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ABSTRACT

We present a study which aims to infer the vehicular traf-
fic origin-destination matrix for the Los Angeles Downtown
Area, from a unique real-world LA Metro data source which
comprises sensor information of traffic counts and speeds ob-
tained in real-time from LA arterial road intersections. We
review the possible solution approaches and discuss the one
is used here in details. The final results are presented for
three different time intervals with different traffic regimes of
the same day. The validity of the approach and some ma-
jor applications of the inferred origin-destination matrix is
discussed at the end.

Categories and Subject Descriptors

1.6.4 [Simulation and Modeling]: Model Validation and
Analysis; H.4.m [Information Systems Applications]:
Miscellaneous

Keywords

Origin Destination Estimation, OD Matrix, Routing Valida-
tion, Drivers preference inference

1. INTRODUCTION

Los Angeles is the second largest city of the United States,
with a population of about 3.8 million. Over the years, it
has been developed with an emphasis on private transporta-
tion. It is spread over a large area (more than 500 square
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miles) that allows it to accommodate large numbers of sin-
gle passenger commuters. However, the rate of population
growth has made the city face an increasingly challenging
problem to plan and manage its traffic in an efficient way.

For the first time, this work presents and utilizes a unique
set of data that has been gathered by LA Metro, the ma-
jor bus and rail service operator in this area. The data
comprises the traffic count and traffic speed in most of the
arterial intersections of Los Angeles city. We are working
to analyze this dataset to get a better understanding of the
underlying behaviour of drivers in the LA area, which we
will use later on to plan for traffic control.

A fundamental quantity we seek that could give us a use-
ful representation of the driving habits of people in certain
geographical region is the Origin-Destination matrix (OD
matrix) for the vehicular traffic. Each element in OD ma-
trix corresponds to a particular pair of origin and destina-
tion points in the city, and it indicates the rate of travelers
that will move from the origin to the given destination (for
a particular period of time). Once we have the OD ma-
trix we can use it to develop various applications which are
concerned with urban traffic conditions and traffic control.
We are also interested in understanding the routing prefer-
ence of drivers for any given pair of source and destination.
For each OD pair, there are multiple different possible paths
that commuters associated with that OD may choose. The
preference of certain paths may depends on drivers habit,
the estimated distance and time of travel through the path.

We present an inference method to estimate the OD traf-
fic matrix for downtown LA based on the measured traffic
counts on sampled intersections. This is an under-determined
problem in general and there could be multiple solutions
that fits the sensor readings of the traffic counts. To pin
down the most accurate inference we will incorporate other
sources of urban information (Metadata) along-side with
traffic counts. Namely, we use a smaller set of nodes, called
here as hotspots, which are candidates for origin-destination
pairs of considerable size. We also incorporate the travel dis-
tance distribution as an additional information input to the
OD matrix estimation to eliminate the OD pairs with travel
distances that are unlikely to happen.



Knowing that the problem solution also depends on our
model for the drivers routing preferences, for the first time,
we use a cross-validation method to evaluate our solution
as well as to infer the proportion of the traffic using each
possible routes for each of the possible origin-destination
pairs.

The data set is new and to our knowledge our work rep-
resents the first attempt to get an estimation of the true ve-
hicular traffic matrix in the LA region. We will also discuss
different ways that this estimation may be used to develop
relevant applications for urban traffic control, etc.

The rest of the paper is organized as follows. Section 2
reviews similar work that has been done on other data sets
of the same kind. It will also review different methods that
have been proposed and used in prior work for OD esti-
mation. Section 3 states the problem in a formal way and
describes the data set and details of the cleaning steps re-
quired. We talk about the solution approach of inferring the
OD matrix based on our data in Section 4. The estimated
OD matrix is presented in Section 5 and different traffic de-
mand patterns that can be emerged from it are discussed in
details. Finally we address the the validity of the approach
and touch upon the use of estimated OD matrix in Section 6.
Section 7 concludes the paper with possible future directions
of the work.

2. RELATED WORK

OD matrices have been used in different contexts in order
to provide the underlying truth about the demands that
drive system behaviour in various networks. Examples of
this are network tomography [16] and urban traffic planning
[2, 13].

