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Abstract. We consider three distributed configuration tasks that arise in the setup and operation of multi-
hop wireless networks: partition into coordinating cliques, Hamiltonian cycle formation and conflict-free
channel allocation. We show that the probabilities of accomplishing these tasks undergo zero-one phase
transitions with respect to the transmission range of individual nodes. We model these tasks as distributed
constraint satisfaction problems (DCSPs) and show that, even though they are NP-hard in general, these
problems can be solved efficiently on average when the network is operated sufficiently far from the transi-
tion region. Phase transition analysis is shown to be a useful mechanism for quantifying the critical range of
energy and bandwidth resources needed for the scalable performance of self-configuring wireless networks.
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Introduction

With recent advances in technology, it has become feasible to consider the deployment of
large scale multi-hop wireless networks for a wide range of communication and sensing
applications [Estrin et al., 14, 15; Haas et al., 21; Perkins, 35; Toh, 42]. Distributed self-
configuration mechanisms are required to enable such networks to provide their desired
functionality.

In this paper we will examine some self-configuration problems which relate to
the formation of specialized structures on the network connectivity graph. It is well
known that many graph problems, including those that we consider in this paper, are
NP-complete [Garey and Johnson, 19]. This means that, in the worst-case, there are
problem instances that will require computational and communication resources which
increase exponentially with the size of the network.
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The most common approach, when faced with NP-hard problems, is to use algo-
rithms that are not guaranteed to result in optimal solutions, or to generate the correct
answer. These could be heuristic local search mechanisms [Michalewicz and Fogel, 33]
or approximation algorithms [Hochbaum, 24]. In this paper we will focus instead on us-
ing complete, optimal algorithms, and try to identify the special conditions under which
they can be used to solve the self-configuration problems efficiently. This methodol-
ogy is influenced by recent work from the area of constraint satisfaction in Artificial
Intelligence.

Researchers have found that there exists a critical ratio of constraints to variables
in constraint satisfaction problems such as propositional satisfiability (SAT). Randomly
generated problem instances with a ratio higher than this critical point are almost always
unsatisfiable, while instances generated with a ratio lower than this critical point are
almost always satisfiable [Cheeseman et al., 10; Mitchell et al., 34]. It has been shown
that this “phase transition” in satisfiability is analogous to that which takes places in
physical systems [Kirkpatrick and Selman, 25]. Furthermore, it turns out that the critical
point also corresponds to a peak in the average computational cost. Problem instances
which are well to the left and right of this transition are much easier to solve than those
at the critical point.

There has also been some recent work in the area of multi-hop wireless networks
suggesting the existence of similar critical points and phase transitions [Gupta and Ku-
mar, 20; Krishnamachari et al., 28, 29; Sanchez et al., 38; 46]. Consider n nodes ran-
domly placed in a given operational area. Let each node transmit with the same power,
so that there is an effective communication range R within which any pair of nodes can
communicate with each other. It has been found that there are critical communication
ranges beyond which desired global network properties can be achieved with high prob-
ability.

This paper is primarily targeted at wireless networking researchers who are look-
ing for a general methodology for implementing self-configuration and thinking about
the complexity of distributed problem solving in these kinds of systems. We map out
the connection between the critical power thresholds in wireless networks and the work
on constraint satisfaction, and show through experiments that the average problem com-
plexity can be reduced by appropriately tuning the transmission power of individual
nodes. We present results on the following three NP-hard problems that are typical of
self-configuration tasks in wireless networks:

• Partitioning the network into coordinating cliques – How does a collection of nodes
partition itself into subgroups of completely interconnected nodes? Such problems
arise in the design of sensor networks, where a collection of nodes is assigned the
joint task of tracking a particular object.

• Hamiltonian cycle formation – How does a collection of nodes devise an ordering of
links such that each node in the collection is visited exactly once? Such orderings are
important in the creation of token ring topologies.



COMPLEXITY OF DISTRIBUTED SELF-CONFIGURATION 35

• Conflict-free channel scheduling – How does a collection of nodes jointly allocate the
locally available spectrum in an efficient manner while avoiding conflicts between
neighboring transmitters? This is the traditional problem of devising a “frequency
reuse” strategy such that a given logical channel is efficiently used across a wireless
network, while no two co-channel transmitters are close enough to interfere with one
another.

Our first contribution is to formulate these tasks as distributed constraint satisfac-
tion problems. This formalism makes the problems easy to solve in a distributed manner
using off-the-shelf complete algorithms. Our second contribution is to show for each
problem that the transmission power of the individual nodes is a control parameter with
respect to which there is a zero-one phase transition in satisfiability. Finally, we es-
tablish through experiments that the computational complexity of solving the problem
(i.e. finding a satisfying solution or showing that no such solution exists) undergoes
an easy-hard-easy phase transition, with the hardest problems distributed near the crit-
ical threshold value. In order to design systems whose self-configuration problems are
under-constrained and hence easy to solve, we need to engineer sufficient resources into
the system, with “sufficiency” quantified in terms of the phase transition.

The rest of the paper is organized as follows. In section 1, we discuss the notion of
phase transitions and critical thresholds for the existence of global properties in multi-
hop wireless networks. In section 2, we provide background information on constraint
satisfaction problems. In section 3, we discuss distributed constraint satisfaction prob-
lems (DCSPs). The notion of self-configuration and the need for suitable formalisms in
wireless networks is discussed in section 4. We examine each of our self-configuration
problems in section 5, formulate them as DCSPs, and present results on their complexity.
Concluding comments are presented in section 6.

