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Abstract. We propose energy-efficient compressed sensing for wireless
sensor networks using spatially-localized sparse projections. To keep the
transmission cost for each measurement low, we obtain measurements
from clusters of adjacent sensors. With localized projection, we show that
joint reconstruction provides significantly better reconstruction than in-
dependent reconstruction. We also propose a metric of energy overlap
between clusters and basis functions that allows us to characterize the
gains of joint reconstruction for different basis functions. Compared with
state of the art compressed sensing techniques for sensor network, our
experimental results demonstrate significant gains in reconstruction ac-
curacy and transmission cost.

1 Introduction

Joint routing and compression has been studied for efficient data gathering of
locally correlated sensor network data. Most of the early works were theoretical
in nature and, while providing important insights, ignored the practical details
of how compression is to be achieved [1–3]. More recently, it has been shown
how practical compression schemes such as distributed wavelets can be adapted
to work efficiently with various routing strategies [4–6].

Existing transform-based techniques, including wavelet based approaches [4,
5, 7] and the distributed KLT [8], can reduce the number of bits to be transmitted
to the sink thus achieving overall power savings. These transform techniques are
essentially critically sampled approaches, so that their cost of gathering scales up
with the number of sensors, which could be undesirable when large deployments
are considered. Compressed sensing (CS) has been considered as a potential
alternative in this context, as the number of samples required (i.e., number of
sensors that need to transmit data), depends on the characteristics (sparseness)
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of the signal [9–11]. In addition CS is also potentially attractive for wireless
sensor networks because most computations take place at the decoder (sink),
rather than encoder (sensors), and thus sensors with minimal computational
power can efficiently encode data.

However, while the potential benefits of CS for sensor network applications
have been recognized [12, 13], significant obstacles remain for it to become com-
petitive with more established (e.g., transform-based) data gathering and com-
pression techniques. A primary reason is that CS theoretical developments have
focused on minimizing the number of measurements (i.e., the number of samples
captured), rather than on minimizing the cost of each measurement. In many CS
applications (e.g., [14] [15]), each measurement is a linear combination of many
(or all) samples of the signal to be reconstructed. It is easy to see why this is not
desirable in the context of a sensor network: the signal to be sampled is spatially
distributed so that measuring a linear combination of all the samples would entail
a significant transport cost to generate each aggregate measurement. To address
this problem, sparse measurement approaches (where each measurement requires
information from a few sensors) have been proposed for both single hop [16] and
multi-hop [12, 13] sensor networks.

In this paper our goal is make explicit the trade-off between measurement
cost and reconstruction quality. We note that lowering transport costs requires
spatially localized gathering. Signals to be measured can be expressed in terms
of elementary basis functions. We show that the performance of CS greatly
depends on the nature of these bases (in particular, whether or not they are
spatially localized). Thus, the specific data gathering strategy will depend in
general on the signals to be measured. We propose a novel spatially-localized
projection technique based on clustering groups of neighboring sensors. Data is
gathered in each cluster and efficiently routed to the sink. We show that joint
reconstruction of data across clusters leads to significant gains over independent
reconstruction. Moreover, we show that reconstruction performance depends on
the level of “overlap” between these data-gathering clusters and the elementary
basis on which the signals are represented. We propose methods to quantify this
spatial overlap, which allow us to design efficient clusters once the bases for the
signal are known. Our experimental results demonstrate significant gains over
state of the art CS techniques for sensor networks [16, 13].

The remainder of this paper is organized as follows. Section 2 presents CS
basics and motivation. Section 3 introduces CS in a multi-hop sensor network.
Section 4 presents spatially-localized CS and Section 5 provides experimental
results, comparing proposed method and previously proposed CS techniques [16,
13]. Section 6 concludes the paper.

