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Abstract—With the advent of the new IEEE 802.11p
DSRC/WAVE radios, Vehicle-to-Vehicle (V2V) communications
is poised for a dramatic leap. A canonical application for these
future vehicular networks is the detection and notification of
anomalous road events (e.g., potholes, bumps, icy road patches,
etc.). We present the Road Information Sharing Architecture
(RISA), the first distributed approach to road condition detection
and dissemination for vehicular networks. RISA provides for the
in-network aggregation and dissemination of event information
detected by multiple vehicles in a timely manner for improved in-
formation reliability and bandwidth efficiency. RISA uses a novel
Time-Decay Sequential Hypothesis Testing (TD-SHT) approach
in which event information from multiple sources is combined
with time-varying beliefs. We describe our implementation of
RISA which has been deployed and tested on a fleet of vehicles
on-site at the GM Warren Technical Center in Michigan. We
further provide a comprehensive evaluation of the aggregation
mechanism using emulation of the RISA code on real vehicular
mobility traces.

I. INTRODUCTION

With the advent of the new IEEE 802.11p Dedicated
Short Range Communications (DSRC) / Wireless Access for
Vehicular Environments (WAVE) radios, Vehicle-to-Vehicle
(V2V) communications is poised for a dramatic leap. Vehicular
networks based on V2V communication are envisioned to be
used for a broad range of safety and infotainment applications.

A canonical application for these future vehicular networks
is the detection and notification of anomalous road events
(e.g., potholes, bumps, icy road patches, etc.). State of the art
approaches for this problem advocate the use of the centralized
cellular infrastructure. However, increasing cellular utilization
costs coupled with the required scale of dissemination make
this an unattractive option.

We advocate in this work instead a distributed approach
to road condition detection that we call the Road Information
Sharing Architecture (RISA). With the distributed approaches,
the system can be more flexible, being independent of more
expensive and more regulated cellular networks. Moreover, the
approach is well-aligned with sharing road information be-
cause the information has locality of interests so that vehicles
are more interested in nearer information. In such a decen-
tralized setting, with multiple vehicles potentially detecting
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each event, it is important to aggregate the event detections
within the network in a timely manner so as to improve
accuracy of reports as well as network bandwidth efficiency.
We accomplish this in RISA through a novel mechanism
called Time-Decay Sequential Hypothesis Testing (TD-SHT).
The basic idea behind this mechanism is that each vehicle
that hears a “rumor” about the event, maintains a time-
decaying belief about it. Rumors from multiple vehicles are
combined additively until they exceed a prescribed threshold,
at which point they are converted to confirmed event reports.
This threshold is determined to effect a desired tradeoff in
information reliability, between the rate of false negatives
and the rate of false positives. Both rumors and reports are
distributed through the network in epidemic “gossip spread”
fashion.

The key contributions of this study are the following:
1) We propose an in-network aggregation architecture

(RISA) for road information gathering and dissemination
that uses a novel time-decay sequential hypothesis test-
ing (TD-SHT) approach in order to improve information
reliability and bandwidth efficiency.

2) We implement and deploy the RISA software on a fleet
of five GM vehicles equipped with DSRC/WAVE radios,
and describe our experiments validating the functionality
of the implementation.

3) We evaluate the performance of RISA with respect
to various tunable parameters and key metrics in a
comprehensive manner through code emulation based on
real mobility traces collected from vehicular experiments
under real driving conditions; the emulation results are
compared against theoretical models.

II. RELATED WORK

A majority of empirical studies on vehicular networks aim
to provide “Drive-Through Internet” to moving vehicles via
open APs deployed on the roads [1], [2], [3], [4], and are
focused on optimizing the data transfer. Unlike these works,
the focus of our empirical study is placed on developing an
in-network data aggregation mechanism inside of vehicular
networks.