1. Phase transitions in wireless networks

Let us consider a wireless network of n nodes. We place these nodes randomly in a
square area with a uniform, independent distribution. We use a reasonable first-order
model for communication: any pair of nodes within a radius R can communicate with
each other. Note the requirement that all nodes have the same communication radius
is not restrictive, since this is in fact necessary for ensuring symmetric links within the
network.

Figure 1 shows what happens as we increase the parameter R, for a particular con-
figuration of n = 10 nodes. As expected, we see that the network graph becomes denser
as the communication radius is increased. When the value of R is small, the network is
quite sparse and does not form a single connected component. At the same time, one
can see that this sparse network will exhibit low levels of interference. When the R is
sufficiently high, we can get a complete network graph in which each node can commu-
nicate with (and at the same time interefere with) every other node. At some in-between
value of R, the network becomes connected, allowing for a multi-hop path between each
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Figure 1. Fixed radius random graphs.

Figure 2. Phase transitions in probability of connectivity in fixed radius ad-hoc wireless networks.

pair of nodes. If we repeat this experiment, locating the nodes at random, we will get
another value for the radius R at which the network became connected. For any value
of R, based on this prescribed random experiment, we can evaluate the probability that
the generated network is connected. It turns out that this probability transitions from
nearly zero to nearly one over a small range of R values, with the transition becoming
sharper with the size of the the network. This is shown in figure 2.
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This phenomenon has been studied analytically by Kumar et al. [Gupta and Kumar,
20; 46]. Gupta and Kumar show in [Gupta and Kumar, 20] that if n nodes are placed
uniformly and independently in a disc of unit area in R

2, and each node transmits at a
power level so as to cover an area of πR2 = (log n + c(n))/n, then the network is
connected with probability asymptotically tending to one if and only if c(n) → ∞. Xue
and Kumar [46] show that for n nodes placed uniformly iid in a unit square, the network
is connected with high probability when each node is connected to �(logn) neighbors.
These results have relied primarily on the theory of continuum percolation [Meester and
Roy, 32].

Another subject that is useful in generalizing the notion of critical thresholds
to other network properties besides connectivity is the theory of random graphs
[Bollobás, 6]. Most of the work in this area has been done on Bernoulli random graphs,
which are somewhat similar to the random graphs G(n,R) that we have been using to
represent wireless networks. In these graphs G(n, p) we have n nodes, and there is a
Bernoulli parameter p which is the independent probability of having an edge between
each pair of nodes.

To quote Bollobás:

“one of the main aims of the theory of random graphs is to determine when a given
[graph] property is likely to appear . . . Erdös and Rényi were the first to show that
most monotone properties appear rather suddenly. In rather vague terms, a threshold
function is a critical time, before which the property is unlikely and after which it is
likely” [Bollobás, 6].

In 1996, Friedgut and Kalai proved that in fact every monotone graph property
undergoes a sharp transition [Friedgut and Kalai, 17]. Let µp(A) be the probability that
a monotone property A is satisfied by G(n, p), and c1 a universal constant, then the
following is their result:

Theorem 1. If µp(A) > ε, then µq(A) > 1 − ε for all q > p + c1 log(1/2ε)/ log n.

In [Krishnamachari et al., 28, 29] we have presented empirical evidence suggesting
that properties which show phase transitions in G(n, p) also show phase transitions in
the random graphs G(n,R) which represent wireless networks. From a networking
perspective many of these properties are very important.

Phase transition analysis gives us a tool for analyzing and determining resource-
efficient regimes of operation for wireless networks, with respect to a given global prop-
erty. For example, if the global property is that of connectivity, figure 2 tells us that for
a uniformly distributed network with a density of 100 nodes per unit area, the transmis-
sion power must be such that the effective communication range is more than 0.25 units
(or, equivalently, that each node should have about π(0.25)299 � 20 neighboring nodes,
ignoring edge effects). This density threshold is an energy-efficient point of operation,
in that to the left of this threshold the network is disconnected with high probability,
and to the right of this threshold, additional energy expenditure results in a negligible



38 KRISHNAMACHARI ET AL.

increase in the high probability of connectivity. The same is true for the phase transi-
tions for other properties like k-connectivity, k-neighborhood, Hamiltonian cycle forma-
tion, and partition into cliques. Of course, it must be kept in mind that increasing the
communication range not only makes the network graph denser, but also increases the
level of interference in the network. As we shall see, this increased level of interference
can make it difficult to allocate non-interfering channels to nearby nodes; the property
of conflict-free channel assignment shows a reverse “one-zero” phase transition with
respect to interference level. It is also important to analyze the intersection of thresh-
olds for such conflicting properties as network connectivity and conflict-free channel
allocation because this determines the feasible region of operation for a given wireless
network.

In this paper, we offer yet another reason for examining such phase transitions
– they also tell us about the operating conditions under which the computational and
communication costs of distributed problem solving can be reduced. This brings us to
the related work in the area of constraint satisfaction.

