-maker must take is the quantity to be ordered to increase the inventory level. We consider a 
discrete-time finite-state Markov process whose state, denoted by 𝑑", is the demand amounts evolving based on a 
known transition matrix over a finite horizon, 𝑇. At each time step (period) t, the decision-maker selects an ordered 
quantity based on the history of observations and pays a cost which is a function of the total inventory level (i.e. 
previous inventory level plus ordered quantity) and the actual demand Bt. If the total inventory level is higher than the 
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actual demand, the demand can be fully observed based on the number of sold items, otherwise, only the fact that the 
demand was higher than the inventory level will be revealed (partial observation). 

The objective is to select the sequential actions (policy) such that the total expected cost accumulated over the horizon 
is minimized. Selecting an ordered quantity which makes the inventory level higher than the actual demand causes 
the over-utilization cost, but gives full information about the actual demand. On the other hand, selecting an ordered 
quantity which does not increase the inventory level higher than the actual demand causes under-utilization cost, and 
only gives partial information about the actual demand. Therefore, the decision-maker faces with a trade-off between 
selecting the ordered quantity which minimizes the immediate expected cost and selecting higher ordered quantity to 
earn more information to minimize the future expected cost. 

Since we do not get full observation all the time, we formulate our problem within a POMDP-based framework defined 
as follows: 

•   State: The state of Markov process, 𝑑", is one of the elements of a finite state set denoted by ℳ =
{0,1, … ,𝑀} ⊂ ℤ. 

•   State transition: The transition probabilities of the actual demand 𝑑" over time are assumed to be known and 
stationary and indicated by a transition probability matrix, 𝑃. This is an	   ℳ ×|ℳ| matrix with elements 
𝑃3,4 = 𝑃𝑟 𝑑"67 = 𝑗 𝑑" = 𝑖 , 𝑖, 𝑗 ∈ ℳ, ∀𝑡	  which indicates the probability of moving from state i at a time step 
to the actual demand j at the next time step. 

•   Action: At each time step, we choose an action 𝑞" ∈ ℳ as the ordered quantity. Note that the set of actions 
are equal to the set of demands. We have an inventory level, denoted by 𝐿", which is the leftover inventory 
from previous time steps. 

•   Observed information: The observed information at time step 𝑡 is defined by the event 𝑜"(𝑞" + 𝐿") ∈ Ο  
which is a function of the inventory level, ordered quantity and the actual demand. The possible events 
corresponding to the action 𝑞" is as follows: 

- 𝑜" 𝑞" + 𝐿" = 𝑑" = 𝑖 , 𝑖 ∈ {0, … , 𝐿" + 𝑞" − 1} is the event of fully observing 𝑑". This corresponds to the 
ordering of the quantity which increases the inventory level higher than 𝑑". 

- 𝑜" 𝑞" + 𝐿" = 	   𝑑" ≥ 𝑞" + 𝐿"  is the event of partial observing that 𝑑" is larger than or equal to the inventory 
level plus ordered quantity. 

•   Cost: The immediate cost paid at time step t is a mapping C:	  ℳ×ℳ×Ο → ℝ,	  and depends on the inventory 
level 𝐿", the demand 𝑑", and the ordered quantity 𝑞". Therefore, the immediate cost function is given by: 

𝐶 𝑑", 𝐿"; 𝑞" = 𝑐K𝑞" +
𝑐L 𝐿" + 𝑞" − 𝑑" 	  	  	  	  	  𝑖𝑓	  	  	  	  𝑑" ≤ 𝐿" + 𝑞"

	  	  	  	  𝑐O 𝑑" − 𝐿" − 𝑞" 	  	  	  	  𝑖𝑓	  	  	  	  	  	  𝑑" 	  ≥ 	   𝐿" + 𝑞"
               (1) 

 

where 𝑐L and 𝑐O are the over-utilization (holding) and the under-utilization (shortage) cost per unit, respectively, and 
𝑐P is the ordering cost per unit. 