In the literature of urban planning, there are many works
relying on OD matrix of a certain region to synthesize real-
istic vehicle mobility traces. For instance, Uppoor et al. [13]
use OD and underlying traffic road network as feeds to the
SUMO [1] traffic generator to study traffic pattern for city
of Koln in Germany. Another example is VanetMobiSim [5]
which is a simulator concerned with both the traveling path
choice of commuters (Macro-mobility) as well as the indi-
vidual car interactions (Micro-mobility). It is built upon
OD input to emulate the urban traffic traces for use in tele-
communication VANETS.

In the context of network tomography the OD matrix rep-
resents the data demand from one point to another point in
a communication network infrastructure. It is easy to get a
precise estimate of the OD matrix if we could sniff packets
at routers and read their headers. Even on occasions where
reading the packet headers is not possible, knowing the net-
work routing policies and assuming Poisson arrivals for the
traffic [6] helps to get a precise OD estimate solely based on
packet counts in the routers.

On the other hand, it is more complicated to determine
the OD-matrix for a real-world urban traffic network. The
equivalent of packet header readings in urban traffic set-
ting is tracking the GPS traces of individual vehicles [20]
which is not always possible due to privacy and accessibility
constrains. Moreover, Poisson arrivals assumption does not
hold for urban traffic networks and we can not have access
to drivers routing preferences beforehand.

Traditionally, urban traffic OD matrix is estimated through
individual household surveys on their commuting habits and
residential commuting needs [13], roadside interviews and

plate methods [2]. However, while it can be very costly to
do that, it is not giving a fine grained precise estimation and
rather provide a prior belief about the general shape of the
OD matrix. Munuzuri et al. [9] do OD estimation for city of
Seville. To avoid the cost of data gathering through surveys,
its authors construct their model on entropy maximization
and algorithmic solutions such as Frank-WolfeAAZs linear
approximations. Authors in [20] use GPS data from taxis
in Shanghai to infer the OD matrix. Other major branch
of works in this context have used traffic counts [10, 2, 9]
to get an estimate on OD matrix of the targeted region.
Van Zuylen and Willumsen [14] use traffic counts gathered
through induction loop in highways in Amsterdam to model
trip generation.

The major drawback with the OD estimation technique
using the traffic counts is the visibility issue i.e. what we
sense (traffic counts on each road segment) does not provide
full observability to the system OD matrix elements, or in
another words the OD matrix cannot be inferred unambigu-
ously in general from the traffic data. Different ways have
been considered by researchers to pick the best OD from the
set of possible ODs that fit the observation. Some have con-
sidered the maximum entropy approach [15] in which among
all OD matrices in the feasible set, the one with the maxi-
mum entropy will be picked. Some have used a prior belief
that maybe resulted from surveys combined with Bayesian
inference to find the best OD [12]. Statistical approaches
that leads to parameter estimation by means such as maxi-
mum likelihood maximization have been also used to choose
the OD which is most likely to happen [6]. However, as we
explain later on, the basic model assumptions of such ap-
proaches do not necessarily hold for arterial traffic patterns.

As we discuss, we have undertaken in this work a differ-
ent approach, which combines on the one-hand a reduction
of the order of the model (going with an aggregated smaller
set of OD points) and on the other hand the incorporation
of more information inputs such as the trip distance distri-
bution, in order to obtain a unique OD matrix in a tractable
manner. We also use a validation technique to infer the rout-
ing matrix (Driver’s rout preference) as well as to evaluate
our solution.

3. PROBLEM STATEMENT

Origin-Destination matrix reflects the underlying behavioural

structure of commuting needs of people residing in a certain
geographical region. Once one have an estimation of this
matrix they will be able to understand the traffic needs and
accommodate the need considering different restrictions that
may be imposed.

Given a certain geographical region, the road network ly-
ing in the area can be modelled as a graph G(V, &) where
V is the set of nodes and £ is the set of edges of the graph.
The road network intersections will map onto the the graph
nodes and for each road segment connecting two intersection
directly, there is a corresponding edge in the graph.

The OD matrix is a matrix of the size |V| x |V| with zero
diagonal elements i.e. there is no trip starts and ends at the
same spot. Each element of the matrix, od;;, represents the
number of cars which start their journey at the correspond-
ing intersection, i, destined for the other intersection, j, in
the mapped graph of road city network within unit of time.

The goal is having the available valid counts of vehicles in
the unit of time and their speeds on a set of road segments,



to infer an OD matrix that fits the best to our knowledge of
the city as well as our data.