2. Constraint satisfaction problems

Constraint satisfaction is a formalism that has been used to model a large class of prob-
lems with applications in engineering design, planning, scheduling, resource allocation,
and fault diagnosis [Dechter and Frost, 12]. A constraint satisfaction problem (CSP) is
easy to understand. There are a number of variables, each of which has an associated
domain of values. Constraints are specified on subsets of these variables restricting the
set of values they can take on jointly. The objective of a CSP is to find out if each of these
variables can be assigned a value from its domain in such a way that all the constraints
are satisfied. It is helpful to consider the difference between a CSP and a constrained
optimization problem (COP): while in a COP one wishes to find the lowest cost point in
the search space which satisfies all constraints, in a CSP it suffices to find a single point
in the search space which satisfies all constraints. A CSP is said to be satisfiable if there
exists such a point, and unsatisfiable otherwise.

As an illustration, we briefly describe the original NP-complete problem – propo-
sitional satisfiability (SAT), which is a special kind of CSP [Garey and Johnson, 19].
Let X = {x1, x2, . . . , xn} be a set of Boolean variables. Each variable xi and its nega-
tion ¬xi constitute literals. A clause is a disjunction (OR) of one or more literals (e.g.,
(x1 ∨ ¬x2)) and is said to be satisfiable if there exists some truth assignment of 0/1
values to all variables such that at least one of its literals evaluates to true under that
assignment. Two special cases are the unit clause, represented (l), that contains only
one literal, and the empty clause, represented (✷), which contains no literals and is by
definition unsatisfiable. A conjunctive normal form (CNF) formula over X consists of
the conjunction (AND) of a number of clauses, and is said to be satisfiable if there exists
some truth assignment to the variables in X such that all the clauses are satisfied. An in-
stance of SAT consists of a CNF formula �, and the goal is to determine if there exists a
satisfying truth assignment for �. For example, the formula � = (x1 ∨¬x2)∧ (¬x1 ∨x2)
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is satisfied by setting both x1 and x2 to 1; the formula (x1)∧ (¬x1) is unsatisfiable since
only one of the clauses can be satisfied by setting x1 to either 0 or 1. Note that the
clauses in CNF formulae represent constraints on the Boolean variables. k-SAT refers to
a special case of SAT in which all clauses have exactly k literals.

In the early 90’s, researchers in Artificial Intelligence found empirically that for
many CSPs including SAT, as the ratio of constraints to variables is increased, the frac-
tion of (randomly generated) instances that are satisfiable undergoes a one to zero phase
transition [Cheeseman et al., 10; Kirkpatrick and Selman, 25; Mitchell et al., 34]. Fur-
ther, they found that the computational cost of determining whether or not an instance
is satisfiable shows an easy-hard-easy pattern, with the complexity peaking in the phase
transition region. Such an empirical result for randomly generated 3-SAT problems is
shown in figure 3. The plot illustrates that it is easy to solve CSPs when they are under-
constrained, and easy to show that they have no solution when they are over-constrained.
The hardest instances lie in the critically-constrained phase transition region.

In recent years, a number of analytical results have been developed to support these
empirical findings. In 1999, Friedgut showed that for k-SAT, there exists a constant ck
such that all formulas with at most (1 − ε)ckn clauses are satisfiable with high proba-
bility (i.e. with probability tending to one as n approaches infinity) and formulas with
at least (1 + ε)ckn clauses are unsatisfiable with high probability [Friedgut, 16]. Par-
ticular attention has been focused on 3-SAT, for which empirical evidence suggests that
the c3 ≈ 4.24 (see figure 3): it has been shown analytically that 3.145 ≤ c3 ≤ 4.506
[Achlioptas, 1; Dubois et al., 13]. Analytical results on the complexity profile have been
harder to obtain. It is known that 3-SAT remains NP-complete even if the instances are
restricted to ratios between 1/3 and 7(n2 − 3n + 2). In terms of the average complex-
ity, however, Frieze and Suen [18] have shown that there exists a polynomial heuristic
which can find satisfying solutions with high probability for instances with the ratio less
than 3.003, and on the other side of the phase transition, Beame et al. [3] have shown
that one can prove unsatisfiability in polynomial time with high probability if the ratio
is more than n/ log n. A first-order algorithm-independent analysis of the deep structure
of constraint satisfaction problems by Williams and Hogg shows that indeed the aver-
age computational cost should be expected to peak near the phase transition threshold
[Williams and Hogg, 44].

2.1. A complete algorithm for satisfiability

Complete algorithms are frequently used to study the complexity of CSPs. An CSP
algorithm is complete if it provides a satisfying solution whenever the CSP has one, or
else determines that the problem is unsatisfiable. DLL is a complete algorithm that is
frequently used for solving SAT problems [Davis et al., 11]. It is based on the use of the
following two rules:

• Unit-propagation rule: Given a CNF formula � containing a unit clause {l}:
1. Remove all clauses containing the literal l. When all the clauses from a formula

are removed through application of this rule and the empty formula ∅ is gener-
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Figure 3. Phase transitions in the fraction of satisfiable problems and the average complexity for 3-SAT
with 40 variables using a complete algorithm.

ated, all the clauses have been satisfied, and we have a solution to the original
expression.

2. Delete all occurrences of the complementary literal ¬l in clauses of the formula
(by the rule of the excluded middle, the complementary literal cannot be satisfied).
This portion of the unit-propagation rule can produce new unit clauses, since we
may delete a literal from a clause with two literals. The unit-propagation rule
should be applied again with the new unit clauses.

• Branching rule: Reduce the problem of determining whether a CNF formula � is
satisfiable to the problem of determining whether � ∪ {l′} is satisfiable or � ∪ {¬l′}
is satisfiable, where l′ is a literal occurring in �.