4.   Dynamic Programming Formulation  
We represent the decision problem based on the decision-maker’s belief, i.e. his posterior probability conditioned on 
past actions and observations. In other words, we define the state to be the belief vector representing the conditioned 
probability distribution on the hidden demand 𝑑" at each time step and minimize the expected cost-to-go corresponding 
to the belief. Let the conditioned probability distribution of the demand (assuming a finite state set), given all past 
observations, is denoted by a belief vector 𝑏" = [𝑏" 0 , … , 𝑏"(𝑀)], with elements of 𝑏" 𝑘 =
Pr | 𝑝𝑎𝑠𝑡	  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑖𝑡𝑜𝑛𝑠), 𝑘	   ∈ ℳ. In other words, 𝑏"	  represents the probability distribution of 𝑑" over all possible 
demands of ℳ. The set of all possible belief vectors is denoted by 𝐷.  

The goal is to make a decision at each time step based on the history of observations; but due to the lack of full 
information, the decision-maker may only make the decision based on the belief vector. It can be shown that the belief 
vector is a sufficient statistic of the complete observation history. 

The belief updating ℳ×Ο×𝐷	   → 𝐷 maps current belief vector, updated inventory level, and the observation to the 
belief vector for the next time step: 
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𝑏"67 =
𝑇_`6a` 𝑏" 𝑃	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  	  	  	  𝑜" = 𝑑" ≥ 𝐿" + 𝑞" ,
𝐼3𝑃	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑜" = 𝑑" = 𝑖 ,

	  	  	  	  	  	  	  	  	  	  	  	  	  (2) 

 

where 𝐼3	  is the 𝑀 + 1-dimensional unit vector with 1 in the 𝑖-th position and 0 otherwise. Note that 𝐼3𝑃 is equivalent 
to the 𝑖-th row of matrix P, i.e. 𝑃3,.. 𝑇d  is a non-linear operation on a belief vector 𝑏, as follows: 

𝑇d 𝑏 𝑖 =
0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑖 < 𝑎,
𝑏(𝑖)
𝑏(𝑗)f

4gd
	  	  	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑖 ≥ 𝑎.	  	  	  	  	  	  	  	  (3)	  	  

The inventory level will be updated as follows: 

𝐿"67 =
0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑖𝑓	  𝑜" = 𝑑" ≥ 𝐿" + 𝑞" ,
𝐿" + 𝑞" − 𝑖	  	  	  	  	  	  	  𝑖𝑓	  𝑜" = 𝑑" = 𝑖 , 	  	  	  	  	  	  	  	  	  	  	  	  	  (4) 

 

Figure 1 shows the POMDP models for this problem. 

 

 
Fig. 1. The POMDP model 

The immediate expected cost, caused by selecting the ordered quantity 𝑞"  and based on the belief vector 𝑏" and the 
leftover inventory 𝐿"  is obtained by taking expectation of (1), as follows: 

𝐶 𝑏", 𝐿"; 𝑞" = 𝑏" 𝑖 𝐶 𝑖, 𝐿"; 𝑞"
3∈ℳ

 

= 𝑐K𝑞" + 𝑐O 𝑏" 𝑖 𝑖 − 𝐿" − 𝑞" + 𝑐L 𝑏" 𝑖 𝐿" + 𝑞" − 𝑖 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5)
_`6a`k7

3gK

f

3g_`6a`

 

 

The goal is to minimize the total expected cost in the horizon T, over all admissible policies 𝜋, given by 

min
p
𝐽rp 𝑏7, 𝐿7 = min

p
𝔼{ 𝐶 𝑑", 𝐿"; 𝑞" 𝑏7},	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (6)

r

"g7

 

where 𝑏7  and 𝐿7  are the initial belief vector and the initial inventory level, respectively. 𝐽rp( 𝑏7, 𝐿7  is the total 
expected cost accumulated over the horizon T under policy	  𝜋. The policy 𝜋 specifies a sequence of functions 
𝜋7, … , 𝜋r,where 𝜋"is the decision rule and maps a belief vector 𝑏"	  and inventory level 𝐿" to an ordered quantity at 
time step t, i.e.,	  𝜋":	  𝐷×	  ℳ → ℳ, ℳ  𝑞" = 	  𝜋" 𝑏", 𝐿" .	  The optimal policy denoted by 𝜋opt is a policy which minimizes 
(6) and it exists since the number of admissible policies are finite. 
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We may solve this POMDP problem using Dynamic programming (DP), as the following recursive equations hold: 

𝑉" 𝑏", 𝐿" ≔ min
a`

𝑉" 𝑏", 𝐿"; 𝑞" ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (7𝑎) 