There is a large body of research works on designing a
participatory sensing system. One attractive example is traffic



monitoring application that uses a number of active probe
vehicles to estimate traffic flow. The technical feasibility of
this participatory sensing system was initially evaluated using
embedded vehicle telematics systems ([5],[6]); realizing that
the rapid growth of cellular phones could create alternative
ways of implementing traffic probe system, the authors of
[7], [8], and [9] proposed to use mobile phones (instead of
embedded telematics systems) to detect traffic flow and predict
travel time on a one-dimensional highway, while the authors
of [10] suggested to do so for traffic estimation on two-
dimensional surface streets. Unlike the cellular-centric data
collection approach, the Cartel project [11] tries to leverage
scattered deployments of hot-spots as a new “data pipe” for
uploading traffic probe data. In all the above approaches,
traffic probe data collected from the physical world is moved
via ubiquitous wireless infrastructure to a cyber-space central
server for further data processing (traffic flow estimation, traf-
fic pattern identification, traffic anomaly detection), before the
knowledge extracted from data is presented to end users [12].
In contrast, our work advocates a distributed in-network
information processing protocol (including data aggregation,
storage and replication) within the vehicular network, for such
traffic/road monitoring applications.

Another line of work related to ours is how to further
improve sensing capability in order to detect different physical
phenomenon on the road accurately. The authors of [13]
showed that a hybrid localization scheme using cellular and
WiFi signal (in addition to GPS) could tolerate significant
signal noise and/or GPS outages, achieving accurate travel
time estimation. The authors of [14] and [15] used a rich
set of inexpensive cellphone-equipped sensors (including ac-
celerometers, microphone, GSM radios and GPS sensors) to
detect potholes, bumps, braking and honking in less regulated
traffic which is important to developing countries. The au-
thors of [16] focused on detecting road pothole events using
vibration and GPS sensors. Similarly, using GPS sensor and
ultrasonic radar, the authors of [17] showed that a vehicular
participatory system could discover empty road-side parking
slots. (Needless to say, the accurate detection of an empty
parking slot and its location is the cornerstone of such system.)
Finally, via accessing fuel usage information of vehicle OBD-
II systems, the authors of [18] demonstrated a participatory
sensing system that improves fuel efficiency. The focus of
our work being on network-level data aggregation of detected
physical events among participants, our system could leverage
these works that tackle the challenge of providing accurate
detection results using a variety of on-board sensors.

Our work represents the first distributed, in-network data
aggregation system for vehicular networks which enables
participating cars to collaborate on developing a consensus
about detected physical events on the road. Such an in-
network system does not necessarily require the engagement
of ubiquitous wireless infrastructure, thus reducing the reliance
of often congested cellular networks in the major metropolitan
area.

Fig. 1. RISA mechanism

III. RISA ARCHITECTURE

In this section we describe our road information sharing
architecture (RISA).

A. Overview

The key idea of RISA is to aggregate the event informa-
tion announced by multiple sources within the delay tolerant
network (DTN) to enhance both accuracy of the informa-
tion and bandwidth efficiency of a vehicular ad-hoc network
(VANET). The aggregation mechanism in RISA is inspired by
the classical sequential hypothesis testing (SHT) technique for
identifying events based on stochastic observations obtained
sequentially over time [19].

In RISA, as each car encounters other cars that provide them
with new event detection samples, it sequentially increases its
belief about the road event until the detection becomes credible
enough to become a confirmed observation of road events
(similar to the traditional SHT). However, unlike SHT, the
phenomenon to be detected in our setting is time-varying (e.g.,
a pothole may become filled, or an icy-patch may disappear
due to warming), which discounts the credibility of older
samples. In order to deal with this property, we allow for belief
value of events to be decreasing over time; and sequentially
add the time-decayed beliefs corresponding to encountered
detection samples until they cross a predefined threshold.
This time-decay SHT (TD-SHT) mechanism allows for event
confirmations that are both reliable and time-sensitive.

RISA-capable vehicles monitor their environment for the
interested road events. When a vehicle detects a road event, it
creates and stores an EventRumor which contains the informa-
tion about the detection sample for the event. It also broadcasts
the rumor to its direct neighbor vehicles. When a vehicle
meets another RISA vehicle, they transfer their knowledge
of road events to each other, and the knowledge includes
EventRumors. When a vehicle gathers enough rumors of a
certain road event, it produces an EventReport as a conclusion
on the event by merging the rumors. The EventReport is
propagated to a much larger set of vehicles, giving notification
to drivers/passengers in the vehicles. While an individual
EventRumor is treated as inconclusive, an EventReport is
considered trustworthy information to report to people.

The high-level distributed algorithm for each vehicle of
RISA is depicted in Figure 1. The details of each algorithm
introduced in the figure are presented in the next subsections.
The definitions of symbols used in the algorithms are presented
in Table I.