The unit-propagation rule can be seen as a simplification rule, while the branching
rule is a splitting rule that divides the problem into two subproblems. DLL returns true
if the input CNF formula � is satisfiable, and false when the formula is unsatisfiable.
First, it repeatedly applies the unit-propagation rule, until there are no more unit clauses,
resulting in a simplified formula �′. It then selects a literal l′ of �′, applies the branching
rule and recursively solves the problem of deciding whether �′ ∪ {l′} is satisfiable or
�′ ∪ {¬l′} is satisfiable. As such subproblems contain a unit clause, the unit-propagation
rule can be applied again. DLL terminates either when some subproblem is shown to be
satisfiable by obtaining the empty CNF formula or when all the subproblems are shown
to be unsatisfiable by deriving the empty clause (✷) in all of them. The empty clause is
derived when the unit-propagation rule deletes the unique literal of a unit clause.

The application of the branching rule can be interpreted as the construction of a
search tree. Although the DLL algorithm only works for the SAT problem, there exist
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similar complete search algorithms that work for more general CSPs [Dechter and Frost,
12]. Other alternatives to complete algorithms are stochastic local search algorithms
that obtain the solution through a series of local, randomized, moves through the search
space [Selman et al., 40]. Local search algorithms are often faster at solving satisfiable
instances, but cannot detect if a problem has no solution, and are not always guaranteed
to find the solution even if one does exist.

3. Distributed Constraint Satisfaction Problems (DCSPs)

DCSPs extend the constraint satisfaction formalism to the framework of distributed prob-
lem solving [Yokoo et al., 47]. They provide a good formalism for modelling and reason-
ing about constraint satisfaction problems that are per se of a distributed nature, where
there is no easy or practical way to solve them in a centralized manner. In a DCSP, there
is a set of n agents A = {1, 2, . . . , n}. Each agent has its own variables with associ-
ated domains. There are intra-agent constraints between the variables of each individual
agent, and inter-agent constraints between the variables of different agents. A satisfying
solution to the DCSP is an instantiation of values to the variables of each agent such that
every intra and inter-agent constraint is satisfied.

To satisfy the inter-agent constraints in a DCSP, agents need to use some com-
munication mechanism for exchanging the values of their variables with other agents.
Therefore in DCSPs, a communication cost is added to the computational effort as-
sociated with a centralized CSP. In the realm of multi-hop network design, this is an
important consideration as each communicated message incurs some radio energy cost.
One measure of the communication complexity for a DCSP is the total number of mes-
sages exchanged by the agents in order to solve the problem or to detect that no solution
exists. Very often the communication complexity is proportional to the computational
complexity, which can be measured by the time required to solve a problem instance.

Figure 4 gives an example of a satisfiable DCSP (one that has at least one solution).
This DCSP consists of three agents, with one binary variable for each agent. The inter-

Figure 4. Satisfiable DCSP.



42 KRISHNAMACHARI ET AL.

Figure 5. Unsatisfiable DCSP.

agent constraints are represented in the figure as edges with a binary relation symbol.
The relation symbol specifies the relation that must hold between the variables of the
two connected agents. A possible solution for this DCSP is for all agents to set the same
value (0 or 1) to their variables. Figure 5 gives an example of an unsatisfiable DCSP.
There is no possible solution for this DCSP, because the fact that x1 = x2 and x1 = x3

must be true implies that x2 = x3 should also be true, which would violate the inter-agent
constraint between agents 2 and 3.

3.1. Complete algorithms for solving DCSP

A number of complete algorithms have been developed for solving DCSPs, such as
the asynchronous backtracking algorithm (ABT), the asynchronous weak commitment
search (AWC), and the distributed backtracking algorithm (DIBT) [Hamadi et al., 23;
Yokoo et al., 47]. Basically these algorithms generalize centralized backtracking search
to the distributed setting. Because we are working in an asynchronous environment (we
assume no central control in a flat, multi-hop network) the agents decide for themselves
when to change the values assigned to their variables. At the beginning, all the agents
choose a value for all their variables such that their intra-agent constraints are satisfied
(they can achieve this using any existing centralized CSP algorithm). Before the search
can proceed, it is necessary to assign a unique identifier number to every agent. This
identifier is used to establish a priority order between agents, such that one agent has a
greater priority than other if its identifier is smaller. Given an inter-agent constraint, one
between two agents, the higher priority agent may change the values of those variables
in the constraint that belong to him. It must inform the other agent about any change
to the variables by sending an information message. When the other agent receives the
information message, it must try to find an assignment to its own variables such that
all the inter-agent constraints that it has with higher priority agents, and its own intra-
agent constraints, are satisfied. If it changes the value of some of its variables, it will
send information messages to all lower priority agents with whom it has inter-agent
constraints. However, if it is unable to change the values of its variables, it will send
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a backtracking message to the lowest priority agent among all its higher priority agents
that have an unsatisfied inter-agent constraint. This message tells the higher priority
agent that it must try to find a different value for the variable that is causing a conflict
with the lower priority agent, because the latter cannot do anything to resolve the conflict.

To ensure completeness, the algorithms must never revisit any previously consid-
ered “bad” solution, and never fail to explore a potentially good solution. For example,
agents in ABT record nogoods, each of which may correspond to several inconsistent
assignments.