To achieve this, we need to know the amount of traffic
which is contributed by each OD pair to the traffic count of
each road segment. This is, in fact, affected by the routing
choice of the commuters driving between each origin and
destination pair. The choice of the drivers might depends
on many factors, including the shortest path, fastest rout
and their particular driving habits.

For a given commuters routing preference we can con-
struct the routing matrix. Which is a matrix with columns
corresponding to possible OD pairs and row corresponding
to the arterial road segment. An element of the matrix in-
dexed by ¢, j is then represents the proportion of the traffic
between OD pair j that uses road segment .

While works has been done to estimate drivers behaviour
in choosing different paths based on survey or GPS traces
[18], here we are interested in inferring the routing preference
of drivers based on traffic congestion and delay estimates of
different routes. Where both traffic congestion and delay es-
timates can be extracted from the traffic counts and average
speed in the arterial road segments.

4. SOLUTION APPROACH

We start with some notations. We use R to indicate real
numbers and Ry for non-negative real numbers. If A and
B are given sets then R, is the set of all vectors of size
|A| with values that are non-negative and are indexed by
elements of A. With the same logic Ry**? is the set of
matrices with non negative real value that are indexed by
elements of A x B. In the rest of the paper we use the
following notation to formulate our model:

e &: set of directed edges/road segments.

V: set of nodes/intersections.

G(V,€&): The directed graph that represents intersec-
tions and road segments.

e Ve € £, we,ne € V: we is the node connected to the
tails of edge e and 7. is the node connected to the head
of that edge.

e £ = {V x V}: Ordered set of pairs of nodes. This
corresponds to all possible OD pairs.

e ¢;,d; € V: Respectively the source and destination of
the 7 element in €.

e f e RyE: Vector of traffic counts. Each element repre-
sents average count of cars leaving each road segment
per unit of time.

e z € R *%: Vector of flows. Each element of the vector
represent average count of cars that travel from the
origin to the destination of the corresponding OD pair
in unit of time.

e s € R, %: The average speed of traffic in every road
segment in the given period of interest.

e d € Ry %: The average time it takes a car to traverse
each edge in the current traffic load.

e M/: Set of all possible routs corresponding to OD pair,
indexed ;" in £.

e DV e RJFM‘?': Vectors of the delay associated with each
path in M7,

e PJ: Set of all usable routs corresponding to OD pair,
indexed " in £.

e J¢ € N®: Vector of link e € £ utilization by different
ODs.

e A€ R, %**: Routing matrix.

To solve the problem described in section 3 , we consider
the traffic network to be in its equilibrium and model the
traffic system dynamics with steady flows of cars. Each flow
corresponds to one origin destination pair in the OD ma-
trix. The flow sizes are shown by the elements of the vector
z!€1X1 Tt is expected that each driver in the flow would
take the path to the destination that is the shortest either
with respect to the time or the distance. When there are
multiple paths with same range end to end delay, drivers
may choose each of available paths based on a probability
distribution that may change depending on drivers priority
and estimation accuracy. It has been assumed that most of
drivers do not have a delay estimation drastically different
from the reality. This is given the fact that they usually
construct their estimation based on online traffic maps and
past experiences.

The traversing time of each link can vary in time as traffic
congestion varies from time to time. Knowing that the traffic
congestion have slow transients, we can get a realistic view
of traffic by averaging over the speed of passing vehicles in
each intersection. This will also help to account for the effect
of traffic lights. Given s as part of our collected data and the
road network details we can compute d which is the vector
of link traverse time delays.

For an OD indexed j in £ a possible loop free end to end
travel path can be defined as follows:

M = {m|m’ =m"” nm} 1
Where:
m”7 ={ele€ &AM em’ :ne=w)V (e =3;)}
m'" = {elec &, e m’ = 65,3 € mw = b;}

2
In particular M7 is the ordered set of all distinct sets m?.
Where m’ is the collection of all edges that form a path from
¢; to 0;. having the average traverse time of each link we
can calculate the D’ as follows:

Dl =% de (3)

eEMi

In which D{ is the i*" row of D7 and /\/lf is the i*" element
of M7,

Once a traveler wants to choose its travel path to its des-
tination, there might be multiple paths with travel time in
the same range of the shortest path delay. We name the
set of paths that might be used by a traveller in the current
network traffic state P’ and define it as follows:

Pl ={m!|m’ € ./\/lj,Dfnj < amin D/} 4)
Where « is a constant greater and close to 1 and is added

to capture the drivers preference and traffic estimation qual-
ity. The lower the « correspond to willingness of the drivers



to take routes with longer delays in order to get to their des-
tinations. This willingness may come from bad estimations
or other priorities such as selecting main arterial routes or
ones with shorter travel distances.