Symbols Description
bv(s, t) the belief value of s at time t
bvmin the minimum belief value
bvtot the total belief value
thcss the consensus threshold

find event report(r)
the function that returns the event

report corresponding to rumor r

TABLE I
DEFINITIONS OF SYMBOLS USED IN ALGORITHMS

B. Road Event

In the RISA architecture, we are interested in discrete road
events such as traffic congestion, potholes, ice patches, traffic
light malfunction, obstacles on the road, etc. Road events are
classified in our RISA system by the tuple: <type, location,
location precision>. They are first classified based on their
types – such as pothole or congestion – and the location points.
The data structure of RISA does not explicitly distinguish two
temporally disconnected road events on the same location, as
long as they are of same type. However, since the focus of
RISA is on providing time-sensitive event reports, information
about sufficiently old events does not persist in the system
due to the time-decaying beliefs adopted in our TD-SHT
mechanism.

C. Core Mechanism
1) Aggregation Algorithm: We first introduce metrics to

evaluate the credibility of information – belief value and total
belief value.

The belief value is the amount of credibility of the road-
event information in its associated EventRumor or EventReport
at the given time. When a new EventRumor is created by a
vehicle that detects a road event, a predetermined initial belief
value b0 is assigned to the rumor. As time goes, the belief
value of the rumor is changed following a predetermined decay
function in order to discount the aged information. Although
the decay function may be any non-increasing function of the
elapsed time from the creation of the rumor, we focus on the
exponentially decreasing function in Section VII.

The total belief value is the aggregated belief value of a
set S of EventRumors at the given time. The total belief value
represents how much one can believe that the associated event
is true at the given time after obtaining information from
multiple sources. We use the sum of individual belief values
bv(si) of EventRumors si for aggregation in this paper as
given by Equation (1). But, our architecture can support an
arbitrary function mapping a set of belief values into a scalar.

bvtot(S, t) =
∑
i bv(si, t) (1)

Now let us look at the aggregation algorithm MAKECON-
SENSUS which is the core algorithm of RISA architecture.
The algorithm is the consensus mechanism for combining
inconclusive event detections represented by EventRumors
from different nodes at different times into one trustworthy
conclusion – EventReport. As can be seen in Algorithm 1,
its basic operation is to evaluate the total belief value of the
given road event and compare it with the predefined consensus
threshold. If the total belief value of rumors is larger than the

(a) Road event timeline

(b) Total belief value time evolution

(c) Timeline overlap of road event and RISA perception
Fig. 2. Belief value interpretation

threshold, it proclaims a conclusion on the considered road
event and creates an EventReport for the event. Otherwise,
the RISA system adds the rumor into its corresponding set and
uses it in the future. The consensus conclusion is honored until
its belief value falls below the minimum belief value. After
that, the system abandons the report and regards the event as
having disappeared. If a RISA car receives an EventReport
from another RISA car when it has not reached a consensus,
it acknowledges the road event as truthful and discards all the
associated rumors in its storage. In this way, the distributed
algorithm of RISA can converge quickly.

Figure 2 illustrates this aggregation mechanism in the time
range of [300, 600] seconds. The data in the figure is from
one of our experiments in Section VII. Figure 2.(a) shows the
timeline of the road event, where value 1 means the occurrence
of the event. Figure 2.(b) shows the time evolution of the belief
values of the road event in a given car, and its perception of
the event. This subfigure shows that the total belief value steps
up with the detections or receptions of rumors while it decays
otherwise. At t = 579.2, the value exceeds the consensus
threshold (i.e. 25 in this case) leading to a consensus; the car
acknowledges the road event from this moment.

Figure 2.(c) overlaps the timeline of the real occurrence of
the road event and the perception of the car. We can see two
lags – aggregation delay and persistence error. The aggregation
delay is between the start time of the road event and the
perception, and the persistence error is between the end of
the road event and that of perception.

2) Phased Operation: The RISA mechanism can be divided
into two phases for each road event, and the transition is
triggered by the creation of an EventReport.

In Phase 1, when a RISA-capable vehicle detects a road
event, it creates an EventRumor for the event and executes
MAKECONSENSUS with the rumor and the set of previous
rumors for the event in its storage, if the set exists. If
the aggregation algorithm successfully makes consensus and
produces an EventReport, RISA goes into Phase 2.