To a first approximation the complexity of a DCSP solver is proportional to the
complexity of a CSP solver. Studying the computational complexity of a CSP using a
centralized algorithm provides a strong indication of the communication and computa-
tional complexity of a distributed version of the same problem. We will make use of
this relation in presenting our results on the complexity of DCSPs that arise in wireless
networks.

4. Self-configuration in wireless networks

Multi-hop wireless networks for communication and sensing are characterized by a lack
of centralized pre-configured infrastructure. This is chiefly due to the ad hoc and possi-
bly unattended nature of their deployment, as well as the requirement of scalable perfor-
mance. Under such conditions, it is necessary for the wireless nodes to first collaborate
with each other and self-configure themselves into a functioning network before they can
perform their principal information routing and dissemination tasks.

The recent literature has pointed out the importance of developing self-configura-
tion protocols for this space of networking applications [Estrin et al., 15; Haas et al.,
21]. For example consider the treatment of node localization as an adaptive distributed
self-configuration problem in [Bulusu et al., 7] and the set of self-organizing algorithms
for configuring and maintaining a multi-hop wireless network described in [Sohrabi et
al., 41].

One of the standing challenges in this domain has been to come up with suitable
general, unifying formalisms for distributed self-configuration. Such formalisms would
(a) simplify the efficient implementation of self-configuration protocols and (b) provide
a systematic mechanism for studying complexity issues and identifying relevant tuning
parameters.

We argue in this paper that one such unifying formalism is the notion of distributed
constraint satisfaction. We will show in the next section that a number of distinct self-
organization tasks in multi-hop networks can be mapped to this formalism, enabling
the use of off-the-shelf complete distributed solvers. More importantly, these mappings
enable us to leverage results from the area of constraint satisfaction in order to determine
parameters which impact the efficiency of problem solving. We shall see that there are
tunable individual node-level parameters that can have a critical impact on the solvability
and complexity of such tasks in multi-hop wireless networks.
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5. Distributed constraint satisfaction in wireless networks

We now consider three specific problems in distributed wireless networks: the parti-
tioning of nodes into coordinating cliques, the formation of Hamiltonian cycles, and
conflict-free channel scheduling. These problems are all known to be NP-hard, so unless
P = NP, we expect the communication and computational complexity in these problems
to be exponential in the worst case. A clear understanding of the complexity of these
tasks is important if we wish to incorporate the tasks into self-configuring multi-hop
wireless networks.

In this section we formalize these tasks as distributed constraint-satisfaction prob-
lems and show that they each have a “complexity-tuning” parameter over whose range
they exhibit a 0–1 phase-transition in the probability of being satisfiable, and a corre-
sponding easy-hard-easy profile in average case complexity. Most interesting from the
view-point of application is the fact that in each case we can move the system into the
easy and satisfiable portion of the transition curves by adding resources (in the form of
additional bandwidth or energy). This is the region under which the communication and
computation complexity is the lowest and the distributed problem solving task can be
performed most efficiently.

5.1. Partition into coordinating cliques

In wireless sensor network, sensing or other tasks may need to be distributed among the
various nodes organized together as coordinating groups. One such example is in the
task of monitoring the environment for a pre-specified phenomenon. If several nodes
are selected to perform this task together, it may be desirable that these nodes form a
communication clique. In other words, any node in the coordinating group should be
able to communicate directly over the wireless link with any other. For example, such
a situation arises in the sensor tracking where it is required that a number of nodes
participate and coordinate their actions jointly in order to track mobile nodes [Bejar et
al., 4]. The partitioning of nodes into such cliques has other applications in multi-hop
wireless networks, such as cluster formation [Cano and Manzoni, 8] and geography-
informed routing [Xu et al., 45].

Let us consider this problem further. Given n = qk wireless nodes, each with a
transmitting radius R forming the network graph G = G(V,E), the objective is to parti-
tion the graph into q communicating cliques of size k each. This can be formulated as a
DCSP as shown in table 1. Each node has an associated agent which has k− 1 variables
{xi,1, . . . , xi,k−1} which can each take on values from 1 to n. The variable xi,l represents
the lth of node i’s neighbors in the clique it will be part of. The DCSP formulation al-
lows us to represent a global problem in terms of local variables and constraints. When
each of these variables is assigned a value that satisfies all constraints, each node will
have a local representation of the coordinating clique to which it belongs. If the DCSP
is unsatisfiable, the network cannot be partitioned into distinct cliques of size k.

Figure 6 shows an unsatisfiable instance of this problem on a sparse network con-
sisting of nine nodes which is to be partitioned into three coordinating cliques of size
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Table 1
DSCP formulation for partitioning network into coordinating cliques.

Agent i Node i

Variables of agent i xi,l , l = 1, 2, . . . , k − 1

Domain of variable xi,l {1, . . . , n}
Intra-agent constraints 1. (Only neighbors in clique) xi,l = j ⇐⇒ (i, j) ∈ E, i �= j

2. (Uniqueness) ∀l �= l′, xi,l �= xi,l′
Inter-agent constraints (Symmetry) ∀(i, j) ∈ E,∃l s.t. xi,l = j

⇐⇒ ∃l′ s.t. xj,l′ = i AND ∀(m �= l), ∃m′ s.t. xi,m = xj,m′

Figure 6. Unsatisfiable partition into coordinating cliques with small transmission radius (n = 9, k = 3,
R = 0.40).

three each. This instance is clearly unsatisfiable because node 6 has only one neigh-
bor and hence cannot communicate/coordinate with two other nodes. If we increase the
transmission radius of each node, we get a denser network graph as shown in figure 7.
This graph represents a satisfiable instance of the problem. The dashed edges represent
one possible partition of the graph into three 3-cliques. Also shown in the figure is the
corresponding, satisfiable, value assignment to the variables of each node agent.

