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Abstract This study investigates replication strategies
for reducing latency to desired content in a ve-
hicular peer-to-peer network. We provide a general
constrained optimization formulation for efficient repli-
cation and study it via analysis and simulations em-
ploying a discrete random walk mobility model for the
vehicles. Our solution space comprises of a family of
popularity based replication schemes each character-
ized by an exponent n. We find that the optimal repli-
cation exponent depends significantly on factors such
as the total system storage, data item size, and vehicle
trip duration. With small data items and long client
trip durations, n ∼ 0.5 i.e., a square-root replication
scheme provides the lowest aggregate latency across all
data item requests. However, for short trip durations,
n moves toward 1, making a linear replication scheme
more favorable. For larger data items and long client
trip durations, we find that the optimal replication
exponent is below 0.5. Finally, for these larger data
items, if the client trip duration is short, the optimal
replication exponent is found to be a function of the
total storage in the system. Subsequently, the above
observations are validated with two real data sets: one
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based on a city map with freeway traffic information
and the other employing encounter traces from a bus
network.
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1 Introduction

Advances in computer processing, data storage, and
wireless communications have made it feasible to en-
vision on-demand delivery of content such as audio
and video clips between mobile vehicles. The content
exchanged between the vehicles may vary from traffic
information such as accident notifications and emer-
gency vehicle arrival notifications to multimedia for
entertainment such as audio files, cartoons, movies
and other video files. A vehicle is equipped with an
AutoMata (formerly known as a C2P2 for Car-to-Car
Peer-to-Peer [10]) device consisting of several gigabytes
of storage, a fast processor and a short-range wireless
interface with bandwidths of several tens of Mbps [2].
The AutoMata-equipped vehicles, forming an intermit-
tently connected network [23, 26], collaborate to realize
an application for on-demand delivery of entertain-
ment content.

In such a system, when a client vehicle issues a re-
quest for desired content not found in its local storage,
this request can be satisfied only when it is in the
vicinity of another vehicle that carries the requested
item. Therefore, a key metric is availability latency,
defined as the time between request issuance and re-
quest satisfaction. Clearly, the more the number of
vehicles carrying a certain data item, the lower will be
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its expected availability latency. However, constraints
on storage limit the number of unique data items that
each vehicle can carry.

All data items in the system repository are not likely
to be equally requested.1 The aggregate availability
latency across all items is therefore the average latency
for individual data items weighed by their respective
popularities. Hence, in order to minimize this aggregate
latency metric, the popular data items warrant more
replicas. We address the following key question in
this study: how many replicas should be allocated for
each item in the repository in order to minimize the
aggregate availability latency?

Several parameters impact the optimal replication
scheme. For instance, the mobility model of the vehicles
impacts how the expected availability latency for a data
item decreases with the number of replicas for that
item. The size of a data item and the available band-
width between devices dictates whether it is possible
to download the entire data item in a single encounter
between a client and a vehicle carrying the requested
item. Moreover, the client trip duration bounds the
maximum amount of time that a client is willing to wait
for a request to be satisfied. The distribution of the data
item popularities is a key component of the aggregate
latency metric. The available storage directly affects the
constraints under which the optimal replication strategy
can be found.

Our primary contributions are as follows. We first
provide a general optimization formulation for mini-
mizing the average availability latency subject to a stor-
age constraint per vehicle. To solve this optimization,
the solution space we explore comprises a family of
popularity-based replication schemes each character-
ized by an exponent n. This exponent, n, defines the
relation between the replicas of a data item and its
popularity. We are interested in the optimal replication
exponent that minimizes the aggregate availability la-
tency. With small data items and long client trip dura-
tions, we find that n ∼ 0.5 i.e., a square-root replication
scheme provides the lowest aggregate latency. How-
ever, for short trip durations, we find that the optimal
replication exponent (n) moves toward 1, making a
linear replication scheme more favorable. For larger
data items and long client trip durations, we find that
the optimal replication exponent is below 0.5. In the
limit for extremely large data items, a random (n = 0)
replication scheme that allocates the same number of
replicas to all data items yields the minimum aggregate

1It is found that Zipf’s law controls many of the features observed
with the Internet, primarily because of different user preferences
for different files [3].

latency. Finally, for such data items, if the client trip
duration is short, we find that the optimal replication
exponent is a function of the total storage in the system.
Specifically, in low storage scenarios, a linear scheme
shows superior performance, while for moderate to
high storage scenarios a square-root replication scheme
is preferred. Moreover, if the storage is abundant even
a random replication scheme is good enough to provide
a low aggregate latency.

While the above results are based on a 2D ran-
dom walk based mobility model for the vehicles, in
the second part of this study, we validate our model
observations with vehicular movements obtained from
real data sets. Specifically, two independent validation
phases are presented employing (a) A real map of an
urban environment that dictates the mobility transi-
tions of the Markov model and (b) Fine grained mo-
bility traces from a real environment comprising buses
moving around a university campus area. The observa-
tions from these studies indicate that a random walk-
based mobility model captures performance trends that
may be applicable for a wide range of scenarios.

The rest of this paper is organized as follows.
Section 2 gives a brief overview of the related work
in the area. Section 3 presents the general optimization
formulation and details about the family of frequency-
based replication schemes explored in our study.
Section 4 employs mathematical analysis and simula-
tions to determine the optimal replication scheme for
small data items and long client trip durations. The
results for small data items are extended to consider
short client trip durations in Section 5. Sections 6 and 7
present the optimal replication scheme for larger data
items with long and short client trip durations, respec-
tively. Subsequently, representative results obtained
with the random walk model are validated on a map
of the city of San Francisco in Section 8 as well as a
real data set comprising of movement traces of buses in
a small neighborhood in Amherst (Section 9). Finally,
Section 10 presents conclusions and future research
directions.2

2 Related work

Techniques to determine number of replicas are sim-
ilar to assigning seats to different parties as a func-
tion of their popularity, i.e., ratio of votes casted for
a party to the total vote. Webster’s divisor method
and its alternatives attributed to Hamilton, Adams and

2A detailed technical report of this study is available as [22].



Mobile Netw Appl

Jefferson allocate storage to each replica (assign seats
to a party) as a linear function of its frequency of access
(popularity). The divisor technique has been employed
to determine the number of replicas of a video clip in
a distributed video-on-demand architecture [27]. Our
proposed framework captures this technique by setting
a key parameter, denoted as n (see Section 3), to one.

Techniques to compute number of replicas for ob-
jects have been studied for both peer-to-peer networks
[5] and mesh community networks [7, 11]. Mobility of
nodes is our primary contribution and separates these
prior studies from the work presented here. In the fol-
lowing, we provide an overview of these prior studies.
Replication of objects is important to their discovery in
an un-structured peer-to-peer network. A smart repli-
cation technique minimizes search size, defined as the
number of walks required to locate a referenced data
item. In [5], the divisor method is compared with one
that employs the square root of the frequency of access,
demonstrating the superiority of the later.