If the vehicle receives EventRumors from another vehicle,
it executes MAKECONSENSUS with them one-by-one. If it
receives the EventReport of the road event, it keeps the report
and refreshes its belief value with the largest belief value of its
own rumors of the event if the latter is larger than the given



Algorithm 1 MAKECONSENSUS(rmr, S)

S := the set of EventRumors of same road event as rmr in the
storage
if S has already included rmr then

return NullConsensus;
t := current time;
for each element si of S do

if bv(si, t) < bvmin then
remove si from S;

Add rmr into S;
bvtot :=

∑
i bv(si, t);

if bvtot > thcss then
rpt := event report(event info(rmr), bvtot, t, node id);
Remove S from the system;
return rpt;

else
return NullConsensus;

belief value of report. It does not add all individual belief
values of the rumors to the report’s value because it can make
the report’s belief value too high to make it stay too long in
the system, potentially giving stale information to participants.

A pair of RISA vehicles exchange all rumors that exist in
only one of them upon their encounter, which indicates that
multiple rumors of the same event spread over the network
without aggregation in this phase. However, the spread is
expected to be confined near the origin of road event because
all rumors are abandoned once they produce an EventReport
or they meet the EventReport of the same event.

This phase may use more resources such as communication
bandwidth and storage due to the lack of aggregation, but
this is helpful to obtain more accurate aggregation at the end,
avoiding double-counting of same rumors. In fact, we can
improve the efficiency of Phase 1 by adopting an additional
aggregation technique (e.g. FM-Sketch [20]) that is robust to
double-counting even in this level. But, we focus on its basic
functionality in this paper.

In Phase 2, the vehicle has only one EventReport for the
road event, and propagates it to other vehicles until it becomes
expired. When the vehicle receives another EventReport of
the same event from another vehicle, it refreshes the belief
value of its own report by updating it with that of the received
report, if the latter is bigger than the former. It discards the
received report after that as the way of aggregation. The
procedure is similar when the vehicle receives an EventRumor
– it refreshes the belief value of its own report and discards
the rumor. These behaviors could be seen in Figure 2.(b) in
[1000s, 1700s] interval. In this way of aggregation, the system
saves the bandwidth and storage by keeping only one report
and no rumors for a road event. When the report belief value
falls below the minimum belief value, the system discards the
report and regards the road event as being disappeared as in
Figure 2.(b) at t = 2097.18.

These double-phased operations are controlled by ON-
RUMOR and ONREPORT. Their pseudo codes are presented
in Algorithms 2 and 3.

Algorithm 2 ONRUMOR(rmr)

rmr := new EventRumor;
rep := find event report(rmr);
if rep is not empty then
t := current time;
bv(rep) := max(bv(rep, t), bv(rmr, t));
return

else
S := local set of EventRumors equivalent to rmr;
c :=MakeConsensus(S, rmr);
if c is a valid EventReport then

save c in the node;
return

Algorithm 3 ONREPORT(rep)

rep := new EventReport;
t := current time;
replocal := find event report(rep);
if replocal is not empty then

bv(replocal) := max(bv(replocal, t), bv(rep, t));
return

else
S := local set of EventRumors equivalent to rmr;
if S is not empty then

Update S with decay function;
Remove si from S if bv(si, t) < bvmin for all si in S;
bv(rep) := max(maxi(bv(si, t)),bv(rep, t));
Discard S;

save rep in the storage;
return

D. Tunable Parameters

The RISA architecture has several tunable parameters. In
this section, we introduce them and describe their first-order
contributions.

Consensus Threshold (thcss): This is the minimum total
belief value such that its associated set of EventRumors is
to be promoted to an EventReport by being recognized as
trustworthy and conclusive information. This value contributes
to timing of phase transition in RISA.

Initial Belief Value (b0): This is the initial and maximum
possible value for an individual EventRumor. This value af-
fects the lifetime of the EventRumor and the consensus timing.

Minimum belief value (bm): This value is the smallest value
of belief of an event rumor/report for them to survive and be
propagated over the network. If an event rumor/report has the
belief value decayed to less than this value, it is considered
expired and will be discarded.

Decay function (d(τ)): This function decides how the belief
value decays over time, affecting the consensus timing and the
lifetime of event rumors and reports. The decay function can
be different between EventRumor and EventReport even for
the same type of road event.

The initial and minimum belief values and decay func-
tion jointly decides the lifetime of EventRumors, given by
Equation (2). The lifetime of EventReports with no refresh
is decided with one more parameter which is the consensus
threshold, given by Equation (3). However, its overall lifetime



Fig. 3. RISA Software System

also depends on the refresh process, which is hard to derive
because it depends on the random process of detections and the
communication delay from the detector to the report holder.