We can consider a probability distribution vector h? over
the set of possible paths (P?) of each OD pair j to represent
drivers priorities in rout selection. In this case, @’ x h; for
i € {1,...,|P7|} represents the actual portion of the flow
taking path indexed by 4 from the set of ordered paths P7.

Knowing what paths each flow may take for each possible
origin-destination we define J¢ as follows:

J; = Z h?m Z ]le’:e (5)

mePpPi e'em

J5 is the 4t element of J¢ and indicates the proportion of
x’ that are using link e.

We can now build the routing matrix A€, The ele-
ments of the routing matrix are in range of [0, 1]. An element
a;,; represent the portion of flow of the OD indexed 4t in
£ that is passing through road segment i € £ and will be
equal to J;

Hence given the road network within a certain traffic state
we can compute the corresponding routing matrix A. There
is a linear equation between the actual size of OD pairs and
the flow of traffic on each link in terms of A:

Az =0 (6)

In which, b is the data that sensors are reporting on traffic
count on each link and A is the routing matrix at the current
traffic setup.

Equation (6) gives a straight forward way to compute traf-
fic counts on each link knowing the OD pairs sizes. However,
the reverse problem has more into it. If we consider to solve
the equation for the unknown possible OD pairs, (6) is an
under determined system of linear equations i.e. A is a low
rank matrix. In other words, having the counts traffic on
each link does not reveal all the underlying truth about the
origin and destination of the traffic flows.

In order to narrow down our search for a plausible (close
to reality) OD matrix, we have to incorporate other sources
of information than only the traffic counts. As mentioned
in previous sections some have used the Poisson distribution
for OD sizes within a probabilistic framework to pin down
one solution by solving a maximum likelihood optimization.
Although i.i.d Poisson distributed OD size model might be
acceptable for information packets in worldwide web or par-
tially in highway traffic networks, they are not suitable for
arterial traffic networks. One can get an intuition on this
by looking into the first example in [16]. The Poisson as-
sumption in the example has led to absolute preference of
shorter OD pairs to the longer ones, which is not a justifiable
preference in the case of arterial traffic networks.

Here, we incorporate two other class of information to nar-
row down our search space and get a more realistic estima-
tion of ODs. We first identify the candidate spots that are
more likely to be the source or destination of major traffic
travel flows. These candidate nodes can be found by identi-
fying the major hot spots of the city, clusters of residential
areas and major highway entrances.

Having a set of candidate nodes any pair of them can
be a candidate major OD pair. At this point we use our
knowledge about the urban travel distance distribution to
further limit the candidate sets by eliminating those pairs

which are less likely to be valid. In other words, we choose
the second source of our information to be the meta-data on
urban commute distance distribution.

Trip distance distribution indicate the portion of the total
trips that are made by the cars such that the length of the
trip falls within a given range. It has been shown that the
log normal distribution is a good fit for urban trip distance
distribution [3]. An example of a log-normal distribution
can be seen in Figure 1. As you can see, There is a dis-
tance threshold that having a trip distance below which is
very unlikely. Intuitively it means that people are not likely
to use vehicles to trip distances that are not long enough.
We use this fact to further remove OD pair candidates that
their corresponding trip distance would fall bellow the given
threshold of trip distance distribution. Here we consider this
threshold to be equal to 500 meters.

By narrowing down our search space, the new set of can-
didate ODs will be a subset of £ and will be shown by £.
We also have £ which is the union of the links that are used
by £.

£=U,c3 Upeps m (7)

And hence equation 6 would change to the following one:

Az =b (8)

Where A € R.%** is a sub-matrix of A with those ele-
ments of A that have corresponding elements in £ x £. Also
# € RY and be RY are sub-vectors of 2 and b respectively
with the same logic.

Equation (8) will not have more than one answer if the
following is true:

Ve, 75 £, C i‘, tUjee, Umep_] m 75 Ujee, Umer m (9)

In other words no two distinct subset of candidate ODs
should have the same set of contributing links to their usable
paths. If this statement does not hold for any two subsets
of ODs, those two subsets are not distinguishable from each
other based on the traffic counts.