Replication in MANETs has been explored in a wide
variety of contexts. Hara [13] proposes three replica al-
location methods. The first one that allocates replicas to
nodes only on the basis of their local preference to data
items. The second technique extends the first by con-
sidering the contents of the connected neighbors while
performing the allocation to remove some redundancy.
The last technique discovers bi-connected components
in the network topology and allocates replicas accord-
ingly. The frequency of access to data items is known
in advance and does not change. Moreover, the replica
allocation is performed in a specific period termed the
relocation period. Several extensions to this work have
been proposed where replica allocation methods have
been extended to consider data items with periodic
[14, 15] and aperiodic [18] updates. Further extensions
to the proposed replica allocation methods consider the
stability of radio links [19], topology changes [20] and
location history of the data item access log [16, 17].

Our study differs from prior studies in the following
ways. We formulate a general optimization problem
that minimizes an aggregate latency metric subject to
a storage constraint per vehicle. We propose a fam-
ily of replication schemes and explore which scheme
provides optimal latency under a variety of scenarios
by solving the optimization formulation. The mobility
of vehicles is represented by a Markov-based mobility
model that is general enough to capture a wide va-
riety of mobility models such as Freeway, Highway,
Random Way-point etc. We have analyzed the latency
performance obtained with such a mobility model via
mathematical analysis and extensive simulations. The
different scenarios encompass vehicles with unbounded

as well as finite trip durations, data items with different
display times etc.

3 General framework

In this section, we first introduce some definitions and
associated terminology used repeatedly in this paper.
Then, we provide a general optimization formulation
for minimizing availability latency in the presence of
storage constraints. Table 1 summarizes the notation
used in this study.

Assume a network of N mobile AutoMata devices,
each with storage capacity of α bytes. The total storage
capacity of the system is ST=N · α. There are T data
items in the repository, each with a display time of
�i seconds and display bandwidth requirement of βi.
Hence, the size of each item is given by Si = �i · βi.
The frequency of access to item i is denoted as fi with
∑T

j=1 f j = 1. Let the trip duration of the client Au-
toMata under consideration be γ . We now define the
normalized frequency of access to the item i, denoted
Ri, is:

Ri = ( fi)
n

∑T
j=1( f j)n

; 0 ≤ n ≤ ∞ (1)

Ri is normalized to a value between 0 and 1. The
number of replicas for data item i, denoted as ri, is:

ri = min

(

N, max

(

1,

⌊
Ri · N · α

Si

⌋))

(2)

This defines a family of replication schemes that
computes the degree of replication of item i as the
nth power of its frequency of access. The exponent n
characterizes a particular replication scheme. Hence, ri

lies between 1 and N. Note that ri includes the original
copy of item i. One may simplify Eq. 2 by replacing the
max function with � Ri·N·α

Si
�, which would allow value of

ri to drop to zero. This means that there is no copy of
item i in the AutoMata network. A hybrid framework
might provide access to the item i. For example, a base
station employing IEEE 802.16 [12] might facilitate
access to a wired infrastructure with remote servers
containing the item i. However, in this study, we assume
at least one copy of every data item must be present in
the ad-hoc network at all times.

The availability latency for a given request for item
i, denoted as δi, is defined as the time after which a
client AutoMata will find at least one replica of its
requested item accessible to it, either directly or via
multiple hops. Additionally, δi must be greater than �i,
the data item display time. If a replica for item i is not
encountered for a given request, we set δi to γ . This
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Table 1 Terms and their
definitions

Database Parameters
T Number of data items.
Si Size of data item i.
�i Display time of data item i.
βi Bandwidth requirement of data item i.
fi Frequency of access to data item i.
Replication Parameters
Ri Normalized frequency of access to data item i,

Ri = ( fi)
n

∑T
j=1( f j)

n
; 0 ≤ n ≤ ∞

ri Number of replicas for data item i,
ri = min (N, max (1, � Ri·N·α

Si
�))

n Characterizes a particular replication scheme.
δi Average availability latency of data item i
δagg Aggregate availability latency for replication technique

using the nth power, 0 ≤ n ≤ ∞, δagg = ∑T
j=1 δ j · f j

AutoMata System Parameters
N Number of AutoMata devices in the system.
α Storage capacity per AutoMata.
γ Trip duration of the client AutoMata.
ST Total storage capacity of the AutoMata system, ST = N · α.

indicates that item i was not available to the client
during its journey. Also, if �i exceeds γ for a certain
item i then we set δi to γ . We are interested in the
availability latency observed across all the data items.
Hence, we augment the δi for every item i with its fi.
This is termed the aggregate availability latency (δagg)
metric. It is computed as follows. For each item i,
calculate the average availability latency (δi) based on
the particular replication scheme of interest. Then these
availability latencies are combined into a single metric:
δagg = ∑T

i=1 δi · fi.
The aggregate availability latency depends on the

value chosen for n, since n determines the replicas per
data item. Intuitively, a higher number of replicas for
item i will reduce the availability latency for a request
for that item. The core problem of interest here is to
keep the aggregate availability latency as low as pos-
sible by tuning the data item replication levels, in
the presence of storage constraints. We assume that
the data item repository size is smaller than the total
storage capacity of the system,

∑T
i=1 Si ≤ ST . Other-

wise, data items cannot be replicated when at least
one replica of a data item must be present in the sys-
tem. More formally, the optimization problem can be
stated as,

Minimize δagg, subject to
∑T

i=1 Si ≤ ST (3)

Implicit in this formulation is the design variable,
namely, the desired replication for each data item.
The replication exponent n determines a ri value for
each data item i with the objective to minimize δagg.

This minimization is a challenge when the total size
of the database exceeds the storage capacity of a car,∑T

i=1 Si > α. Otherwise, the problem is trivial and can
be solved by replicating the entire repository on each
device.

The optimization space that defines what value of n
provides the best δagg is quite large and consists of the
following parameters: (i) density of cars, (ii) data item
display time, (iii) data item size, (iv) display bandwidth
per data item, (v) data item repository size, (vi) storage
per car, (vii) client trip duration, (viii) frequency of
access to the data items, and (ix) mobility model for
the cars. In this study, we determine how the aggregate
availability latency and hence the optimal replication
scheme is affected by each of these parameters.

3.1 Model preliminaries

In this section, we provide details about the discrete
Markov mobility model adopted in this study. We as-
sume a repository of homogeneous data items with
identical bandwidth requirement, display time, and size
(βi = β, �i = �, Si = S). Figure 1 shows an example
map used in our study that comprises with fixed size
cells.3 The vehicles4 themselves are assumed to be dis-
tributed across these cells. Only AutoMatas within a

3In the analysis, the map is considered to be a torus to avoid
border effects [21, 25].
4We use the term AutoMata and a vehicle (or car) interchange-
ably in this study, with the assumption that each vehicle is
equipped with a single AutoMata device.
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Figure 1 An example 6 × 6 map

cell communicate with each other either directly if they
are in radio-range or via other AutoMatas using multi-
hop transmissions. In other words, the AutoMatas
within a cell form a connected sub-network. AutoMatas
in adjacent cells cannot communicate with each other.