τrumor = argminτ (max{b0d(τ)− bm, 0}) (2)
τreport < argminτ (

max{(thcss + b0)d(τ)− bm, 0}) (3)

We note that the parameters are not independent, but the
same effects can be drawn by fixing some parameters and
adjusting others properly. For example, the same lifetime can
be achieved for a rumor by doubling the initial belief value,
when the minimum belief value is also doubled. The effects
of these parameters are further investigated with the results of
performance evaluation in Section VII.

IV. IMPLEMENTATION

We developed a prototype system composed of hardware
and software in order to experiment and evaluate the RISA
architecture. This prototype system was installed on a fleet
of five GM testing vehicles for empirical experiments in real
driving environments.

A. Software and Hardware System

Hardware System: Each of the GM research vehicles that
we used for the experiment is equipped with a Linux laptop
running our prototype RISA software, a DSRC-compatible
Denso WRM radio operating the IEEE 802.11p WAVE BSS
mode on the 5.9 GHz frequency band, transmitting at 20 dBm,
6 Mbps data rate, with an omnidirectional 0 dB gain antenna
mounted on the roof, and a GPS unit with 1m accuracy, used
for location and time synchronization. Note that our testing
vehicles are not equipped with real event detection sensors, as
we do not focus on the local event detection problem in this
paper. Instead we use virtually generated event detections.

Software System: The software system is built on top of
a customized software system called WaveCast [21], which
is used to support vehicular opportunistic communication
research. It consists of the entire DSRC protocol stack (up to
network-layer), based on GrooveNet [22]. As a modularized
test platform, WaveCast is flexible enough to support the devel-
opment of a variety of vehicular communication applications,
using standard network-layer APIs. The architecture of our
software system is depicted in Figure 3.

Our software system also provides a set of Graphic User
Interfaces, which are able to display a map, vehicle dynamic
information, neighboring vehicles, road events (such as RISA

events), as well as radio and GPS status information. Our
software system is composed of about 50,000 lines, of which
about 12500 lines correspond to RISA module.

Our developed software system is able to run in two modes:
real experiment mode and emulation mode.

Real Experiment mode: On top of WaveCast system, we
implemented the RISA mechanism introduced in the previous
section. Each testing vehicle is equipped with its own Wave-
Cast system and RISA protocol (as a single node). Using 5
such testing vehicles as a small-scale testbed, we are able to
run experiments with the full functionalities of RISA protocol
in the real driving environments.

Emulation mode: We also modified our WaveCast software
system to support the emulation mode that support multiple
cars to run RISA protocol on a single machine, as other tradi-
tional simulators/emulators. In addition we added a vehicle
mobility module into our software system that takes GPS
traces as input and moves cars accordingly in the simulation
mode. We use this feature for RISA emulation as discussed
in Section VI. Note that the exact same RISA code is used
for both real experiments and the emulation mode, so that
we believe that our emulation results using empirical vehicle
traces are trustworthy.

V. REAL EXPERIMENT

We first run a representative set of real experiments with our
prototype system on vehicles to demonstrate the correctness
of the architecture and its software implementation. Figure 4
shows the results of two samples of the experiments. In the
experiments we had three cars, whose paths are shown as
colored curves, and one pothole road event (shown as a star).

The first experiment Exp1 is the case in which the cars
that detect the road event make consensus, and let other cars
know. As shown in Figure 4.(a), Car 1 (red) detects the pothole
at 03:40.522 and broadcasts the EventRumor. Car 2 (yellow)
that follows Car 1 within the radio range receives the rumor
at 03:41.501 and keeps it. Soon it also detects the pothole and
creates an EventReport for it because the total belief value
exceeds the consensus threshold. It broadcasts the report and
Car 1 receives it at 04:16.261, which is transferred to Car 3
(blue) at 04:30.863. Figure 4.(b) shows how the perception of
each car for the pothole changes over time in Exp1. Although
the perception is either on (1) or off (0), we put the state
of 0.5 in the plot to identify the time duration that the car
has rumors only. In the figure we can see that Car 2 receives
the rumor Car 1 created almost immediately because they are
within the radio range at that time. But, Car 1 is out of range
when Car 2 creates the report so that we can see a time lag
between the time Car 2 confirms the pothole and the time of
Car 1. Because Car 3 receives the report without any rumors,
its perception goes from 0 to 1 directly.