𝑉r 𝑏r, 𝐿r; 𝑞r = 𝐶r 𝑏r, 𝐿r; 𝑞r ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (7𝑏) 
𝑉" 𝑏", 𝐿"; 𝑞" ≔ 𝐶 𝑏", 𝐿"; 𝑞" + 𝔼 𝑉"67 𝑏"67, 𝐿"67 𝐿", 𝑞", 𝑏" ,	  	  	  	  𝑡 < 𝑇	  	  	  	  	  	  	  	  	  	  	  (7𝑐) 

 

where 𝑏"67 and 𝐿"67 are the updated belief vector and inventory level, respectively. They can be computed given the 
ordered quantity 𝑞" and observation 𝑜"	  as shown in (2) and (4). The value function 𝑉"(𝑏", 𝐿") is the minimum expected 
cost-to-go when the current belief vector is 𝑏" and the inventory level is 𝐿". Note that 𝑉"(𝑏", 𝐿"; 𝑞) is the expected cost-
to-go after time t under belief 𝑏", inventory level 𝐿" and the ordered quantity 𝑞 at time t and following the optimal 
policy for time t+1 onward, with updated belief vector and inventory level according to the ordered quantity 𝑞. The 
future expected cost can be computed as follows: 

𝔼 𝑉"67 𝑏"67, 𝐿"67 𝐿", 𝑞", 𝑏" 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	    

= 𝑏" 𝑖 𝑉"67 𝑇_`6a` 𝑏" 𝑃, 0 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
f

3g_`6a`

	  

+ 𝑏" 𝑖 𝑉"67 𝑃3,., 𝐿" + 𝑞" − 𝑖 .
_`6a`k7

3gK

	  	  	  	  	  	  	  	  	  	  	  	  	  	  (8)  

 

Note that for all 𝑡	   = 	  1, … , 𝑇	  ,  𝑉"(𝑏", 𝐿")= 𝑚𝑖𝑛p𝐽rk"p (𝑏", 𝐿") with probability 1. In particular, 𝑉7 𝑏7, 𝐿7 = 𝐽rp(𝑏7, 𝐿7) 
A policy	  𝜋opt is optimal if for 𝑡	   = 	  1, … , 𝑇; 𝑟"

P{" 𝑏", 𝐿"  achieves the minimum in (7a), denoted by: 

𝑞"
P{" 𝑏", 𝐿" ≔ argmin

a∈ℳ
𝑉" 𝑏", 𝐿"; 𝑞 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (9)  

 

5.   Heuristic Policy and its Performance Bound 

5.1   Percentile Threshold Policies  
Since finding the optimal policy is computationally intractable for large horizons, we consider specific form of 
heuristic policies which have percentile threshold structure as follows: 

𝑞������"3O� 𝑏", 𝐿" = min	  {𝑞 ∈ ℳ:	   𝑏"(𝑖) ≥ ℎ������"3O�(𝑏7, 𝐿7)},	  	  	  	  	  	  	  	  	  	  (10)
_`6a

3gK

 

where the threshold ℎ������"3O�(𝑏7, 𝐿7) is a function of the initial belief vector 𝑏7 and the initial inventory level 𝐿7. 
From now on we will call this form of heuristic policies, percentile policies. The reason to consider this specific form 
of policies is that later in this paper we derive a lower and an upper bound on the optimal policy (with some condition 
on the parameters) which both have percentile threshold structures and conjecture that there may be a good 
approximation for the optimal policy with the same structure. 

5.2   Performance Bound of PT Policies 
In this section, we present a performance guarantee for percentile policies in the following theorem. This performance 
guarantee is used to evaluate the heuristic percentile policies in the Simulation section. 

Theorem 1. The performance bound on the percentile policy with threshold ℎ������"3O� is given by: 

𝐽rk7������"3O�(𝑏7, 𝐿7)
𝐽rk7
P{" (𝑏7, 𝐿7)

≤
𝐽rk7������"3O�(𝑏7, 𝐿7)
𝐽rk7�� (𝑏7, 𝐿7)

=
𝑉7������"3O�(𝑏7, 𝐿7)

𝑉7��(𝑏7, 𝐿7)
	  ,	  	  	  	  	  	  	  	  (11)	  

𝑉"�� 𝑏", 𝐿" = min
a
𝐶 𝑏", 𝐿"; 𝑞 + 𝑏" 𝑖 𝑉"67�� 𝑃3,., 𝐿" + 𝑞 − 𝑖 6 ,

f

3gK

  