A Markov mobility model describes the movement
of the vehicles where the vehicles perform a 2D random
walk. Hence, in each time step, a vehicle in a given cell
may transition to any one of its neighboring 4 cells.
Each cell of the map constitutes a state. A map of
size G × G yields G2 states. These states are self-
contained and a transition from one state to another
is independent of the previous history of a car in that
state. The aggregate of the transitions from each cell
(state) to every other state gives the G × G probability
transition matrix Q = [qij] where qij is the probability
of transition from state i to state j.

Using Markov chains, it is possible to estimate the
distribution of the steady-state probabilities of being
in the various cells, by solving � = � ∗ Q, where �

is the vector representing the steady-state probabilities
of being in the various cells (states). While for the 2D
random walk mobility model, due to symmetry and ig-
noring border effects, � = 1

G , in general, the map may
represent an underlying city area where the transition
probabilities for each cell may not be symmetric in
each of the 4 possible directions. For example, in the
example map depicted in Fig. 1, the mobility model
is weighted toward the diagonal both from the left to
right and vice-versa. This may be due to the presence of
two major freeways running across a city area that the
map represents. Note that in order to incorporate di-
rectionality, the transition for a vehicle from its current
cell may incorporate the current as well as the previous

location of the vehicle (see Section 8). In this case,
by incorporating previous as well as current vehicle
location information in the state, the mobility model
can still be solved employing Markov chains.

Without any loss of generality, to reduce the di-
mensionality of the problem, we express the data item
display time, �, as the amount of time required by
an AutoMata equipped vehicle to travel � cells. We
express α as the number of storage slots per AutoMata.
Each storage slot stores a data item fragment equiv-
alent to a single cell worth of data item display time.
Moreover, we assume the amount of data displayed in
each cell is identical. Now, we represent both the size
of a data item and the storage slots in terms of the
number of cells. This means that a data item has a
display time of � cells and an AutoMata has α units
of cell storage. For example, a data item with display
time of 4 cells (� = 4) requires 4 storage slots and an
AutoMata provides 100 storage slots (α = 100). Hence,
from hereon, we assume that the size of the data item is
indicated by its display time.

The trip duration (γ ) is the maximum amount of
time that a client vehicle is willing to wait for request
satisfaction. Here, it is expressed as the maximum num-
ber of cells that the client is willing to traverse before it
gives up on a given request for a data item. We also
define availability latency (δi) for data item i in discrete
terms, as the number of cells after which a client Au-
toMata will encounter a replica of the requested data
item i, either directly or via multiple hops, for the data
item display time (�). Hence, the possible values of the
availability latency are between 0 and γ . While in most
cases, the trip duration is usually short, occasionally a
client may specify an extremely large value of γ indicat-
ing that it is willing to wait as long as it takes to satisfy
an issued request. As we shall show in the following
sections, the long versus short client trip durations have
a profound impact on the optimal replication scheme
that minimizes the aggregate availability latency.

4 Data items with small size and long client
trip duration

In this section, we consider small data items with a dis-
play time of one, where the client trip duration is long.
We first present analytical approximations that capture
the performance of availability latency for an item as a
function of the number of replicas for that item for both
a low and high density of replicas. Subsequently, we
employ simulations to determine the optimal replica-
tion exponent that minimizes the aggregate availability
latency.
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4.1 Analysis of data items with display time = one

In this section, for a scenario with a sparse density of
data item replicas, we derive a closed-form expression
for the aggregate availability latency. Subsequently, we
use this expression to solve the optimization problem
to reveal that a square-root replication scheme mini-
mizes this latency. Then, we derive an expression that
approximates the aggregate availability latency in case
of a high density of data item replicas.

4.1.1 Sparse scenario

In this section, we provide a formulation that captures
scenarios with a low density of vehicles. For a given
mobility model of the vehicles, the relationship be-
tween δi and ri can be obtained using simulations. For
illustration, we have considered that vehicles follow
a random walk-based mobility model on a 2D-torus.
Aldous and Fill [1] show that the mean of the hitting
time for a symmetric random walk on the surface of a
2D-torus is �(GlogG) where G is the number of cells
in the torus. Moreover, the mean of the meeting time
for 2 random walks is half of the mean hitting time.
Furthermore, the distribution of the meeting times for
an ergodic Markov chain can be approximated by an
exponential distribution of the same mean [1]. Hence,

P(δi > t) = exp

( −t
c · G · logG

)

(4)

where the constant c � 0.34 for G ≥ 25. Now since
there are ri replicas, there are ri potential servers.
Hence, the meeting time, or equivalently the avail-
ability latency for the data item i is the time till it
encounters any of these ri replicas for the first time.
This can be modeled as a minimum of ri exponentials.
Hence,

P(δi > t) = exp

(
−t

c · G
ri

· logG

)

(5)

Note, however that this formulation is valid only for
the cases when G >> ri, which is the case for sparse
scenarios. The expected value of δi is given by:

δi = c · G · logG
ri

(6)

For a given 2D-torus, G is constant, hence we have δi ∝
1
ri

or equivalently, δi = C
ri

where C = c · G · logG.

Hence, we have the following optimization formula-
tion,

Min

[
T∑

i=1

fi · C
ri

]

Subject to (7)

T∑

i=1

ri = N · α; 1 ≤ ri ≤ N ∀ i = 1 to T (8)

Theorem 1 The solution to the optimization formula-
tion presented in Eqs. 7–8 is:

ri =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
fi·N·α

∑T
j=1

√
f j

1
N·α ≤

√
fi

∑T
j=1

√
f j

≤ 1
α

max
(

1, min
(√

fi·C
γ0

, N
))

in the general case

where γ0 is s.t.
∑T

i=1 ri = N · α

(9)

In other words, in case of a sparse density of vehicles,
a replication scheme that allocates data item replicas as a
function of the square-root of the frequency of access to
data items minimizes the aggregate availability latency.
This is valid for data items with display time = 1.

Proof We solve the above optimization using the
method of Lagrange multipliers. First, we prove part(i)
of the theorem.

The Lagrangian for the optimization can be written
as:

H =
T∑

i=1

fi · C
ri

+ ϕ

[
T∑

i=1

ri − N · α

]

(10)

We solve for ri to get:

ri =
√

fi · N · α
∑T

j=1

√
f j

(11)

The constraints are satisfied if 1
N·α ≤

√
fi

∑T
j=1

√
f j

≤ 1
α

which proves part (i) of the theorem.
Without this condition on fi, the above optimization

can be re-written as the following Lagrangian taking all
the constraints into account as:

G =
T∑

i=1

fi · C
ri

+ γ0

[
T∑

i=1

ri − N · α
]

−
T∑

i=1

γi · (ri − N · α) −
T∑

i=1

βi · (−ri + 1)
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The Kuhn Tucker Conditions for the modified
Lagrangian are:

− fi · C

r2
i

+ γ0 − γi + βi = 0; ∀ i = 1 to T (12)

T∑

i=1

ri ≤ N · α, γ0 ≥ 0, and γ0

[
T∑

i=1

ri − N · α
]