2 Background and Motivation

Compressed Sensing (CS) builds on the observation that an n-sample signal
(x) having a sparse representation in one basis can be recovered from a small
number of projections (smaller than n) onto a second basis that is incoher-



ent with the first [9, 10]. If a signal, x ∈ <n, is sparse in a given basis Ψ
(the sparsity inducing basis), x = Ψa, |a|0 = k, where k � n, then we can
reconstruct the original signal with O(klogn) measurements by finding sparse
solutions to under-determined, or ill-conditioned, linear systems of equations,
y = Φx = ΦΨx = Hx, where H is known as the holographic basis. Recon-
struction is possible by solving the convex unconstrained optimization problem,
minx

1
2‖y−Hx‖22 + γ‖x‖1, if Φ and Ψ are mutually incoherent [11]. The mu-

tual coherence, µ(ΦΨ) = maxk,j |〈φk,ψj〉|, serves as a rough characterization
of the degree of similarity between the sparsity and measurement systems. For
µ to be close to its minimum value, each of the measurement vectors must be
spread out in the Ψ domain.

Measurements, yi, are projections of the data onto the measurement vectors,
yi = 〈φi,x〉, where φi is the ith row of Φ. Interestingly, independent and identi-
cally distributed (i.i.d.) Gaussian, Rademacher (random ±1) or partial Fourier
vectors provide useful universal measurement bases that are incoherent with any
given Ψ with high probability. The measurement systems covered in traditional
compressed sensing are typically based on these kinds of “dense” matrices, i.e.,
there are very few zero entries in Φ.

The dense projections of traditional compressed sensing are not suitable for
sensor networks due to their high energy consumption. With a dense projection,
every sensor is required to transmit its data once for each measurement, so the
total cost can potentially be higher than that of a raw data gathering scheme.
If the number of samples contributing to each measurement decreases, the cost
is reduced by a factor that depends on the sparsity of the measurement ma-
trix (see [12, 13] for an asymptotic analysis for different measurement matrices.)
Note, however, that in addition to sparsity, the gathering cost also depends on
the position of the sensors whose samples are aggregated in the measurements.
If sensors contributing to a given measurement are far apart, the cost will still
be significant even with a sparse measurement approach. This is our main mo-
tivation to develop spatially-localized sparse projections.

3 Spatially-localized Compressed Sensing

3.1 Low-cost sparse projection based on clustering

In order to design distributed measurements strategies that are both sparse and
spatially localized, we propose dividing the network into clusters of adjacent
nodes and forcing projections to be obtained only from nodes within a cluster.
As an example, in this paper we consider two simple clustering approaches. For
simplicity, we assume that all clusters contain the same number of nodes. When
Nc clusters are used, each cluster will contain N

Nc
nodes. In “square clustering”,

the network is partitioned into a certain number of equal-size square regions.
Alternatively, in “SPT-based clustering”, we first construct shortest path tree
(SPT) then, based on that, we iteratively construct clusters from leaf nodes to
the sink. If incomplete clusters encounter nodes where multiple paths merge, we



group them into a complete cluster under the assumption that nodes sharing a
common parent node are likely to be close to each other.

Any chosen clustering scheme can be represented in CS terms by generat-
ing the corresponding measurement matrix, Φ, and using it to reconstruct the
original signal. Each row of Φ represents the aggregation corresponding to one
measurement: we place non-zero (or random) coefficients in the positions corre-
sponding to sensors that provide their data for a specific measurement and the
other positions are set to zero. Thus, the sparsity of a particular measurement
in Φ depends on the number of nodes participating in this aggregation.

For simplicity, we consider non-overlapped clusters with the same size. This
leads to a block-diagonal structure for Φ. Note that recent work [17] [18], seeking
to achieve fast CS computation, has also proposed measurement matrices with
a block-diagonal structure, with results comparable to those of dense random
projections. Our work, however, is motivated by achieving spatially localized
projections so that our choice of block-diagonal structure will be constrained by
the relative positions of the sensors (each block corresponds to a cluster).