	  
	  
	  



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Paris, France, July 26-27, 2018 

© IEOM Society International 

𝑉"������"3O� 𝑏", 𝐿" = Γrk" 𝑏", 𝐿", ℎ������"3O� 	  

+ 𝑏" 𝑖 𝑉"67������"3O� 𝑃3,., 𝐿" + 𝑞������"3O� 𝑏", 𝐿" − 𝑖
_`6a������`��� �`,_` k7

3gK

	  

+ [𝐴",� 𝑏�(𝑖)𝑉�67������"3O�(𝑃3,., 𝑞������"3O� 𝑏�, 0 − 𝑖)]
a������`��� ��,K k7

3gK

	  	  	  	  	  	  	  	  	  (12)
rk7

�g"67

 

 
Where 𝑏� = 𝑇_���6a��� 𝑏�k7 	  	  and, 
 

Γrk" 𝑏", 𝐿", ℎ������"3O� ≔ 𝐶 𝑏", 𝐿"; 𝑞������"3O� 𝑏", 𝐿" +  

+ 𝐴",�𝐶 𝑏�, 0; 𝑞������"3O� 𝑏�, 0 ,
r

�g"67

  

𝐴",� ≔ 𝑏"(𝑖)
f

3g_`6a`

[ 𝑏"�(𝑖)],	  	  	  	  	  	  	  	  	  	  	  	  	  (13)
f

3ga`�

�k7

"�g"67

 

such that  𝐶 𝑏, 𝐿; 𝑞 is the expected immediate cost, defined in (5).  

Note that 𝑉�67�r (𝑃3,.)and 𝑉"67�� (𝑃3,.) can be computed recursively from (12). To proof the above theorem, we need the 
following proposition. 

Proposition 1. The cost-to-go of the optimal policy is lower bounded by the cost-to-go of the full observation (FO) 

case under the same belief vector, i.e., 

𝑉" 𝑏", 𝐿" ≥ 𝑉"�� 𝑏", 𝐿" .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (14) 
 
Note that FO scenario corresponds to simpler case where in both cases of under/over-utilization the actual demand 
could fully observed. In other words, there is no asymmetry in the observation. Since more information reveals at each 
time, the total cost could be less than the total cost of partial observation case. This is given in the following 
proposition. See Appendix A for proof. 

5.3   Optimal Percentile Threshold Policy  
In this section, we introduce the optimal percentile threshold policy, which chooses a threshold providing the minimum 
cost-to-go for the given initial belief vector among all possible thresholds. We will show in Simulation Section that 
this policy outperforms the myopic policy and performs close enough to the optimal policy. Among all percentile 
threshold policies, the PT-‐	  opt policy provides the minimum cost-to-go which is given by: 

𝑟�rkP{" 𝑏", 𝐿" = min	  {𝑟 ∈ ℳ:	   𝑏"(𝑖) ≥ ℎ�rkP{"(𝑏7, 𝐿7)},	  	  	  	  	  	  	  	  	  	  	  	  (15)
_`6�

3gK

 

such that 

ℎ�rkP{" 𝑏7, 𝐿7 = 𝑎𝑟𝑔min
���

𝐽rk7�r 𝑏7, 𝐿7 ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (16) 
 

where 𝐽rk7������"3O�(𝑏7, 𝐿7) is the total expected cost equal to 𝑉7������"3O�(𝑏7, 𝐿7) defined in (12) achieved by selecting 
the actions corresponding to the threshold ℎ������"3O�(𝑏7, 𝐿7) at all the time steps 𝑡	   = 	  1, … , 𝑇. 

6.   Numerical results 
 We present some numerical results to evaluate the performance of the introduced heuristic policy, PT-opt. The 
simulation parameters, except in the figures that their effect is considered, are fixed as follows: the number of states 
M = 9, the under-utilization cost coefficient 𝑐L = 0.5, 𝑐K = 1, and the transition probabilities given by: 
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Figure 2 and 3 show the performance bounds of percentile policies versus under-utilization cost, 𝑐O and horizon, T, 
respectively. As it is shown in Figure 2, for larger 𝑐O, the performance bound is tight and it is less than 1.5. For smaller 
𝑐O, the percentile policy outperforms the myopic policy with larger gap. On the other hand, figure 3 shows that for 
small horizon, T, both our heuristic policy and the myopic policy perform close to the optimal and as the horizon 
increase, the performance bound of our heuristic stays around 1.7 but the performance bound myopic policy increases 
up to 2.8. 