= 0 (13)

ri ≤ N, γi ≥ 0, and γi · (ri − N) = 0; ∀ i = 1 to T (14)

−ri ≤ −1, βi ≥ 0, and βi · (−ri + 1) = 0; ∀ i = 1 to T

(15)

Solving Eq. 12, we get,

ri =
√

fi · C
γ0 − γi + βi

(16)

Equations 14 and 15 imply that either γi = 0 or ri =
N and also either βi = 0 or ri = 1 respectively. There-
fore, the optimum solution for ri is given by,

ri = max

(

1, min

(√
fi · C
γ0

, N

))

(17)

where γ0 is such that
∑T

i=1 ri = N · α proving part (ii) of
the theorem. 
�

Hence, in a sparse network, the optimal replica-
tion that minimizes the aggregate availability latency
is obtained if the number of replicas for a data item
is proportional to the square root of the frequency
of access for that data item. Cohen and Shenker [5]
proved that for unstructured peer-to-peer networks the
expected search size is minimized using a square-root
replication strategy which is shown to be optimal. The
aggregate availability latency metric in wireless mobile
ad-hoc networks is analogous to the expected search
size used in peer-to-peer networks.

It should be noted that, in general, the optimal repli-
cation depends on how δi is related to ri i.e. δi = F(ri)

and F(·) is the function that will determine the optimal
replication strategy. The above methodology can be
used to be obtain the optimal number of replicas as long
as F(·) is differentiable.

Figure 2 shows the typical trend shown by δi for a
10 × 10 torus, where ri is increased from 1 to N where
N = 100. In other words, in a G = 100 cell torus, N =
100 cars are deployed, with ri of them having a replica
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Figure 2 Sparse analysis (Eq. 6) versus simulation obtained
average availability latency for a data item as a function of its
replicas for a 10 × 10 torus, when the number of cars is set to 100

for the data item. We only consider a single data item,
a request for that item can be issued at any vehicle
chosen uniformly at random among all the cars. If the
item is stored locally, the latency is 0. This result is
independent of the storage per car because a maximum
of one copy of a given data item may be stored in a car.
Figure 2 indicates that when ri is small, (ri ≤ 20) the an-
alytical approximation in Eq. 6 is valid. Subsequently,
latency reduces at a much faster rate when compared
to that predicted by the sparse approximation. This is
because for a given G, as ri increases, the latency till any
one of the ri replicas is encountered can no longer be
modeled as the minimum of ri independent exponen-
tials. In the next section, we provide an approximation
that captures the high density case.

4.1.2 Dense scenario

In this section, we provide an analytical formulation
that captures the trends shown by the availability la-
tency in the presence of a high density of replicas.
Recall that N cars are distributed uniformly at random
across G cells, ri of the N cars carry a copy of the data
item of interest. Here, we use the traditional definition
of the expected availability latency for data item i, δi =∑∞

k=0 k · P(δi = k).
We first determine an expression for the case when

the latency is 0. This occurs if the data item is locally
stored at a client or a data item replica is located in the
same cell as the client at which the request is issued.
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Hence, the probability that the latency experienced by
a client is zero is given by the following expression:

P(δi = 0) = ri

N
+

(
1 − ri

N

)
·
(

1 −
(

1 − 1

G

)ri
)

(18)

Figure 3a indicates that the analytical expression
above matches the simulation results quite well. For a
given car density N, as the density of replicas increases,
the probability that the availability latency experienced
by a client is zero also increases. Figure 3b shows
how this probability varies with increasing car density.
Given a torus comprising G cells, increase in P(δi = 0)

shows a decreasing steepness as N increases. This is
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Figure 3 a shows the validation of the analytical expression in
Eq. 18 for the probability that availability latency is zero when
N = 50. b shows the probability that the availability latency is
zero as a function of the replicas for the data item for 5 different
car densities {50, 100, 150, 200, 250}

because with increasing N, the number of potential
clients from which a request can be issued also goes up.
Hence, a given value of ri implies a greater percentage
of the vehicles store the requested item i locally for a
smaller N as compared to a larger one. Consequently,
the corresponding P(δi = 0) is lower for a smaller N as
compared to a larger one.

We provide an approximation assuming a memory-
less mobility model without regards to the shape of the
region across which the vehicles are moving. Define,
Ak, the event that a data item i is encountered by the
client for the first time in the kth cell. This implies that
the item i was not encountered in any of the previous
k − 1 cells. Let P(Ak) denote the probability of event
Ak occurring. Note P(Ak) is a joint probability func-
tion. Let pk denote the probability of encountering data
item i in the kth cell, given that it was not encountered
in the previous k − 1 cells. Note that pk is a conditional
probability. Also, p1 = P(δi = 0) as defined by Eq. 18.
Then,

pk = 1 −
(

1 − 1

G − k + 1

)ri

; 2 ≤ k ≤ G (19)

Note that the model assumes that not encountering
the data item in the (k − 1)th cell increases the proba-
bility of encountering it in the kth cell. Moreover, when
k = G, pk = 1 no matter what the value of ri, meaning
that the maximum latency that a client will encounter
will always be <= G. Although this is true for a high
density of replicas, this approximation is not valid for a
sparse replica density where pk may not increase as k
increases especially for the first few steps of the client.

Recall, P(Ak) is a joint probability since encoun-
tering a data item for first time in the kth cell in-
dicates that it was not encountered in any of the
previous k − 1 cells. Clearly, pk and pk−1 are condi-
tional probabilities that are not independent, hence, we
use the following generalized multiplication rule to ob-
tain the value of P(Ak) as, P(En...E1) = P(En|En−1...

E1)...P(E2|E1)P(E1).
This gives P(Ak) = pk

∏k−1
j=1 (1 − pj) ; 2 ≤ k ≤ G.

Then, the average availability latency (δi) for data
item i is given by, δi = ∑G

k=1 (k − 1)P(Ak). Using this
formulation, we plot Fig. 4 which captures the trend
depicted by the average availability latency against
replica densities where the sparse and dense approxi-
mations are plotted together with the latency obtained
via simulations. However, when this approximation is
plugged into the optimization represented by Eq. 3, the
resulting numerical solution does not lend itself directly
to determining the optimal replication exponent n.
Hence, we employ simulations to obtain the optimal
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Figure 4 The complete picture depicting the availability latency
for a data item obtained via simulations as compared with its
sparse and dense approximation as a function of its replicas for
a 10 × 10 torus, when the number of cars is set to 100

replication exponent that minimizes the aggregate
availability latency.

4.2 Simulation results of data items
with display time = one

We present simulation results indicating the replication
exponent range that provides near optimal aggregate
availability latency. We also show how this latency is
affected by the different parameters in the optimization
space. In all our experiments, we assume that the var-
ious data item popularities are distributed as per the
Zipf’s law [28]. This means that the frequency of the
rth popular data item is inversely proportional to its
rank i.e.

fi =
1
iv

∑T
j=1

1
jv

; 1 <= i <= T (20)

Here, the exponent v controls the skewness in the
popularity distribution of the data items. We denote
w = −v as the skewness parameter. A higher absolute
value of w indicates that most of the popularity weight
is spread across the first few popular titles. Note that
the data item repository size is T and the denominator
is simply a normalization constant.