3.2 Sparsity-inducing basis and cluster selection

While it is clear that localized gathering leads to lower costs, it is not obvious
how it may impact reconstruction quality. Thus, an important goal of this paper
is to study the interaction between localized gathering and reconstruction. A
key observation is that in order to achieve both efficient routing and adequate
reconstruction accuracy, the structure of the sparsity-inducing basis should be
considered. To see this, consider the case where signals captured by the sensor
network can be represented by a “global” basis, e.g., DCT, where each basis
spans all the sensors in the network. Then the optimally incoherent measure-
ment matrix will be the identity matrix, I, thus a good measurement strategy
is simply to sample k log n randomly chosen sensors and then forward each mea-
surement directly to the sink (no aggregation). Alternatively, for a completely
localized basis, e.g., Ψ = I, a dense projection may be best. However, once the
transport costs have been taken into account, it is better to just have sensors
transmit data to the sink via the SPT whenever they sense something “new”
(e.g., when measurements exceed a threshold). In other words, even if CS theory
suggests a given type of measurements (e.g., dense projection for the Ψ = I
case), applying these directly may not lead to an efficient routing and therefore
efficient distributed CS may not be achievable.

In this paper we consider intermediate cases, in particular those where lo-
calized bases with different spatial resolutions are considered (e.g., wavelets).
Candes et al. [11] have shown that a partial Fourier measurement matrix is in-
coherent with wavelet bases at fine scales. However, such a dense projection is
not suitable for low-cost data gathering for the reasons discussed above. Next we
explore appropriate spatially-localized gathering for data that can be represented
in localized bases such as wavelets.



4 Efficient clustering for spatially-localized CS

4.1 Independent vs. Joint reconstruction

To study what clustering scheme is appropriate for CS, we first compare two
types of reconstruction: independent reconstruction and joint reconstruction.
Suppose that we construct a set of clusters of nodes and collect a certain num-
ber of local measurements from each cluster. With a given clustering/localized
projection, joint reconstruction is performed with the basis where sparseness of
signal is originally defined while independent reconstruction is performed with
truncated basis functions corresponding to each cluster.

Equation (1) describes an example for two clusters with the same size. ψ1 and
ψ1 correspond to localized projections in each cluster. For joint reconstruction,
the original sparsity inducing basis, Ψ , is employed. But, for independent recon-
struction, data in the first cluster are reconstructed with partial basis functions,
ψ1 and ψ2, and those in the second cluster are with ψ3 and ψ4 thus, when Nc

clusters are involved, independent reconstruction should be performed Nc times,
once for each cluster.

H = ΦΨ =
[
φ1 0
0 φ2

] [
ψ1 ψ2

ψ3 ψ4

]
⇒

H1 =
[
φ1ψ1, φ1ψ2

]
H2 =

[
φ2ψ3, φ2ψ4

]
 (1)

Joint reconstruction is expected to outperform independent reconstruction
because the sparseness of data is determined by the original basis, Ψ . Also,
with joint reconstruction, measurements taken from a cluster can also convey
information about data in other clusters because basis functions overlapped with
more than one clusters can be identified with measurements from those clusters.

As basis functions are overlapped with more clusters, joint reconstruction
has potentially higher chance to reconstruct signal correctly. To augment gains
from localized CS with clustering scheme, how to choose the clustering should
be based on the basis, so that overlap is encouraged. The degree of overlapping
between basis functions and clusters can be measured in many different ways.
One possible approach is to measure energy of basis functions captured by each
cluster.

4.2 Energy overlap analysis

To characterize the distribution of energy of basis functions with respect to the
clusters, we present a metric, Eoa, and an analysis of the worst-case scenario. We
assume that signal is sparse in Ψ ∈ <n×n. And, ψ(i, j) corresponds to the jth

entry in the ith column of Ψ and each column is normalized to one. Suppose that
Nc is the number of clusters and Ci is a set of nodes contained in the ith cluster.
The energy overlap between the ith cluster and the jth basis vector, Eo(i, j), is

Eo(i, j) =
∑
k∈Ci

ψ(j, k)2 (2)



Energy overlap per overlapped basis, Eoa Average energy overlap per
overlapped basis is a good indicator of distribution of energy of basis functions.
For each cluster, Eoa(i) is computed as

Eoa(i) =
1

No(i)

N∑
j=1

Eo(i, j), ∀i ∈ {1, 2, · · · , Nc} , (3)

where No(i) is the number of basis functions overlapped with the ith cluster.
Then, we compute Eoa by taking average of Eoa(i) over all clusters, Eoa =
1

Nc

∑Nc

i=1Eoa(i). Intuitively, this metric shows how much energy of basis func-
tions are captured by each cluster. Thus, as energy of basis functions are more
evenly distributed over overlapped clusters, Eoa decreases, which leads to better
reconstruction performance with joint reconstruction. If the specific basis con-
tributing a lot to the cluster is not in the data support, the measurements from
this cluster does not notably increase the reconstruction performance.