On the other hand, even if (9) holds, equation (8) might
be overdetermined. This is partly due to the number of
small sized ODs that we have omitted. In this case the best
possible estimate is the one with the smallest error. This
leads in turn to solve the following optimization problem.

. A 72
arg:mmi |AZ — b||3 (10)
subject to: £ >0

However, we still need to assess the solution given by 10
for our problem. We should also note that A depends on
the way we construct h? and for different OD pairs. In fact,
we may end up with different results for different ways of
constructing h?. To address these issues, we choose a cross-
validation technique in which we randomly select %80 of
road segments from &, call the new set £ and the remain-
ing of the set 52. We reconstruct optimization 10 into an-
other optimization problem such that it only comprises rows
corresponding to &1. The solution to the new optimization
formulation, Z1 can be now evaluated with respect to the
set of remaining road segment: £. Based on this, we define
the average error as follows:
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Where #1 is the solution of the optimization formulation

12 and A; is the sub-matrix achieved by selecting the rows
of A that correspond to elements of &;.

(11)

argminiHAli — 51H§

3> 0 (12)

subject to:

Optimization (12) is a linear least square optimization

problem that can be solve by many different convex opti-

mization tool. Here we use the scipy.optimize package of
Python to solve it.

S. RESULTS

In this section we present the OD estimated results for
the rectangular region including USC and downtown Los
Angeles. The area of focus spread from (34.0730, -118.3060)
to (34.0170, -118.1950) and has dimensions 6227 x 10922
meters. The map of the area is shown in Figure 2. This area
includes 5498 intersections and 7584 distinct arterial road
segments. The detailed information of the map including the
the road segment ID, name, length, bearing, start and end
latitude and longitude are all extracted from Open Street
Map (OSM).

The LA Metro data are gathered through induction loop
sensor in arterial road segments. The information in each
sensor has been stored each minute and comprises of the
followings:

e ID: Unique ID for the sensor.
e Link ID: Unique ID for the road segment.
e Link Type: Highway/Arterial.
e On Street: Sensor located on which street.

e From Street: Sensor is located on the lane that leave
off this street.

e To Street: Sensor is located on the lane that goes to-
ward this street.
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e Date: Day of the reading.
e Time: Exact time of the reading.
e Latitude and Longitude: GPS Specific of the sensor.

e Occupancy: Percentage of the time Where the loop
was occupied in the last reported minute.

e Speed: The average speed of the traffic flow in the
reported minute.

e Volume: Count of cars passing over the loop sensor in
the past minute.

e HovSpeed: Specifies if there is a carpool lane.
e Status: "OK?” if the sensor reading is valid.

Since the sensors might fail to record the data from time
to time or they may not working for a periods of the time,
a cleaning phase is performed to prune the unreliable data.
Also a processing phase is performed to let the valid data
be available for each sensor in each 5 minute interval.

The LA Metro data is used alongside information ex-
tracted from Openstreetmap [4]. Openstreetmap is an open
source user based database that provides most up to date
maps of selected regions. The data set from Openstreetmap
comprises the followings:

e Node ID: Unique ID for each intersection.

e Neighbour ID: For each node set of neighbouring node
IDs are listed.

e Longitude, Latitude: Each node ID has its own Lon-
gitude and Latitude.

e Segment ID: Unique ID for each road segment.

e Segment end: the two end vertices’s IDs of each road
segment.

Another level of processing is done at this point to map the
segments ID from the Openstreetmap database to induction
loop sensor ID in the LA Metro data set. It is done here by
comparing the Longitude and Latitude of the each sensor
with of the same of each intersection in the Openstreetmap
data base. From the set of the candidate segments connected
to the selected intersection, we choose the segment that fits
to the other specification of the sensor in the LA Metro data
set.

Once we integrate our two databases, we could define our
problem. The goal is having the available valid counts of
vehicles and their speeds on a set of road segments, to infer
an OD matrix that fits the best to our knowledge of the city
as well as our data.

The LA Metro data set contains reading from 1086 dis-
tinct sensors in the area of focus. Each sensor reports the
average speed and aggregate number of vehicles passing over
them each one minute. We have merged the sensor location
data with the OSM map data and find the exact location of
each sensor with respect to the road network. Having 1086
number of sensors means that we have reading from 1086
number of edges of our modeling graph.