Figure 5 depicts the latency performance for dif-
ferent replication schemes when storage per car is in-
creased from 4 to 25 slots. The title repository size is
T = 100 and the car density is N = 50 which implies
that the total storage ST is increased from 200 to 1250
slots. As expected the latency decreases as storage
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Figure 5 Aggregate availability latency for different replication
strategies for a 10 × 10 torus when T = 100 and N = 50. Figures
a, b, and c depict three different storage values per car: {4,10,25}



Mobile Netw Appl

is increased. The replication schemes with exponent
values 0, 0.5, and 1 have been popularly studied in
the literature and are labelled random, square-root,
and linear respectively. The value of w captures the
skewness in the data item popularities, a higher value of
w indicates that most of the popularity weight is spread
across the first few popular titles. Below we describe the
main observations from this figure.

The random scheme allocates the same number of
replicas per data item irrespective of their popularity.
Hence, in all cases, it yields the same aggregate avail-
ability latency irrespective of the value of w. As the
replication exponent increases from 0 to 1 progressively
more replicas are allocated for the popular data items.
This increase in the replicas is accelerated for higher
values of w that provide a bias for the popular titles.
Hence, we see a sharp decrease in the availability la-
tency from n = 0 to n = 0.3 for w = −1.5 and w = −2.
However, the maximum number of replicas per data
item can never exceed N. For a value of w = −0.5 in
which case the popularity weight is spread more evenly
among all the data items, it almost doesn’t matter what
the replication scheme is as seen by the relatively flat
latency curves.

When storage per car is low, α = 4, this represents
a scenario with a sparse density of data item replicas.
In this case, the square-root replication scheme pro-
vides the minimum latency. Also, the range where the
replication exponent n varies from 0.4 to 0.6 shows a
latency very close to the square-root scheme. This is
true even when the data item popularities are skewed.
Moreover, the range 0.4 ≤ n ≤ 0.6 shows near optimal
latency performance even when the storage is increased
(see Fig. 5b and c). In other words, through the entire
spectrum of the replica density, a replication scheme
defined by an exponent in this range will provide near
optimal performance. For the rest of this study, we will
consider the square-root (n = 0.5) scheme as represen-
tative of this range and compare its performance to the
two extremes namely, random (n=0) and linear (n=1).
Next, we present results from a set of experiments
that are representative of the general trend observed
with respect to the relative performance of the three
replication schemes.

4.3 Variation in car density

Figures 6 and 7 presents the performance of the three
replication schemes, for popularity skewness values of
−0.5 and −2.0 respectively, as a function of the car
density when the storage per car is held constant at 3 for
T = 100. Increase in the car density increases the total
storage in the system. Hence, more replicas per data
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Figure 6 Aggregate availability latency for the three replication
schemes as a function of the car density for w = −0.5 when the
storage per car is fixed at 3, T = 100

item can be allocated resulting in an overall decrease
in the aggregate availability latency. This is true for all
replication schemes. However, here for w = −0.5 and
w = −1 (beyond N = 100), the random scheme shows
slightly better performance than the linear scheme.
This is because for low skewness parameters assigning
equal number of replicas per data item is better than
providing higher replicas for the popular data items
which do not have a sufficiently high popularity weight.
However, for higher skewness in popularity (w = −1.5
and w = −2.0), the behavior of the linear scheme starts
paying richer dividends in reducing the overall latency,
hence, it outperforms the linear scheme. In all cases, the
square-root scheme always yields the lowest aggregate
availability latency. Similar performance trends are ob-
served when the storage in the system is varied by in-
creasing the storage per car or increasing the data item
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Figure 7 Aggregate availability latency for the three replication
schemes as a function of the car density for w = −2.0 when the
storage per car is fixed at 3, T = 100

repository size keeping the other parameters constant.
To avoid redundancy, we do not present those results
here.

5 Data items with small size and short client
trip duration

The analysis and simulation results presented so far
assumed that once a request is issued at a client, it is
willing to wait as long as it takes for its request to be
satisfied. In other words, the client trip duration was
assumed to be unbounded. For the specific mobility
model under consideration, namely 2D random walk on
a torus, the maximum latency experienced by a client
is bounded [1] as long as at least one replica of every
item is present in the system at all times. However,
in more practical scenarios, the client may have a cer-

tain maximum time it is willing to wait for request
resolution. This is captured by considering a finite trip
duration, γ , for the client. The availability latency for
item i, δi, can be any value between 0 and γ − 1. If the
client’s request is not satisfied, we set δi = γ indicating
that the client’s request for item i was not satisfied.

5.1 Analysis

As before with Section 4.1, here, we derive expressions
for average availability latency of a data item as a
function of its replicas for a short client trip duration.
Below, we present approximations in the case of low
and high density of replicas.

5.1.1 Sparse approximation

Recall that latency in the case of a 2D-random walk on
a torus can be modeled as an exponential distribution
as:

P(δi > t) = λ exp (−λt) (21)

where λ = ri
c·G·log G . The average availability latency

with finite trip duration γ is then given by,

δi =
∫ γ

0
xλ exp (−λt)dx +

∫ ∞

γ

γ λ exp (−λt)dx (22)

Hence, we get

δi = c · G · log G
ri

·
[

1 − exp

( −γ · ri

c · G · log G

)]

(23)

5.1.2 Dense approximation

Recall that as defined in Section 4.1.2, Ak is the event
that a data item i is encountered by the client for the
first time in the kth cell and P(Ak) is the probability
that event Ak occurs. Also, pk is the probability of
encountering data item i in the kth cell, given that it was
not encountered in the previous k − 1 cells. Then,

pk = 1 −
(

1 − 1

G − k + 1

)ri

; 2 ≤ k ≤ γ (24)

Also, we rewrite P(Ak) incorporating the finite trip
duration constraint as, P(Ak) = pk

∏k−1
j=1 (1 − pj) ; 2 ≤

k ≤ γ . Let P(Aγ+1) denote the probability of not en-
countering the data item i during the entire trip du-
ration γ . Hence, P(Aγ+1) = ∏γ

j=1 (1 − pj) Then, the
average availability latency for data item i is given by,
δi = ∑γ+1

k=1 (k − 1)P(Ak).
Figure 8 shows that the above approximations for

low and high density of replicas matches the latency
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Figure 8 Average availability latency for a data item as a func-
tion of its replicas for a finite trip duration γ of 10. The simulation
curves are plotted along with the sparse and dense approxima-
tions for finite trip duration for a 10 × 10 torus, when the number
of cars is set to 50

obtained by simulations. In this case, the dense approxi-
mation is also valid for a low density of replicas because
the finite trip duration γ limits the maximum value of
the availability latency. For a low density of replicas in
most cases the latency will be higher than γ and hence
it will be bounded by γ . For a higher replica density, the
value of γ is not as significant since the latency for that
item will be much lower than γ .