 
Fig. 2. The performance bound of percentile policies versus under-utilization cost, 𝑐O, for 𝑀 = 9, 𝑐L = 0.5, 𝑐K =

1, 𝑇 = 20. 

 
Fig. 3. The performance bound of percentile policies versus horizon T, for 𝑀 = 9, 𝑐L = 0.5, 𝑐K = 1, 	  𝑐O = 3. 

Figure 4 and 5 show the threshold of percentile policies versus under-utilization cost, 𝑐O, and horizon, T, respectively. 
As figure 4 shows, our heuristic policy prefers to choose a threshold close to one, in other words it behaves 
aggressively to increase the chance of full observation. But the myopic policy chooses a very small threshold for small 
𝑐O, to decrease the immediate cost by acting conservatively. Furthermore, based on figure 5, our heuristic policy 
chooses higher thresholds for larger horizon, since it could increase the chance of getting full observation and 



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Paris, France, July 26-27, 2018 

© IEOM Society International 

decreasing the future cost, but the myopic policy does not care about the future cost and chooses the same threshold 
for any horizon. 

 

 
Fig. 4. The threshold of percentile policies versus under-utilization cost, 𝑐O, for 𝑀 = 9, 𝑐L = 0.5, 𝑐K = 1, 𝑇 = 20. 

 

 
Fig. 5. The threshold of percentile policies versus horizon T, for 𝑀 = 9, 𝑐L = 0.5, 𝑐K = 1, 	  𝑐O = 3. 

 

7.   Conclusion 
We have studied a set of inventory control problems with Markovian demands over different time periods which can 
only be partially (censored) at the end of each period. If the demand in a period is larger than the inventory level, we 
don’t observe the unmet demand. Otherwise, the demand is fully observed and the leftover inventory is carried over 
to the next period. We formulated the problem as a Partially Observable Markov Decision Process and since the 
corresponding DP is defined on an uncountable state space, with little hope for a computationally feasible solution, 
we presented an interesting heuristic policy with a percentile threshold structure which outperforms the myopic policy 
and performs close to the optimal policy. We derived its performance guarantee and evaluated it using numerical 
simulations.  

As future works, we aim to identify the conditions where our heuristic policy is optimal. We can also consider a more 
complicated scenario where the transition matrix is unknown and needs to be learned over time. It will be interesting 
to study other correlation between demand overtime beside the Markovian relationship. 
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Appendix A 
To prove Proposition 1, we need the concavity of the value functions given in the following lemma. 

 

Lemma 1. The expected cost-to-go accrued under action r and inventory level L, 𝑉"(𝑏, 𝐿; 𝑞), and the value function, 
𝑉"(𝑏, 𝐿), are concave with respect to the belief vector b, i.e. 

𝑉" 𝑏, 𝐿; 𝑞 ≥ 𝜆𝑉" 𝑏7, 𝐿; 𝑞 + 1 − 𝜆 𝑉" 𝑏�, 𝐿; 𝑞 ,	  	  	  	  ∀𝑟 ∈ ℳ	  
	  

𝑉" 𝑏, 𝐿 ≥ 𝜆𝑉" 𝑏7, 𝐿 + 1 − 𝜆 𝑉" 𝑏�, 𝐿 ,	  	  	  	  ∀0 ≤ λ ≤ 1.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (17)	  

Proof of Lemma 1. We use induction to prove the concavity of 𝑉"(𝑏, 𝐿; 𝑞) with respect to the belief vector, b, for the 
finite horizon. Let’s assume b is a linear combination of two belief vectors b1 and b2, such that: 

𝑏 = 𝜆𝑏7 + 1 − 𝜆 𝑏�, 0 ≤ λ ≤ 1.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (18)	  	  

At horizon T, the immediate cost, as given in (5), is affine linear with respect to the belief vector. In other words, 