Figures 4.(c) and (d) pertain to the second experiment Exp2,
which shows a case when the consensus is made in the car
(Car 3) that does not detect the road event at all. This happens
when the cars that detect the event (Car 1 and Car 2) keep out
of the radio range of each other, but encounter the same other
car (Car 3) at later times.



(a) Exp1-Map

(b) Exp1-Perception

(d) Exp2-Perception (c) Exp2-Map

Fig. 4. Real Experiments with RISA

VI. TRACE COLLECTION EXPERIMENTS AND EVALUATION
METHODOLOGY

Having already validated the functionality of the RISA
protocol on real vehicles as described in section 5, we now
wish to comprehensively evaluate the RISA system over many
different parameter configurations. For this purpose, we did
not run the RISA protocol directly on the cars; instead, we
have emulated the RISA protocol offline based on the above-
mentioned mobility traces from vehicles driving through real
roads. Because we are more interested in the early phase
of smart vehicle deployment, we focus on the low density
of RISA cars, which make them operate as a delay tolerant
network.

We used a fleet of five GM research vehicles for the experi-
ment to collect movement traces and interactions between cars
in real traffic. We drove the fleet of cars circling on Mound
Rd, Warren, MI, USA from 12 Mile Rd to 14 Mile Rd, which
is one of the major streets in the region carrying a large traffic
volume.

We chose to circle within the same street to include the
interaction between cars in opposite directions, with a small
number of research cars. We conducted the experiments in
high traffic time (i.e. 7am-9am, Oct. 17th, 2010) and low
traffic time (i.e. 1pm-3pm, Oct, 18th, 2010), making for 20
driving hours in total (across all vehicles). The vehicles are
inserted one-by-one into the real road traffic with an initial
inter-vehicle time interval of 90 seconds. We did not control
manually the distance between cars, but let each car follow
the real traffic accordingly. So, the experiment experienced
the inversion of the order of cars sometimes. During the
experiment, we collected the GPS traces of the vehicles; each
car sampled the GPS location every second.

In our evaluations described in Section VII, we assume that
a pair of cars can communicate with each other if their distance

is less than a predefined radio range. We use 200 meters for
the radio range, which is more conservative than suggested
by [23], [24]. In the emulation we have injected virtual road
events on the road. The position of the event is uniform at
random over the experimented street, and the arrival time of
the road events follows Poisson distribution with the mean of
180 seconds, unless stated otherwise.

VII. EVALUATION

We evaluate empirically the RISA system in this section,
by examining the effect of various RISA system parameters
on two major performance metrics – aggregation delay and
consensus accuracy.

A. Aggregation Delay

In this section we evaluate the consensus delay of RISA
mechanism. We will see how the delay is related with tunable
parameters such as consensus threshold, initial and minimum
belief values, and decay function; and untunable parameters
such as the arrival rate of RISA cars to the event region and
the miss probability of the local detection.

1) Evolution of Total Belief Value: The aggregation delay is
dependent on the instantaneous total belief value of rumors. It
is the duration until the total belief value crosses the consensus
threshold in the first time from the time the road event have
occurred.

We have looked into the evolution of the total belief value in
this empirical study. Figure 5 visualizes how the value evolves
as time goes under different rumor lifetime regimes. Although
the plots are from a set of realizations of the random process,
it seems that the total belief value is upper-bounded by a finite
value no matter how long the process continues, except the no
decay case.



(a) τrmr = 10 mins (b) τrmr = 20 mins (c) τrmr = 60 mins (d) τrmr = ∞

Fig. 5. Time evolution of total belief value of EventRumor

Fig. 6. Aggregation Delay

In fact, the expected total belief value turns out to have the
closed-form expression as in Equation (4).

Btot(τ) =
{
λDb0γ

−1(1− e−γτ ), if γ > 0 (4a)
λDb0τ, if γ = 0 (4b)

where λD is the arrival rate of RISA cars, b0 is the initial belief
value and γ−1 is the decay function. It can be easily derived
with the theorem in Appendix and the time evolution function
of the belief value of an individual rumor g(t) = b0e

−γt.
The equation indicates that the expected total belief value

is always upper-bounded by, and converges to, the finite value
λDb0γ

−1 in the practical cases where γ > 0. Hence, if the
consensus threshold is set much above this value, the system
would suffer from excessively large consensus delays, and
consensus failures would start to occur even if there are no
detection misses from individual vehicles.