5.2 Simulation results

Figure 9 depicts the latency performance for different
replication schemes when storage per car is increased
from 4 to 25 slots when the trip duration is set as 10.
When storage per car is low, α = 4, this represents a
constrained storage scenario. The linear scheme that
allocates more replicas to the popular data items shows
superior performance as compared to the square-root
scheme. This is because in such scenarios the replicas
per data item is small, hence, only data items having
a larger number of replicas will provide a latency less
than γ . Since the popular data items are the ones
that requested more often allocating more replicas for
these items lowers the aggregate availability latency.
Contrast this scenario with the case of unbounded trip

�Figure 9 Aggregate availability latency for different replication
strategies for a 10 × 10 torus for a finite trip duration of 10 when
T = 100 and N = 50. Figures a, b, and c depict three different
storage values per car: {4,10,25}
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duration where a square-root replication scheme al-
ways provided the minimum latency (see Fig. 5).

The optimal scheme here is a super-linear one which
allocates most of the replicas to the first few popular
items after satisfying the constraint that at least one
copy of every item must be present in the network.
For a highly skewed scenario, w = −2, allocating all the
remaining storage for the most popular item minimizes
the latency. This is because most of the popularity
weight is associated with the most popular item which
is requested very often.

As the storage per car is increased further the curves
start becoming flatter and at α = 25, see Fig. 9c, a
replication scheme characterized by an exponent in the
range, 0.3 ≤ n ≤ 1.0, shows near optimal performance.
This is because the storage is abundant enough for all
these schemes to allocate a copy of the popular data
items to every car bringing the latency for these items to
0. The difference in the replicas allocated for the lesser
popular data items has minimal effect on the aggregate
availability latency on account of their lower request
rate. Recall, the frequency of access to the data items
follows a zipf distribution that depicts a heavy-tailed
behavior.

6 Data items with large size and long client
trip duration

All the results presented so far considered a homoge-
neous repository of data items with a display time (�)
of one. In this section, we consider data items with a
higher �. In such cases, the latency encountered by a
client’s request is given by the earliest time when a con-
tiguous block of � cells containing at least one replica
of the requested item is encountered. Here, we consider
scenarios with long client trip durations and present a
curve-fit based approximation that captures the rela-
tion between the average availability latency and the
number of data item replicas. Hence, we present the
optimal replication exponent that minimizes aggregate
availability latency in the case of large data items and
long client trip durations.

Figure 10 depicts the average availability latency for
a data item with a higher display time (� = {2, 3, 4, 5})
as a function of the replicas for that item. For a given
data item replica density, the latency increases with the
display time. As expected the latency reduces with in-
crease in the replicas. A simple curve-fit on the latency
curves for all the � values yields a close-match with
the expression of the form δi = C

rσ
i

where σ represents
the exponent for a given data item display time and
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Figure 10 Average availability latency for a data item as a
function of its replicas for different data item display times for
a 10 × 10 torus. The latency is given by C

rσ
i

where the exponent σ

increases with data item display time

C is a constant that is a function of the size of the
torus. Note that the value of σ for data items with a
display time of one is one (see Eq. 6). The values of
σ increase with data item display time. This indicates
that an increase in the replicas provides a larger drop
in the latency for a data item with a higher display
time. Intuitively, encountering a replica in a contiguous
block of � cells becomes more and more difficult as
� increases. Hence, an increase in the replica density
provides a faster reduction in the latency for the higher
� items. This is captured by the increasing value of σ

with �.
The specific formulation δi = C

rσ
i

has special signifi-
cance since it can be plugged in directly into the op-
timization formulation in Section 4.1.1 to determine
the optimum replication scheme that minimizes the
availability latency in case of data items with higher
display times.

Remark In case of a sparse density of vehicles, with
a repository of data items with higher display times
(� > 1), the replication exponent n that minimizes the
aggregate availability latency is such that n < 0.5.

Following a similar procedure as the proof listed
in Theorem 1, we obtain the optimal replication ex-
ponents for the σ values capturing higher data item
display times in Fig. 10. Table 2 lists the display times
and the corresponding approximate optimal exponent
values.
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Table 2 Approximate optimal replication exponents for data
items with higher data item display times

� σ n = 1
σ+1

2 1.3414 0.4271
3 1.7007 0.3703
4 2.0848 0.3242
5 2.4843 0.287

7 Data items with large size and short client
trip duration

In this section, we consider scenarios with short client
trip durations with data items having higher display
times. This implies that the client is only willing to wait
for a short period for its request to be satisfied (denoted
by γ ). Otherwise the request is tagged with a latency
equal to γ .

As with the previous simulations, we assume that the
cars employ a 2D random walk based mobility model.
Here, we set the client trip duration, γ , as 6, N = 200,
and T = 100. We simulated a skewed distribution of
access to the T data items using a zipf distribution with
a mean of 0.27. The distribution is shown to correspond
to sale of movie theater tickets in the United States [6].

Initially, all cars are distributed across the cells of
the map as per the steady state distribution which is
determined by a random number generator initialized
with a seed. Depending on the particular replication
technique, the replicas for each data item are calculated
using Eq. 2 and then distributed across the car. A car
only contains a maximum of one replica for a particular
data item. The allocation of data item replicas across
the cars is uniform. At each step, depending on the
current car location, it moves to one of its adjoining cell
(including itself) as governed by the mobility model.
Another seed determines the choice of which cell a car
moves to. Since γ = 6, each car performs six transitions
according to the mobility model. We performed the
comparisons for several different data item distribution
seeds starting from the same initial car positions. Next,
we varied the initial car positions by changing the initial
seed. Specifically, we chose 50 different initial seeds
and for each of these we used 50 seeds that decide
the distribution of the data item replicas among the
cars. Thus, each point in all the presented results is an
average of 2500 simulations.

Below is an overview of the key lessons learned from
these experiments with higher data item display times
and a short trip duration.

(a) The optimal value of n varies as a function of
the scarcity of the network storage (b) When storage
is scarce, the optimal aggregate availability latency is

realized by using a higher value of n. (c) Even a random
scheme with n = 0 is good enough when storage is
abundant relative to the repository size.

When storage is extremely scarce, with larger data
item sizes (� > 1), linear (n = 1) scheme provides the
best performance. This is because it allocates more
replicas for the popular data items at the cost of as-
signing very few for the remaining data items. In this
case, the contribution to δagg is a function of the δ for
the more popular data items since for the less popular
data items there will be insufficient replicas to reduce
their δ. On the other hand, since the random scheme is
blind to the data item access frequencies, on an average,
it assigns equal number of replicas for each data item
thereby providing the worst performance.

The square root (n = 0.5) scheme assigns fewer
replicas for the popular data items than the linear
scheme. As we increase the amount of storage, there is
a cut-off point along the storage axis, where allocating
more replicas for the popular data items provides neg-
ligible improvement in δagg. It is beyond this point that
the square root scheme starts outperforming the linear
scheme. This is because the square root scheme can use
the extra storage savings for allocating replicas for the
less popular data items thereby reducing their δ.