The problem of partitioning a graph into isomorphic subgraphs is known to be
NP-hard for any connected subgraph with more than 3 nodes [Garey and Johnson, 19].
For a given set of nodes positioned arbitrarily, the difficulty of obtaining a partition in
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Figure 7. Satisfiable partition into coordinating cliques with large transmission radius (n = 7, k = 3,
R = 0.55).

this problem is dependent on the density of the network graph, which in turn is affected
directly by the transmission radii of the nodes. Figure 8 shows the phase transitions in
both probability of partition and the average complexity profile for this problem based
on 100 problem instances (n = 9, k = 3) for each value of the transmission radius R
ranging from 0 to

√
2. The solutions were computed using a Regular-SAT centralized

backtracking solver [Bejar et al., 5]. It can be seen that there is a critical transmission
power level above which the problem has a satisfying solution with high probability
and below which there is rarely a satisfying solution. The computational complexity is
seen to peak near the phase transition region. If we operate the network sufficiently to
the right of the phase transition, the average computational cost for this problem can be
significantly reduced.

We now turn to our second sample problem.

5.2. Distributed Hamiltonian cycle formation

Consider the following task in a wireless sensor network: a set of nodes that form a
connected network component wish to form a Hamiltonian cycle in a distributed man-
ner. Recall that in a Hamiltonian cycle, each node in the graph is visited exactly once.
The formation of such a cycle is useful, for example, when forming a token ring in the
network, and also forms the basis of some other distributed algorithms such as leader
selection [Lynch, 31]. Another application is in optimal one-to-one broadcasting where
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Figure 8. Phase transitions in the fraction of satisfiable problems and the average complexity for the problem
of partitioning a network into coordinating cliques using a complete search algorithm with a simple pruning

heuristic.

Table 2
DSCP formulation for Hamiltonian cycle formation.

Agent i Node i

Variables of agent i FROMi , TOi , and HOPCOUNTi
Domain of variables 1. FROMi : {1, . . . , n}

2. TOi : {1, . . . , n}
3. HOPCOUNTi : {0, . . . , n− 1}

Intra-agent constraints 1. (Origin) HOPCOUNT1 = 0
2. (Uniqueness) TOi �= FROMi

Inter-agent constraints 1. (Link from Neighbor) FROMi = j ⇐⇒ (i, j) ∈ E, i �= j

2. (Link to Neighbor) TOi = j ⇐⇒ (i, j) ∈ E, i �= j

3. (Symmetry) FROMi = j ⇐⇒ TOj = i

4. (Increment) HOPCOUNTi = (HOPCOUNTj + 1)mod n

nodes only send messages to one of their neighbors [Seddigh et al., 39]. If a Hamiltonian
cycle is established, any node in a one-to-one network can send a broadcast message to
all the nodes in the network in sequential order, with a minimal number of data packets,
and even get an acknowledgement of the successful receipt of the message by all nodes.

We can represent the problem of forming a Hamiltonian cycle as a DCSP as shown
in table 2. Again, we associate a distinct agent with each node. Each agent has three vari-
ables FROMi , TOi and HOPCOUNTi . The first two variables help track the preceding
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and succeeding nodes in the cycle, while the HOPCOUNT variable is used to provide a
sequence number from the origin. The intra and inter-agent constraints guarantee con-
sistency in the assignment of these variables. Once it is thus specified, a complete DCSP
algorithm can be used to solve this problem in a distributed manner. When all the agents’
variables are given satisfying assignments, they have an internal, localized representa-
tion of the global Hamiltonian cycle structure. If an instance is found to be unsatisfiable,
then no Hamiltonian cycle exists in the network.

Figure 9 shows an unsatisfiable instance of this problem on a small, sparse network
graph which contains no Hamiltonian cycles. No assignment of values to the variables
of nodes 1, 6, and 7 will satisfy their respective intra-agent constraints, since they each
have only one neighbor. Figure 10, on the other hand, shows a satisfiable instance of this
problem on a denser network with a higher transmission radius. A particular solution
is indicated in this figure using dashed lines, along with the corresponding constraint-
satisfying values to the variables of each node agent.

Figure 11 shows that phase transitions occur in the existence of Hamiltonian cycles
in wireless networks as the transmission radius R is increased. The average complexity
profile is shown in figure 12 for a network with n = 100 nodes, with a 100 instances
tested at each value of R. A specialized HCP-solver written by Vandegriend is used to
generate this profile [Vandegriend, 43]. The profile shows the characteristic easy-hard-
easy profile and confirms that Hamiltonian cycles can be determined efficiently if the
network is operating well to the right of the transition region.

Figure 9. Unsatisfiable Hamiltonian cycle formation with small transmission radius (n = 7, R = 0.40).
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Figure 10. Satisfiable Hamiltonian cycle formation with a larger transmission radius (n = 7, R = 0.55).

Again, the graph density at which the phase transition occurs in this problem corre-
sponds to a critical amount of per-node energy consumption. When sufficient energy re-
sources are provided to the system, we see that the problem enters the under-constrained
regime where a solution exists with high probability and the solution complexity is low.