In the next step we have identified a set of candidate
nodes that can participate in potential origins or destina-
tions of major flows. This set has been chosen based on



meta data indicating the residential block, major highway,
business block and potential hot spots of the city. There are
23 distinct nodes in this set, from which 7 nodes represent
potential origins or destinations that fall outside of our map
boundary. The set of candidate nodes with their location
with respect to the map is shown in Figure 3.

£ is constructed afterward from the cross product set of
chosen nodes and using a typical trip distance distribution
with a cut off value of 1640 feet (500 meters).

We focus on three different state of the traffic network
through a day, morning and evening rush hours, alongside
the afternoon traffic. Three different time windows of size
30 minutes are selected corresponding to each state which
are respectively start at 7:00 am, 7:00 pm, and 1:00 pm.
The collected data in each time window is averaged for each
sensor to reduce the noise and anomalies effect. Next, the
routing matrix A is constructed for each time window using
the extracted information from OSM, sensory readings and
different scenarios of the routing preferences. At this stage
we evaluate the average error of the solution based on the
cross-validation approach mentioned in the previous section.
This way we can evaluate the performance of our solution
for a given routing preferences. By finding the setting where
the error is the smallest, we get an understanding on how
on average the commuters behave when it comes to route
selection.

Our results show that the small average error is achieved
when the traffic is assigned to routes that have an end to
end delay in the range of the shortest path rout. The split
of traffic happens in a way that in general the paths with
the shorter delay takes the higher portion of the traffic for
a given OD pair. However an interesting observation is that
the set of chosen routes by drivers not only have delays in
the range of the shortest path but also have low correlations
with each others. Here, we use the term correlation for two
different paths between the same origin and destination to
reference the average percentage of the length that they have
in common. Figure 5 illustrate the results confirming this
behaviour for all three different time slots.

In general when sorting the available paths based on their
end to end delay, those on the top of the list have high
correlations. We create a delay sorted list of low correlated
paths for each OD pairs by adding the constrains that no
path can be added unless it has less that 20% correlation
with the ones above it in the list. Figure 5 also shows that
on average the traffic split between the best 3 uncorrelated
routes in the rush ours while this number is 2 in the light
afternoon traffic.

Some of the major size resulting estimated traffic flows are
listed in table 1. The full list of results is accessible in the ex-
tended version of this paper [8]. The sizes are the estimated
number of vehicles that are traveling from the correspond-
ing source to destination per one minute. By looking into
the resulting estimates different traffic demands can be re-
vealed. To further assist in interpreting the results we have
visualized them on the map for different flow sizes and time
window intervals.

Figure 4 shows the flow size distribution for the three dif-
ferent time intervals. As it can be seen in the afternoon time
slot, the aggregate traffic flow is less compared to the morn-
ing and evening rush hours and there are more flows with
small sizes, indicating more erratic behavior of travelers. In
the morning and evening time interval there are a few flows
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Figure 2: The area of focus. It is rectangle of size 6227 x
10922 meters including the Los Angeles Downtown area and
USC Park Campus. Spread from (34.0730, -118.3060) to
(34.0170, -118.1950).

with large sizes suggesting multiple flocks of cars traveling
the same path. These flows have been shown with respect to
the map in figure 6. Each arrow in the map corresponds to
one flow, the arrow head indicates the destination and the
tails indicates the origin of the flow. In both morning and
evening time intervals one of the major flows is the one with
ID 436 representing the vehicles that are passing downtown
going to the north-east. It is also interesting to note that
none of the flows with size greater than 25 per minute origi-
nate from or destined in downtown financial area, suggesting
the major OD flow in the map are those which are passing
the map center. This is while when looking in the after-
noon time interval, the biggest size OD flows only contains
short travel distances and happening only in the residential
blocks, mostly in the west-lake area.

When looking into the flows with sizes between 21 and
25 vehicles per minute, there are many flows in the morn-
ing destined for downtown financial area and a few others
originated from residential areas going toward destinations
resides outside of them map. This is while there is not such
pattern in the evening time interval.

The flows with medium sizes (between 15 to 20 vehicles
per minute) are shown in figure 7. Interesting patterns can
be observed as well for these flow sizes. As an example
in the morning time slot most of the flows are originated
from or destined for highway entrances. Remembering that
each flow is a demand for the road network, we can see that
highway 10 has the most demand in the network, both in
the morning and in the evening.