Worst case analysis It would be useful to have a metric to determine the
number of projections required from each local cluster in order to achieve a
certain level of reconstruction performance. We first define what the worst-case
is, then try to characterize the ‘worst-case scenario’ performance.

With the global sparsity of K, the worst case scenario is when all K basis
vectors supporting data are completely contained in a single cluster. Since the
identity of this cluster is not known a priori and projections from other clusters
not overlapped with those basis vectors do not contribute to reconstruction per-
formance as much as projections from that cluster, O(K) projections would be
required from each cluster. But, note that, in general, the coarsest basis vector
representing DC component is likely to be overlapped with more than one cluster
and chosen as data support for real signal. Thus, in practice, performance could
be better than our estimation.

To analyze the worst-case scenario, we assume that we know the basis func-
tions, clustering scheme and the value of K a priori. For each cluster, we first
choose K basis functions with highest energy overlap with the cluster; in general,
finer (more localized) basis functions in spatial domain are likely to be chosen.
Then, we compute the sum of the energy overlap of the chosen basis functions.
To simplify analysis, we take the average over all clusters.

Minimum number of measurements for each cluster indirectly depends on
overlap energy in the worst-case scenario. For example, with DCT basis and
four clusters with the same size, overlap energy for each cluster is equal to K

4 in
the worst-case thus the total number of measurements will be O(K).

5 Experimental Results

For our experiments, we used 500 data generated with 55 random coefficients
in different basis. In the network, 1024 nodes are deployed on the square grid



and error free communication is assumed. To compare what clustering is appo-
site for CS, two types of clustering are considered: square-clustering and SPT-
based clustering. And we do not assume any priority to clusters for measure-
ments; we collect the same number of localized measurements for each cluster.
With localized projection in each cluster, data is reconstructed jointly or inde-
pendently with Gradient Pursuit for Sparse Reconstruction (GPSR) [19] pro-
vided in its package [20]. To evaluate performance, SNR is used to evaluate
reconstruction accuracy. For cost evaluation, transmission cost is computed by∑

(bit)× (distance)2 and the cost ratio is the ratio to the cost for raw data
gathering: a simplest scheme that every sensor independently transmits its data
along the shortest path to the sink.

200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

70

80

number of measurements (M)

S
N

R
 (

d
B

)

 

 

Joint
4

Joint
16

DRP

Indep
4

Indep
16

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Cost ratio to Raw data transmission

S
N

R
 (

d
B

)

 

 

Square
16

SPT
16

Square
64

SPT
64

Square
256

SPT
256

(a) (b)

Fig. 1. Comparison of different types of reconstruction and clustering scheme with
Haar basis with decomposition level of 5. (a) Comparison of independent reconstruction
and joint reconstruction. (b) Cost ratio to raw data gathering vs. SNR with different
number of clusters and clustering schemes

To compare independent reconstruction with joint reconstruction, we used
square-clustering scheme with two different number of clusters and Haar basis
with decomposition level of 5. In Fig. 1(a), DRP corresponds to the case that
takes 256 global measurements from all the nodes in the network then recon-
structs data with joint reconstruction. Other curves are generated from localized
measurements in each cluster and the two types of reconstruction are applied
respectively.

Fig. 1 (a) shows that joint reconstruction outperforms independent recon-
struction. As discussed in Section 4.1, joint reconstruction can alleviate the
worst situation by taking measurements from other clusters overlapped with
basis functions in the data support. In following experiments, all the data was
jointly reconstructed.