5.3. Conflict-free channel scheduling

We now turn to a third and final problem that once again reflects the impact of transmis-
sion power on self-configuration: conflict free channel scheduling. One of the primary
advantages of having limited-power wireless nodes is that they can be assigned time or
frequency channels that can be spatially reused. Nodes that are sufficiently far away
from each other can be assigned the same channel. Depending on whether the wireless
nodes act as base-stations or as multi-hop relays, this problem becomes essentially a
graph coloring problem with a one-hop or two-hop coloring constraint. We assume that
links in the network graph now represent the interference between nodes. In the case
of nodes acting as base-stations, the problem is referred to as channel allocation or fre-
quency assignment, and the goal is to ensure that no nodes within one hop of each other
may share the same channel [Cao and Singhal, 9; Hale, 22]. In the case of multi-hop
wireless networks, this problem is known as broadcast scheduling, and the goal is to
assign channels to nodes while ensuring that no nodes within two hops of each other
share the same channel [Bao and Garcia-Luna-Aceves, 2, Pond and Li, 36; Lloyd, 30;
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Figure 11. Phase transition in the fraction of satisfiable problems for Hamiltonian cycle formation
(n = 20, 60, 100).

Ramaswami and Parhi, 37]. The two-hop constraint is required to avoid the hidden node
terminal problem whereby an intermediate node experiences collisions due to simulta-
neous broadcasts from two distinct neighbors. In both cases the problem is known to be
NP-complete based on a reduction from the graph coloring problem.

Let us begin with a graph H = H(V,E) in which links represents the coloring
constraints between nodes. In the case of the one-hop constraint problem, this graph
is the same as the communication graph of the network G(n,R). Even the two-hop
constraint problem can be reduced to this model by placing edges between nodes that
are two hops away in the original communication graph G. Now, let each node i in
the network have a specified traffic demand for ti channels. Let C be the total number
of channels available in the network. Note that if the total bandwidth is kept constant
then increasing C reduces the throughput available in each channel, whereas if the per-
channel throughput is kept constant, then increasing C increases the bandwidth required.
The goal is now to find an assignment of ti distinct channels for each node i such that
no two neighboring nodes i and j share the same channel. This can be formulated as a
DCSP as seen in table 3.

Associate an agent with each node, with ti multi-valued variables {xi,1, . . . , xi,ti }
for each agent i, corresponding to the allocated channels. These variables can take on
values from 1 to C. The intra-agent constraint here is that each of the variables within
an agent must take on distinct values. The inter-agent constraints take the form that if
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Figure 12. The average complexity profile for forming a Hamiltonian cycle using a complete search algo-
rithm (n = 100).

Table 3
DSCP formulation for conflict-free channel allocation.

Agent i Node i

Variables of agent i xi,l , l = {1, . . . , ti}
Domain of variable xi,l (1, . . . , C)
Intra-agent constraints (Uniqueness) ∀l �= l′, xi,l �= xi,l′
Inter-agent constraints (Interference Constraint) (i, j) ∈ E, i �= j �⇒ ∀(l, l′), xi,l �= xj,l′

there are two neighboring (interfering) nodes i and j , their variables must not take on
the same values.

Formulated as a DCSP, this problem can be solved using one of the distributed
backtracking algorithms described in the previous section. Although the communication
and computational costs involved can be exponential in the number of nodes in the worst
case, as we have discussed before, the average complexity can be within tolerable limits
provided the system as a whole is under-constrained.

Figure 13 shows a satisfiable instance of this problem on a small, sparse graph.
Variable assignments that satisfy all constraints are indicated in the figure. Figure 14, on
the other hand, is an unsatisfiable instance of this problem on a dense graph. Since there
are only three channels available, and the nodes 2, 3, 4, and 5 form a clique of size 4,
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Figure 13. Satisfiable channel scheduling with small transmission radius (n = 7, C = 3, R = 0.40).

Figure 14. Unsatisfiable channel scheduling with a larger transmission radius (n = 7, C = 3, R = 0.55).
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Figure 15. Phase transitions in the fraction of satisfiable problems for the channel scheduling problem
(n = 25).

it is not possible for them to assign values to their respective variables without violating
inter-agent constraints. For both the one-hop and two-hop formulations, the density of
the constraint graph H is controlled by the transmission range R.

Thus for a given traffic level per node, there are two parameters that affect the
problem complexity and satisfiability: the transmission radius R, and the total number
of channels available C. To study this problem, we implemented the asynchronous back-
tracking (ABT) algorithm, which is a DCSP solver, along with an event-driven network
simulator package. We present illustrative results for the one-hop constraint formulation
of this problem, with ti = 1 for all n = 25 nodes. A total of 15 random instances are
generated and tested at each value of the transmission range R. As figure 15 shows,
there is a one-zero phase transition in the probability that C channels suffice to perform
channel scheduling. When the number of channels available is increased, the phase tran-
sition threshold moves to the right, allowing for denser networks. This is intuitive, for
adding bandwidth resources to this system makes it easier to provide a non-conflicting
schedule to the nodes.

It should be noted that the transitions for channel scheduling are in reverse, when
compared with the phase transitions we examined for the clique-partition and the Hamil-
tonian cycle formation problems. Increasing the transmission range had a positive ef-
fect for the previous tasks as it increases connectivity, but a negative effect on channel
scheduling as it increases the level of interference within the network.
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Figure 16. The average complexity profile for channel scheduling using the distributed ABT algorithm
(n = 25, C = 5).