Note that the evolution process is determined by the detec-
tion arrival process given system parameters, because there is
no randomness in the system except the arrival process.

2) Average Delay: Figure 6 shows the delay in terms of
consensus threshold in several cases of rumor lifetimes. The
initial belief value is set to 10 and the minimum belief value is
set to 1 while the decay rate is adjusted to make the lifetime
as in the figure legend. We only vary the threshold values
because it gives scaling effects on the result to vary the values
of other contributing tunable parameters, as long as the rumor
lifetime is the same.

As can be seen in the figure, the delay plot looks like a step
function when the belief value of rumors never decays. If it
does not decay at all, the relationship between the consensus
threshold and the initial belief value can be interpreted so
that the system requires a certain number of rumors, which
is dthcss/b0e, to conclude the consensus regardless of their
freshness. So, the expected delay of consensus is the expected

time duration between detections multiplied by the required
number of rumors, given by Equation (5). This is why the
plot has step width of 10 = b0 and the average step height of
106.95 ≈ 1/λD.

E[τcss|no decay] = dthcss/b0e/λD (5)

As the lifetime of a rumor decreases, the step shape gets
smoother and smoother to get more like linear function. This
is because the probability that you need more rumors is
increasing as the threshold approaches each multiple of b0.
And we can notice that the delay is upper bounded by a linear
function whose slope depends on the rumor lifetime.

The shorter rumor lifetime also incurs significant increase in
the delay in general. It is because the rumors are more likely
to die out too early, which prevents useful information from
spreading over the network. Although we omit the details due
to shortage of space, the aggregation delay profile is similar
when we also take into account the possibility of missed
detections.

B. Consensus Accuracy

In this section we look into the accuracy of consensus. We
examine the rate of false EventReport generation for the false
positive in accuracy, and the probability of consensus failures
for the false negative. While we use probability as the metric
for the false negative, we use the occurrence rate for the false
positive because EventReports are generated in the continuous
time domain; hence, probability is not defined well in this
domain.

1) False Positives of Consensus: In order to examine the
false positive of the system, we emulate false detections by
injecting false road events into each car independently. The
inter-injection duration follows the Poisson distribution with
varying rates. Higher rate represents higher detection errors
made by low-quality sensors and local detection mechanism.

Figure 7 shows the consensus false positive rate, that is
the network-wise number of false EventReport generation in
a minute (Hz/60), caused by accumulated false detections of
multiple cars in the similar region. The red line labeled as
no aggr shows the performance when there is no aggregation
mechanism in the system; each local detection is regarded
as perfect and shared in the network. Other curves show the
performance of RISA with different parameters; various rumor
lifetimes are examined in Figure 7(a) with a fixed consensus
threshold, thcss = 15, while Figure 7(b) considers various
consensus threshold values with fixed rumor lifetime τrmr =



(a) thcss = 15 (b) τrmr = 20 mins (c) Net-wise false detection rate = 5
Hz/60

Fig. 7. Consensus false positive rate (Hz/60)

20 mins. Figure 7(c) shows in more detail how the consensus
false positive rate changes in terms of the consensus threshold
value under different rumor lifetime regimes.

From this set of experiments, we can see that the RISA
system can filter out most of individual false detections due
to the inevitable sensor imperfection, thus improving the
accuracy greatly. The resultant decrease of false EventReport
can save the network bandwidth and the storage in each vehicle
that would be consumed to disseminate and store the report,
otherwise. We can also see that the relatively small value of
consensus threshold is enough to make the consensus false
positive very low although a larger threshold value gives better
results.

2) False Negatives of Consensus: In order to examine the
probability of consensus misses, we let each of the vehicles
miss the detection with the varying miss probabilities pmiss
in the emulation.

Figure 8 summarizes the experiment results; its plots show
the probability that the system eventually fails to conclude
a consensus over a given road phenomenon, in terms of the
local detection miss probability of an individual vehicle. We
have fixed the consensus threshold to be thcss = 25 in
Figure 8(a) while fixing the rumor lifetime as τrmr = 20
mins in Figure 8(b).

The red lines in the figure correspond to non-RISA mecha-
nisms that have no aggregation of information independently
gathered by individual vehicles. Other curves visualize the
performance of the RISA architecture with different param-
eter values. As can be seen, RISA radically eliminates the
complete detection failure in the reasonable detection misses
of individual cars: pmiss < 0.2. Its performance is better with
smaller consensus threshold value and larger rumor lifetime,
as opposed to the case of false positive of consensus. The
latter benefits from larger threshold values and smaller rumor
lifetime are discussed in VII-B1.