𝐶 𝑏, 𝐿; 𝑞 ≥ 𝜆𝐶 𝑏7, 𝐿; 𝑞 + 1 − 𝜆 𝐶 𝑏�, 𝐿; 𝑞 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (19) 

which confirms the concavity of the expected cost-to-go at horizon T. Now assuming Vt+1(.) is concave, we will 
consider 𝑉"(. ). Using (7c) and (8) we have: 

 

𝑉" 𝑏, 𝐿; 𝑞 − 𝜆𝑉" 𝑏7, 𝐿; 𝑞 − 1 − 𝜆 𝑉" 𝑏�, 𝐿; 𝑞 = [𝐶 𝑏, 𝐿; 𝑞 − 𝜆𝐶 𝑏7, 𝐿; 𝑞 − 1 − 𝜆 𝐶 𝑏�, 𝐿; 𝑞 ] 
 

+ [𝑏 𝑖 − 𝜆𝑏7 𝑖 − 1 − 𝜆 𝑏� 𝑖 ]𝑉"67(𝑃3,., 𝐿 + 𝑞 − 𝑖)
_6ak7

3gK

 

+𝑉"67(𝑇_6a 𝑏 𝑃, 0) 𝑏 𝑖 − 𝜆𝑉"67(𝑇_6a 𝑏7 𝑃, 0) 𝑏7(𝑖)
f

3g_6a

f

3g_6a

 

− 1 − 𝜆 𝑉"67 𝑇_6a 𝑏� 𝑃, 0 𝑏� 𝑖
f

3g_6a

	  	  	  	  	  	  	  	  	  	  	  	  	  (20𝑎) 

= 𝑏 𝑖 [𝑉"67 𝑇a 𝑏 𝑃, 0 − 𝜆�
f

3g_6a

𝑉"67(𝑇_6a 𝑏7 𝑃, 0) 

−(1 − 𝜆�)𝑉"67(𝑇_6a 𝑏� 𝑃, 0)]	  	  	  	  	  	  	  	  	  	  	  	  	  (20b)  
 

where the last equality follows from (19) and 𝜆� = 𝜆
��(3)�

� ¡¢£
�(3)�

� ¡¢£
 .  Let 𝑗	   ≥ 	  𝐿	   + 	  𝑞: 

𝜆�𝑇_6a 𝑏7 𝑗 + 1 − 𝜆� 𝑇_6a 𝑏� 𝑗 =
𝜆 𝑏7 𝑖 𝑇_6a 𝑏7 𝑗 + (1 − 𝜆) 𝑏� 𝑖 𝑇_6a[𝑏�](𝑗)f

3g_6a
f
3g_6a

𝑏(𝑖)f
3g_6a

	  

 
= 7

� 3�
� ¡¢£

[𝜆 𝑏7 𝑖
�� 4

�� 3�
� ¡¢£

f
3g_6a + (1 − 𝜆) 𝑏�(𝑖)

�¤(4)
�¤(3)�

� ¡¢£

f
3g_6a ] 

 

=
𝜆𝑏7 𝑗 + (1 − 𝜆)𝑏�(𝑗)

𝑏(𝑖)f
3g_6a

=
𝑏(𝑗)

𝑏(𝑖)f
3g_6a

= 𝑇_6a 𝑏 𝑗 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (21)  

 

And for 𝑗 < 𝐿 + 𝑟, 𝑇_6a 𝑏7 𝑗 + 1 − 𝜆� 𝑇_6a 𝑏� 𝑗 = 0. Multiplying by P, we have 𝜆�𝑇_6a 𝑏7 𝑃 +
1 − 𝜆� 𝑇_6a 𝑏� 𝑃 = 𝑇_6a 𝑏 𝑃.	  The induction step follows the concavity of 𝑉"67 . . 
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To prove the concavity of value function, 𝑉"(𝑏), with respect to b we use the definition of (7a) to get: 

𝑉" 𝑏, 𝐿 = min
�
𝑉" 𝑏, 𝐿; 𝑞∗ = 𝑉"(𝑏, 𝐿; 𝑞∗)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (22𝑎) 

≥ 𝜆𝑉" 𝑏7, 𝐿; 𝑞∗ + (1 − 𝜆)𝑉"(𝑏�, 𝐿; 𝑞∗)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (22𝑏) 
≥ 𝜆min

a�
𝑉"(𝑏7, 𝐿; 𝑞7) + (1 − 𝜆)mina¤

𝑉"(𝑏�, 𝐿; 𝑞�)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (22𝑐) 

= 𝜆𝑉" 𝑏7, 𝐿 + (1 − 𝜆)𝑉"(𝑏�, 𝐿)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (22𝑑) 
 

where 𝑞∗ = arg𝑚𝑖𝑛a	  𝑉"(𝑏; 	  𝑞) and (22b) is the result of the lemma for 𝑉"(𝑏; 𝑞∗) and applying the definition, given in 
(7a), one more time in (22d) completes the proof. 