Figure 16 shows the average computational complexity profile obtained using the
ABT distributed algorithm. As with the other constraint satisfaction problems, here too
we find that the phase transition region coincides with a peak in the average complexity.
For this problem, the way to simplify solution-complexity is to operate well to the left
of the phase transition region, where the instances are satisfiable with high probability
and efficiently solvable.

5.4. Comments

A couple of comments about the results we have presented in this section are in order.
The first concerns the fact that our results on average complexity are all obtained through
simulation experiments. The second has to do with the fact that although the distributed
constraint satisfaction methodology and algorithms are particularly relevant for larger
networks, we have considered only small and moderate-sized networks (less than 100
nodes) in our experiments.

It is possible to prove some bounds on the location of the phase transition thresh-
olds in wireless networks and the reader is encouraged to look at [Krishnamachari et al.,
26, 28] for some relevant analytical results. However, the focus of this paper has been on
the average complexity of distributed problem solving. As we pointed out in section 2,
obtaining theoretical results on the average complexity profile of constraint satisfaction
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problems is in general very difficult and indeed there are very few related analytical re-
sults in the literature. The general methodology for research in this direction has been
to perform statistical experiments, as for example in [Mitchell et al., 34]. This is the
approach we have used in this paper.

In this section we have shown results for a network with 100 nodes for the Hamil-
tonian cycle problem, and for the channel allocation problem we have used a distrib-
uted algorithm on a network with 25 nodes. The reason we have not investigated
larger networks has to do with computational restrictions: the problems investigated
are NP-complete. The point of the study is precisely to show that if the network is not
tuned properly (to operate on the correct side of the phase transition threshold), the self-
configuration problems may not be solved easily. Hence we have had to present results
even for configurations that are hard (i.e. near the phase transition region), where the
algorithms may take exponentially long times to solve. The reader should also note the
computational overhead due to the need to average statistical results from multiple runs
for each configuration in our study. The conclusions from these experiments are still
useful for larger networks. The simulation results show that one can observe the easy-
hard-easy computational profiles even with these relatively moderate-sized networks.
These profiles only become more pronounced as the size of the network increases.

6. Conclusions

In this paper, we have examined three self-configuration tasks in wireless networks:
partition into coordinating cliques, formation of Hamiltonian cycles, and conflict-free
channel scheduling. In particular, we explored the impact of varying the transmission
radius on the solvability and complexity of these problems.

In the case of the first two tasks, partition into cliques and Hamiltonian cycle for-
mation, we saw that the probability that these tasks can be performed undergoes a tran-
sition from zero to one. When the transmission range is past the phase transition region,
almost every network graph generated by the random location of nodes satisfies the de-
sired global property. Before this region, the desired property is rarely satisfied. As
we discussed in section 1, these phenomena are closely related to phase transitions in
Bernoulli random graphs. In these cases, the critical transmission range corresponds to
an energy-efficient operating point.

However, in the third task – conflict-free channel scheduling, we found that the
transition occurs in reverse; there is a critical transmission range below which almost all
network graphs generated by the random location of nodes can be allocated the available
number of channels, and beyond which the desired property is rarely satisfied. We also
showed that adding bandwidth resources by using more channels shifts the transition
curves to the right, allowing for denser networks.

Our study suggests that the transmission range for nodes should be chosen by
considering the intersection of thresholds for the various properties involved. Such
a methodology would yield the critical range of resources required for feasible oper-
ation of a self-configuring network.
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In wireless networks where there is need for scalability and there is no central
processor responsible for the configuration of the network, there is a need for localized
and distributed algorithms. We showed how each of the self-configuration tasks can be
formulated as a distributed constraint satisfaction problem. Once they are formulated in
this manner, it is possible to employ complete DCSP algorithms such as the asynchro-
nous backtracking algorithm (ABT) to perform the task.

Finally, we also explored the complexity of these tasks. All three problems are
known to be NP-hard, so that in the worst case, unless P = NP, some problem instances
can require computational and communication resources that are exponential in the size
of the network. We made the connection to research from the AI community which
has shown that phase transition thresholds also correspond to a characteristic easy-hard-
easy profile of the average computational complexity. We showed through experimental
results for each of our tasks that when the network is operated in the satisfiable region
these tasks can be solved efficiently on average. Thus the phase transition approach tells
us that the transmission range of nodes can be used as a parameter to tune, and therefore
bound, the complexity of self-configuration tasks.

We should note that much of the work presented here is of a preliminary and em-
pirical nature. There are any number of directions in which this work can be extended.

The phase transition results presented here rely upon the assumption that the nodes
are located at random with a uniform distribution in the area. While this is a reason-
able assumption, particularly when considering static snapshots of mobile nodes with
anisotropic mobility patterns, other location distributions could be examined. It is our
belief that while the details of the critical threshold point may be different, the qualitative
behavior will be the same. This remains to be evaluated.

Another interesting question is how to incorporate the phase transition method-
ology into functioning networks. One approach is to perform the analysis offline to
determine the power settings of nodes before they are deployed in the operational en-
vironment. A more sophisticated approach would be to incorporate these results into
online, adaptive mechanisms. This is also an open area for research and development.

In general the configuration of an multi-hop wireless network is a multidimensional
constrained problem. The goal is to identify the boundaries of the under-constrained
region of the problem and then use efficient algorithms to identify solutions that fall
within that region. Our work has suggested that phase transition analysis can play an
important role in attaining this goal.
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