With joint reconstruction and Haar basis, Fig. 1 (b) shows that SPT-based
clustering outperforms square clustering for different number of clusters (Nc).
As Nc increases, reconstruction accuracy decreases because measurement matrix
becomes sparser as network is separated into more equal-size clusters. However,
once the transport costs have been taken into account, more clusters show bet-



ter performance because cost per each measurement decreases. Since we also
observed this trend for different bases, we will focus on 64 SPT-based clusters
in following experiments.
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Fig. 2. Performance comparison in terms of cost ratio to raw data gathering vs. SNR
(a) for different basis functions and 64 SPT-based clusters. (b) for 256 SPT-based
clusters with other CS approaches with Haar basis with level of decomposition of 5

To investigate effects of different bases, we consider the joint reconstruction
performance with different basis functions with 64 SPT-based clusters: 1) DCT
basis, where each basis vectors have high overlaps in energy which distributed
throughout the network 2) Haar basis, where the basis vectors have less overlap
and the energy distribution varies from being very localized to global for different
basis vectors and 3) Daubechies (DB6) basis, where the overlaps and distribution
are intermediate to DCT and Haar. The result in Fig. 2 (a) confirms our intuition.
Thus, for the same clustering scheme, the gains from joint reconstruction depend
on how“well-spread” the energy in the basis vectors is.

As an indicator of distribution of energy of basis functions, Eoa is computed
with different clustering schemes for different basis functions. Fig 3 (a) shows
that Eoa accurately distinguishes performance between two different clusters;
SPT-based clusters capture more energy of basis functions than square clusters
then lead to better reconstruction. For different basis functions, Eov shows lower
overlap energy as basis functions are more spread over in spatial domain.

The result for worst-case analysis is shown in Fig. 3 (b). The results show
that, for the same basis function, SPT-based clustering reduces more energy
than square clustering thus requires fewer measurements for each cluster. For
DCT basis, the energy increases slower than other basis because energy of DCT
basis is evenly spread over all clusters. For Haar basis, overlap energy increases
very sharply with a few basis functions then it is saturated because energy of
some basis functions is concentrated in small regions. With Daubechies basis,
the energy is somewhat between two previous bases as we expected.

Fig. 2(b) shows that our approach outperforms other CS approaches [16, 13].
APR corresponds to a scheme that aggregation occurs along the shortest path
to the sink and all the sensors on the paths provide their data for measurements.
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Fig. 3. Eoa and worst-case analysis with different basis and clustering schemes. Smaller
values of metrics indicate more even distribution of overlap energy thus better recon-
struction. (a) Eoa; values are average over clusters and variances are ignored because
they are relatively small. (b) Worst-case analysis; average of cumulated overlap energy
with increasing number of basis

SRP with different parameter, s′ = s × n, represents a scheme that randomly
chooses s′ nodes without considering routing then transmit data to the sink via
SPT with opportunistic aggregation.

In the comparison, SRP performs worse than the others because, as we ex-
pected, taking samples from random nodes for each measurement significantly
increases total transmission cost. Our approach and APR are comparable in
terms of transmission cost but our approach shows better reconstruction. The
performance gap is well explained by Noa for APR and our approach: 0.247 and
0.171 respectively. Lower Noa indicates that energy of basis functions are more
evenly distributed over overlapped clusters thus those functions are more likely
to be identified with joint reconstruction.

6 Conclusion

We have proposed a framework for efficient data gathering in wireless sensor net-
work by using spatially-localized compressed sensing. With localized projection
in each cluster, joint reconstruction has shown better performance than inde-
pendent reconstruction because joint reconstruction can exploit measurements
in multiple clusters, corresponding to energy in a given basis function that over-
laps those clusters. Our proposed approach outperforms over state of the art CS
techniques for sensor networks [16, 13] because our method achieves power sav-
ings with localized aggregation and captures more evenly distributed energy of
basis functions. Moreover, we proposed methods to quantify the level of ”energy
overlap” between the data gathering clusters and the elementary basis on which
the signals are represented, which allows us to to design efficient clusters once
the bases for the signal are known. Based on the metric, we hope to design an
optimal clustering scheme in near future.
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