6. DISCUSSION

This section touches upon two different aspects that are
very much needed to justify this work. First, is the concern
of accuracy. It is important to know how reliable are the
estimated results and more generally under what conditions
the results can be considered valid. Second, is how helpful
the estimated OD matrices can be. We address this one by
going through some of the most important technologies and
applications that could rely heavily on OD matrix estima-
tion.

6.1 Accuracy
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The accuracy of the estimated OD sizes depends on many
factors such as the accuracy of induction loop readings, drivers
behaviour modeling, existence of traffic equilibrium and etc.
But most importantly it depends heavily on the choice of
the candidate ODs. To be more precise, for the estimated

flow sizes to be close to reality the set of candidate OD’s (£)
needs to have satisfy the following conditions.

1. £ should satisfy criteria 9.

2. The major ODs in £ should be clusterable and £ should
be a close representation of the clusters.

The first condition is what we discussed earlier: for a given
set of OD candidate pairs the estimation result is unique if
criteria in 9 holds. Otherwise there would be more than one

answer to the system of linear equations and there is no way
to tell them apart.

The second condition is observant of the effect that elim-
inating the rest of OD pairs can have on the resulting esti-
mate. Let’s assume that we have all the non-negligible OD
pairs with their actual sizes. We can put different OD pairs
into one cluster if their sources are spatially close together
as well as their destinations. For example all the flows that
start from a residential region of few blocks size and end-
ing up in downtown area can be seen as one cluster. The
underlying set of non-negligible OD pairs of a given urban
area, £, is clusterable if we can identify clusters such that
most of the large size OD pairs fall under one and only one
cluster. Under such condition, each cluster can be repre-
sented by one OD pair. As a result, the resulting estimate
of each candidate OD size will be the estimate of aggregate
size of the ODs within the corresponding cluster. In fact,
when we choose candidate nodes we are looking to form the
most likely clusters that may exist for the underlying OD
structure of the city.

6.2 Applications

Estimating the underlying OD structure of a given urban
area is the first building block for many different purposes.
Here we identify some of the important applications that
can make use of the OD matrix.

1. Urban Planning: Urban planning is a complicated
topic with lots of different aspects[17]. The most im-
portant aspect of this broad topic is the optimum de-
sign and regulation of transportation network in a way
that could handle the demands of urban commuters as
well as meets the environmental standards[7]. We can
not design an appropriate policy for a transit network
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Table 1: Estimated size of candidate OD pairs for three
different times in a day of 05/28/2014.

if we don’t have a good estimates of what this network
need to handle. On the other hand, once we have the
OD flows for a given urban area, we are aware of the
vehicular traffic demands. We can plan to satisfy the
demands with respect to different criteria that might
be imposed because of some other objectives. It en-
ables us to add or remove road segments into the road
network. More dynamically, we will be able to ma-
nipulate speed limits, traffic signalling and stop signs
to force people to take more desirable routs, so that
the individual selfish behaviour results in communal
benefits as well.

. Vehicular Network Data Delivery: Vehicular Net-

works can be seen as an alternate medium for data
delivery. Many have even considered it as a potential
candidate for 5G wireless networks [11]. Having the
OD flow sizes alongside with the road network map is
essential to estimate the vehicle pairwise contact rate
based on which we can plan and choose best strategy
to achieve acceptable throughput of the system.

. Distributed Sensing: There are many different en-

vironmental variables, such as noise, pollution, tem-
perature and etc, that can be seen as a random field
spread over large areas. The traditional way of measur-



ing these variables is through fixed stationary stations.
However, because of the cost and implementation con-
strains of such stations, they can not provide a fine
grain description of the objective field. This in turn,
makes the vehicular networks a much better and more
effective mediums for the purpose of urban monitor-
ing[19]. However, the challenge is how best to make
use of such complicated networks. In an ideal scenario
we should be able to predict the future path of each
vehicle so to decide how to combine and compress col-
lected spatial data through the field without lots of
overhead communication. And this is where OD ma-
trix of the given area will become useful.

7. CONCLUSION

This work has presented a unique data set of traffic counts
in LA for the first time. Based on this data set, we have
shown how to extract useful information about traffic pat-
tern in downtown LA, in the form of origin-destination traf-
fic matrices for different time intervals. We have also used
a validation technique that reveals interesting behaviour of
urban commuters when it comes into route selection. Be-
sides the algorithm we have used for the OD estimation,
result evaluation, the details of the data set, cleaning and
processing steps have been explained and we have also pro-
vided a discussion of the applications that can be supported
by this set of results. In this work, we considered a fixed
value for each time window (30 minutes). As a next step,
we plan to evolve the modeling to a dynamic setting and try
to capture how the OD pair flows are changing smoothly
over time given the data. Also, it may be worthwhile to
explore more sophisticated approaches that allow for more
numerous OD pairs to provide a more fine-grained traffic
matrix estimation.