VIII. CONCLUSION

In this paper, we have proposed a distributed architecture,
called Road Information Sharing Architecture (RISA), in order
to exploit the wisdom of crowd in the setting of vehicular
delay tolerant networks for monitoring the road environment
and sharing the information among participants. Among its
core mechanisms are the aggregation mechanism, which is

inspired by the traditional sequential hypothesis testing (SHT)
in statistics, to combine potentially inconsistent sets of de-
tection information from multiple cars. The main difference
of our aggregation mechanism from SHT is that ours has a
notion of time decay when dealing with detection samples by
discounting old information.

We have implemented the RISA architecture and tested it on
the streets around the GM R&D campus in Warren, Michigan,
on a fleet of research vehicles. In order to comprehensively
evaluate the performance of RISA, we collected GPS traces
from five research vehicles, and emulated the RISA mecha-
nism using the same code, with the traces for a wide range of
parameter configurations.

We have examined the aggregation delay, the delay to
capture the disappearance of road event, and the perception
accuracy of RISA system in terms of false negatives and false
positives. From the evaluations, we have found that (a) the low
consensus threshold (which means a small number of detection
samples) is sufficient to achieve high perception accuracy of
detected road events in terms of both false negatives and
positives; (b) the RISA makes the perception accuracy much
higher than detections made by individual cars, which can
be interpreted that lower-quality lower-cost sensors can be
used in individual cars for the given accuracy requirements;
and (c) the aggregation delay is reasonably small – an order
of several minutes (with the aforementioned low consensus
threshold). It is clear that the idea of aggregating on-the-road
observations made by a number of individual vehicles in a
distributed manner is technically feasible.

From both information reliability and delay perspectives,
intuitively the RISA mechanism performance should improve
with a higher density of cars. From this perspective, our study
showing decent performance with only 5 cars suggests that the
RISA architecture is a promising approach. The quantification
of bandwidth usage and scalability of RISA mechanism are
topics of future work.
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APPENDIX

Theorem A.1. Suppose the arrivals of detections follow the Poisson
process with rate λD and g(t) is the time evolution function of an
individual rumor such that it gives the belief value of the rumor at
time t given that the rumor is created at t = 0, i.e. g(0) = b0. Then,
the expected maximum total belief value at time t is given by,

Btot(t) = λD

∫ t

0

g(τ)dτ. (6)

Proof: The maximum total belief value at time t, Btot(t), can
be expressed as follows:

Btot(t) =
∞∑
k=1

Bk(t) (7)

where Bk(t) is the belief value of the rumor created by k-th detection,
at time t. Note that it is maximum because the expression considers
all rumors generated by the time. This is different from the total belief
value of individual vehicles because the latter may not have received
some rumors in time. If k-th detection has not occurred by the time
t, Bk(t′) = 0, ∀t′ ≥ t. Because of the linearity of expectation, the
expected value Btot(t) becomes as follows:

Btot(t)
.
= E[Btot(t)] =

∞∑
k=1

E[Bk(t)] (8)

The expected k-th belief value Bk(t) is given by

Bk(t)
.
= E[Bk(t)] =

∫ t

0

fTk (τ) g(t− τ)dτ (9)

where Tk is the random variable that represents the time of k-
th detection, and fTk (·) is its probability density function (PDF).
Because the detection process is Poisson with rate λD , Tk follows
Erlang distribution with rate λD and shape k. Hence, its PDF is as
follows:

fTk (τ) =
λD

kτk−1e−λDτ

(k − 1)!
(10)

Substituting Equation (10) into Equation (9), again substituting
into Equation (8), we have the following:

Btot(t) =

∞∑
k=1

Bk(t) =

∫ t

0

g(t− τ)
∞∑
k=1

fTk (τ)dτ (11)

= λD

∫ t

0

g(t− τ)dτ = λD

∫ t

0

g(τ)dτ (12)

The last equation in Equation (11) involves the interchange of limit
and integral, which holds because fTk (τ) is uniformly convergent
on [0, t]. The proof of the uniform convergence is omitted in this
paper because it is not very difficult to derive. The first equation in
Equation (12) is because

∑
fTk (τ) = λD .