To illustrate, Fig. 11 shows the variation of δagg as
a function of α for � = 4. Since δagg is a function of
the value of n, hence, here we denote it as δagg(n =
i). For Fig. 11b, the y-axis represents the percent-
age comparison of the linear (n = 1) and the random
(n = 0) schemes with respect to the square root (n =
0.5) scheme calculated as, � =

(
δagg(n=i)−δagg(n=0.5)

δagg(n=0.5)

)
×

100; where i = {0, 1}.
Figure 11b shows two distinct regions in which the

schemes with n = 0.5 and n = 1 perform well under
certain parameter settings within the design space. For
α <= 20, the linear scheme (n = 1) performs the best.
For 20 <= α <= 360, the square root scheme (n = 0.5)
performs the best. Beyond this value, even a random
scheme (n = 0) provides a competitive latency perfor-
mance.

With � = x and T = y, the value of α needed to
replicate the entire database on each car is αdb = x · y.
At a certain storage threshold (earlier than αdb ), the
random scheme assigns enough replicas to the popular
data items to bring their δ down. In this case, all the
data items have the same number of replicas, thereby
producing a low δ for every data item. Hence, from
this point onward, even a random scheme provides ad-
equate performance. However, this point requires suf-
ficient storage per car and hence a random scheme may
be appropriate only for over-provisioned scenarios. As
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Figure 11 a shows δagg of the sqrt, linear and random replication
schemes versus α for � = 4 and N = 200. b shows the percent
comparison of the linear and random schemes wrt the sqrt
scheme for this scenario. Region I and Region II, respectively,
indicate the parameter space where n = 1 and n = 0.5 perform
the best

illustrated in Fig. 11b with N = 200, T = 100, and � =
4, the storage threshold is around 360 slots per car. For
� = 5, and 6, this threshold is approximately 450 and
540, respectively. These are loose upper bounds.

8 Evaluation with a map of San Francisco

In this section, we describe the performance of the
various replication schemes when the vehicular move-

ments are dictated by an underlying map of the San
Francisco Bay Area depicting major freeways and their
intersections. We superimpose a 2D-grid on this map
and the individual cells are labelled with the respective
freeway id that they cover. This 2D-grid serves to cap-
ture the underlying map at a coarse granularity. Most
of the probability mass is concentrated on the cells
that represent the major freeways. The non-labelled
cells have equal transition probabilities to each of its
neighboring eight cells.

The outgoing transition probabilities at a cell that
represents an intersection between two freeways are
calculated as follows. As an example, consider the
intersection of the freeways 880 and 85 as shown in
Fig. 12. We obtained the traffic density seen on the free-
ways before and after the intersection from Caltrans
data provided by the California department of trans-
portation [24]. The website allowed real time gathering
of vehicle traffic data. We considered a time window
between 7–8 pm for a particular week and averaged
the vehicular density seen during this period. The day-
to-day statistics were quite similar, here, we show an
example of how the actual data was converted into the
probability transition values that formed the basis of
the Markov mobility model. Similar calculations were
employed to populate the entire transition probability
matrix. Finally, we converted the 15 × 15 grid into a
torus by allowing cars at the boundaries to appear at
the opposite ends with equal transition probabilities.

The transition matrix was used to generate the car
movements. We provide a notion of directionality to
the car movements by ensuring that the next step for a
cars movement takes into account both the current cell
as well as the previous cell which a car traversed. This
is done by storing both the cell ids as part of the state
of the Markov chain. Consequently, the flip-flop move-
ments of the cars is avoided thereby ensuring that car
movements are constrained by the underlying freeway
structure of the map and are not entirely random. We

Figure 12 The intersection between freeways 880 and 85 is
captured in the figure along with the equivalent probability
transitions in the Markov model based on data obtained from
Caltrans regarding the vehicular densities
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used these car movements to investigate the relative
performance of the various replication schemes under
such a scenario.

8.1 Results with replication schemes

In this section, we present some representative results
for the various replication schemes obtained by em-
ploying the Markov mobility model previously derived
from a map of the San Francisco Bay area. Employing
aggregate availability latency as the chief performance
metric for comparison between the linear, square-root,
and random schemes; we explored the following para-
meter space: storage per car, data item repository size,
and car density. As an example illustration, we present
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Figure 13 Performance of various replication schemes as a
function of car density when T = 25, α = 2, and γ = 10. Figure
b shows the performance wrt the linear scheme

performance results with variation in car density. As
before, requests are issued, one at a time at each time-
step at vehicles in a round-robin manner, as per a
Zipf distribution with a mean of 0.27. For data item
repository size T set as 25, client trip duration, γ , set as
10, storage per car, α, set as 2, the latency performance
with the various replication schemes is studied as a
function of increasing car density N (see Fig. 13).

In all cases, the main conclusion is that the linear
replication scheme shows superior performance as seen
in Section 5 for the case with data item size = 1 and
finite client trip duration. The trends seen with this
model are similar to those seen with a uniform Markov
mobility model with equal transition probabilities. This
is because the map for the former causes some cells to
be visited more than others, however, the movements
of the vehicles still remain essentially Markovian. This
result suggests that the uniform probability transition
matrix based Markov model may be a good indicator of
the performance that may be seen with a model derived
from real maps.

9 Evaluation with real movement traces

In this section, we evaluate the latency performance
of the static replication schemes using traces obtained
from a bus-based DTN test-bed called UMassDiesel-
Net [4]. First, we briefly describe the test-bed and
present some properties of the mobility model followed
by the buses. Then, we describe the details of the exper-
imental set-up and the results comparing the square-
root, linear, and random replication schemes under
different parameter settings using these traces.

9.1 UMassDieselNet traces

In this section, we briefly describe the details of the
UMassDieselNet test-bed and present some properties
of the mobility model that characterizes the movement
of the vehicles that are part of the test-bed. The UMass-
DieselNet network operates daily around the university
campus and the surrounding county. It comprises of 30
buses equipped with a Linux based computer coupled
with a IEEE 802.11b wireless interface that permits ad-
hoc communication between the buses when they are
in radio range. An IEEE 802.11b access point is also
connected to the brick computer that allows DHCP
access to passengers within the bus. The traces are
available for a period of 60 days, the logs describe every
encounter between every pair of buses that occurred
during the day. The identity of the buses involved in the
encounter, the time of encounter and amount of data
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Figure 14 The CDF of the time between encounters averaged
across all the traces for the UMassDieselNet data set

transmitted during the encounter are logged in the trace
files. Certain buses had long routes while others had
short ones. Unfortunately, due to technical difficulties,
the GPS device on the buses were unable to provide
details about the bus locations.

The number of buses that were active on each day
of the 60 day period during which the traces were
collected varied from as low as 6 to as high as 24. We
only consider traces where the number of active buses
was greater than 15. This accounted for 52 traces. In
general, the traces indicated a sparse density of buses
with a high degree of locality in the encounters. In other
words, if two buses encounter each other at the begin-
ning then they will continue to encounter each other
more frequently than other buses. This is captured in
Fig. 14 where we plot the CDF of the time between
consecutive encounters of the same pair of buses.