Proof of Proposition 1. To prove this proposition, it is enough to show that, 

𝑉" 𝑏", 𝐿" − 𝑉"�� 𝑏", 𝐿" ≥ 𝑉" 𝑏", 𝐿"; 𝑞"
P{" − 𝑉"�� 𝑏", 𝐿"; 𝑞"

P{" ≥ 0	  	  	  	  	  	  	  	  	  	  (23) 

for 𝑞"
P{" = arg𝑚𝑖𝑛�	  𝑉"(𝑏"; 𝑞). First, the cost-to-go function of FO case can be computed as: 

𝑉"�� 𝑏"; 𝑞 = 𝐶 𝑏"; 𝑞 + 𝑏" 𝑖 𝑉"67�� 𝑃¦,. ,
f

3gK

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (24) 

Now to proof the proposition we use induction. Fist, at 𝑡	   = 	  𝑇 we have: 

𝑉r 𝑏r, 𝐿r; 𝑞r
P{" − 𝑉r�� 𝑏r, 𝐿r; 𝑞r

P{" = 𝐶 𝑏r, 𝐿r; 𝑞r
P{" − 𝐶 𝑏r, 𝐿r; 𝑞r

P{" = 0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (25)	  
 

Now assuming (14) is true at time steps t + 1 onwards, we should prove it for time t. 

𝑉" 𝑏", 𝐿" − 𝑉"�� 𝑏", 𝐿" ≥ [𝐶 𝑏", 𝐿"; 𝑞"
P{" + 𝑏"(𝑖)𝑉"67(𝑃3,., 𝐿" + 𝑞"

P{" − 𝑖)

_`6a`
§¨`k7

3gK

 

+ 𝑏"(𝑖)𝑉"67(𝑇_`6a`§¨` 𝑏" 𝑃, 0)]
f

3g_`6a`
§¨`

 

−[𝐶 𝑏", 𝐿"; 𝑞"
P{" + 𝑏"(𝑖)𝑣"67�� (𝑃3,., 𝐿" + 𝑞P{"(𝑏") − 𝑖)

_`6a`
§¨`k7

3gK

 

+ 𝑏"(𝑖)𝑉"67�� (𝑃3,., 0)],
f

3g_`6a`
§¨`

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (26) 

Thus, 

𝑉" 𝑏", 𝐿" − 𝑉"��(𝑏", 𝐿") ≥ 𝑏" 𝑖 𝑉"67 𝑃3,., 𝐿" + 𝑞"
P{" − 𝑖 − 𝑉"67�� (𝑃3,., 𝐿" + 𝑞"

P{" − 𝑖)]

_`6a`
§¨`k7

3gK

 

+ 𝑏" 𝑖 [𝑉"67 𝑇_`6a`§¨` 𝑏" 𝑃, 0 − 𝑉"67�� 𝑃3,., 0 ]
f

3g_`6a`
§¨`

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (27) 

 

The first term is greater than or equal to zero based on the concavity at t + 1. We use the concavity of the value function 
to get the following inequality: 

𝑉"67 𝑇_`6a`§¨` 𝑏" 𝑃, 0 ≥
𝑏" 𝑖 𝑉"67 𝑃3,., 0f

3g_`6a`
§¨`

𝑏" 𝑗f
4g_`6a`

§¨`
.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (28) 

 

Therefore, by applying (28) and the induction assumption at t + 1, we have: 
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𝑏" 𝑖 [𝑉"67 𝑇_`6a`§¨` 𝑏" 𝑃, 0 − 𝑉"67�� 𝑃3,., 0 ]
f

3g_`6a`
§¨`

≥ 𝑏" 𝑖 𝑉"67 𝑃3,., 0 − 𝑉"67�� 𝑃3,., 0 ≥ 0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (29)
f

3g_`6a`
§¨`

 

thus, (27) is greater than or equal to zero. This completes the proof. 

 