8. REFERENCES

[1] M. Behrisch, L. Bieker, J. Erdmann, and
D. Krajzewicz. Sumo-simulation of urban mobility-an
overview. In SIMUL 2011, The Third International
Conference on Advances in System Simulation, pages
55-60, 2011.

[2] S. Bera and K. Rao. Estimation of origin-destination
matrix from traffic counts: the state of the art.
FEuropean Transport Trasporti Europei, 2011.

[3] G. C. Dandy and E. A. McBean. Variability of
individual travel time components. Journal of
Transportation Engineering, 110(3):340-356, 1984.

[4] M. Haklay and P. Weber. Openstreetmap:
User-generated street maps. Pervasive Computing,
IEEE, 7(4):12-18, 2008.

[5] J. Harri, F. Filali, C. Bonnet, and M. Fiore.
Vanetmobisim: generating realistic mobility patterns
for vanets. In Proceedings of the 3rd international
workshop on Vehicular ad hoc networks, pages 96-97.
ACM, 2006.

[6] M. L. Hazelton. Estimation of origin—destination
matrices from link flows on uncongested networks.
Transportation Research Part B: Methodological,
34(7):549-566, 2000.

[7] L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla. An
efficient approach to solving the road network

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

equilibrium traffic assignment problem. Transportation
Research, 9(5):309-318, 1975.

K. Moghadam, Q. Nguyen, B. Krishnamachari, and
U. Demiryurek. Traffic matrix estimation from road
sensor data: A case study (extended),
URL:hitp://anrg.usc.edu/www/papers/odest.pdf, 2015.
J. Munuzuri, J. Larraneta, L. Onieva, and P. Cortes.
Estimation of an origin-destination matrix for urban
freight transport. application to the city of seville. In
The 3rd International Conference on City Logistics,
2004.

S. Nguyen. Estimating origin destination matrices
from observed flows. Publication of: Elsevier Science
Publishers BV, 1984.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume,

P. Marsch, M. Maternia, O. Queseth, M. Schellmann,
H. Schotten, H. Taoka, et al. Scenarios for 5g mobile
and wireless communications: the vision of the metis
project. Communications Magazine, IEEE,
52(5):26-35, 2014.

O. Z. Tamin, H. Hidayat, and A. K. Indriastuti. The
development of maximum-entropy (me) and
bayesian-inference (bi) estimation methods for
calibrating transport demand models based on link
volume information. In Proceedings of the Eastern
Asia Society for Transportation Studies, volume 4,
pages 630-647, 2003.

S. Uppoor, O. Trullols-Cruces, M. Fiore, and

J. Barcelo-Ordinas. Generation and analysis of a
large-scale urban vehicular mobility dataset. Mobile
Computing, IEEE Transactions on, 2013.

N. J. van der Zipp and R. Hamerslag. Improved
kalman filtering approach for estimating
origin-destination matrices for freeway corridors.
Transportation Research Record, (1443), 1994.

H. J. Van Zuylen and L. G. Willumsen. The most
likely trip matrix estimated from traffic counts.
Transportation Research Part B: Methodological,
14(3):281-293, 1980.

Y. Vardi. Network tomography: Estimating
source-destination traffic intensities from link data.
Journal of the American Statistical Association,
91(433):365-377, 1996.

V. R. Vuchic. Urban transit: operations, planning, and
economics. 2005.

Y. Wang, Y. Zheng, and Y. Xue. Travel time
estimation of a path using sparse trajectories. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 25-34. ACM, 2014.

X. Yu, H. Zhao, L. Zhang, S. Wu, B. Krishnamachari,
and V. O. Li. Cooperative sensing and compression in
vehicular sensor networks for urban monitoring. In
Communications (ICC), 2010 IEEE International
Conference on, pages 1-5. IEEE, 2010.

W. Zhang, S. Li, and G. Pan. Mining the semantics of
origin-destination flows using taxi traces. In
Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, pages 943-949. ACM, 2012.