9.2 Experimental set-up

In this section, we describe the details of the simulation
set-up used for evaluation of the replication schemes
employing the UMassDieselNet traces. Each trace rep-
resents the movements of buses during that particular
day. There is no correlation between trace movements
across days. Hence, we process each trace at a time and
then average the results observed across all the days
noting that the average is indicative of the performance
seen on most days. However, certain days do appear as
outliers since the number of active buses differs from
day-to-day.

As before, we consider a finite data item repository
of size T. Each bus is assumed to carry α storage slots.
Replicas for each data item are determined based on a

replication scheme and then allocated across the buses
uniformly at random. The constraint is that at least one
copy of every data item must be present in the network
at all times. We consider the three representative repli-
cation schemes: random, square-root, and linear and
study the relative performance of the schemes.

Since the buses only operate for a finite amount
of time we consider two separate metrics (i) Average
availability latency for satisfied requests (ii) Normal-
ized unsatisfied request rate. Requests for the T ti-
tles are generated as per a Zipf distribution with an
exponent w = −0.73. The duration during which the
buses were active during a day is determined apriori
and subject to this duration, requests are issued at equal
inter-arrival times. A generated request is assigned to a
bus chosen uniformly at random. A request is assumed
to be satisfied either if the data item requested is locally
stored or another bus carrying the requested item is
encountered at some point after the request is issued.
Those requests that are not satisfied at the end of the
day are tagged as unsatisfied requests.

9.3 Results

We briefly describe the main results from evaluation
of the performance of the replication schemes using
the UMassDieselNet traces. For the first set of exper-
iments, we vary the values of (T,α) as {(5,1), (10,2),
(15,3), (20,4), (25,5)}, see Fig. 15. The linear replica-
tion scheme provides the lowest average availability
latency for satisfied requests (about 10 − 25% better
than the square-root scheme). The linear and square-
root scheme show similar performance in terms of the
normalized unsatisfied requests. The random scheme
shows poor performance both in terms of latency as
well as the normalized unsatisfied requests.

Similar results are obtained when the storage per car
is kept fixed and the size of the data item repository is
increased. The mobility model provided by the traces
represents an extremely sparse density of buses where
inherently there is a limit to the maximum amount
of time for request satisfaction (namely the last en-
counter time on the trace). The finite trip duration in
conjunction with the low density and encounter model
favors a linear scheme which allocates more replicas
for the popular data items. The popular data items are
requested more frequently and within the finite time for
request satisfaction, have a higher probability of being
satisfied on account of the larger number of replicas.
The square-root scheme tries to allocate replicas less
aggressively to the more popular data items in favor of
the less popular ones. This hurts its performance since
the less popular data items have a very low probability
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Figure 15 Aggregate availability latency for satisfied requests
and the aggregate unsatisfied request metric for the random,
square-root, and linear replication schemes are shown in a and
b respectively. The ratio of the storage per car to the data item
repository size, α

T is maintained as 1:5

of being satisfied. Notwithstandingly, in such scenarios,
a random scheme that allocates replicas equally across
the data items shows the worst performance.

We now consider an equivalent scenario with the
Markov mobility and study its properties in terms of the
time between encounters. The aim is to capture a simi-
lar scenario as depicted by the UMassDieselNet traces
(compare with Fig. 14). We consider a similar set-up
to experimental scenario described in Fig. 15. Similar
to the trends seen with the traces, Fig. 16 shows that
the linear replication scheme outperforms the square-
root and the random schemes in terms of the latency
for satisfied requests. The performance in terms of the
normalized unsatisfied requests is quite similar for the
three schemes. These results suggest that the results
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Figure 16 Aggregate availability latency for satisfied requests
and the aggregate unsatisfied request metric as obtained from
an equivalent scenario employing the Markov model. The ratio
of the storage per car to the data item repository size, α

T is
maintained as 1:5 (a, b)

obtained from the Markov mobility model may be
applicable across a vast range of scenarios comprising
different mobility models. Adequate adjustment to the
transition probabilities of the Markov model may en-
able this model to suitably capture the mobility trends
of other models such as Manhattan, Highway, Random
way-point etc.

10 Conclusions, discussion, and future
research directions

In this study, we have systematically explored how data
replication impacts the user latency to desired content
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in a vehicular network. We presented an optimization
formulation that minimizes availability latency across a
repository of data items subject to storage constraints
per vehicle. The solution to this optimization yields
the optimal replication scheme, characterized by an
exponent n that defines the number of replicas for a
data item as a function of its popularity. Using math-
ematical analysis and simulations, we showed how the
optimal replication exponent varied as a function of
the three critical factors: data item size, the client trip
duration, and the total storage in the system. While
the evaluation above was based on the assumption of
a random walk mobility model for the vehicles, we
validated a subset of our observations employing two
real data sets. The first was based on a city map with
freeway traffic information while the second employed
traces listing encounters between buses that were part
of a small test-bed.

First, while our study indicates that replication has
a significant impact on latency performance in an
AutoMata-based application, we did not directly ad-
dress how a replication scheme may be realized. This
presents a fruitful future research direction. A promis-
ing approach is to employ a two-tier architecture [8]
comprising of a low-bandwidth control plane between
the base-station and vehicles, and a high-bandwidth
data plane representing the ad-hoc, peer-to-peer net-
work between vehicles. While all the data exchange
takes place via the data plane, the control plane en-
ables centralized information gathering at a suitable
dispatcher. The dispatcher is aware of information such
as the total number of cars, the available storage per
car, the data item requests etc. On the basis of the
target replication scheme to be realized, the dispatcher
computes the total number of replicas to be maintained
for each data item. Hence, every time a request is satis-
fied, depending on the current replicas of the requested
item in the system, the dispatcher decides whether a
client vehicle should create a new copy of that item.
If such a process is followed, then after a cold-start
phase where replicas are being created and deleted,
the data item replica distribution will approximate the
targeted one. Second, this study can be extended in
terms of heterogeneity with respect to several para-
meters. The data item repository may have a mix of
different sizes, the vehicles may have different amounts
of available storage and different trip durations de-
pending on their data item request preferences, and
popularity distribution of the data items may change
over time, especially when new items are introduced in
the system. Each of these extensions adds another di-
mension in terms of practicality towards realizing such a
system.

Third, we do not explicitly address contention and
bandwidth issues within our model. Recently, Jindal
and Psounis [21] have provided a contention model that
can be easily incorporated in our study promising a
richer evaluation.

Fourth, our study is based on static replication
schemes, in that we do not explore any dynamic data
re-organization schemes that reactively or pro-actively
change the replica distribution depending on the re-
quested items. In a related study, once static replication
schemes have allocated replicas for the various data
items, vehicles are employed as data carriers [9] to
deliver data items from server vehicles carrying items
to clients requesting them. The study shows that signifi-
cant latency improvements can be obtained by employ-
ing these intermediate data carriers.

Finally, vehicular ad-hoc networks are an emerging
area and many of the results presented here may be
general enough to be applicable in a wide variety of
contexts such as in intermittently connected mobile
networks, mobile sensor networks, and other delay
tolerant networks.
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