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Building emergencies, especially structure fires, are threats to the safety of both building occupants and first
responders. It is difficult and dangerous for first responders to perform search and rescue in an unfamiliar envi-
ronment, sometimes leading to secondary casualties. One way to reduce such hazards is to provide first re-
sponders with timely access to accurate location information. To address this challenge, the authors have
developed a radio frequency based indoor localization framework, for which novel algorithms were designed
for two different situations: one where an existing sensing infrastructure exists in buildings and one where an
ad-hoc sensing infrastructure must be deployed. This paper presents a comparative assessment of this frame-
work under different situations and emergency scenarios, and between simulations and field tests. The paper
first presents an assessment of the framework in field tests, showing that it achieves room-level accuracies
above 82.8% and 84.6% and coordinate-level accuracies above 2.29 m and 2.07 m, under the two situations, re-
spectively. Moreover, the framework demonstrates considerable robustness in the tests, retaining a room-level
accuracy of 70% or higher when the majority of sensing infrastructure is damaged. This paper then synthesizes
results from both simulations and field tests, and demonstrates how the framework can be adapted to different
situations and scenarios while consistently yielding satisfactory localization performance.

© 2015 Elsevier B.V. All rights reserved.
1. Background

Building emergencies especially structure fires are big threats to the
safety of building occupants and first responders. For example, public
fire departments across the U.S. attended 487,500 fires in buildings in
2013, which caused 2755 deaths and 12,200 injuries [1]. When emer-
gencies occur, unfamiliar environments are difficult and dangerous for
first responders to search and rescue, sometimes leading to secondary
casualties. Statistics show that 87% of fire-related firefighter fatalities
and injuries occur in structure fires [2]. A total of 159 firefighters died
between 2000 and 2011 in the U.S. when responding to structure
fires, one major cause of which was firefighters getting lost [3,4]. One
way to reduce such hazards is to provide firefighters with timely access
to accurate location information. Their increased awareness of own lo-
cations within the spatial context would significantly reduce the possi-
bility of getting lost in buildings as well as the associated fatalities and
injuries.

It is also of critical importance for an incident commander to know
the locations of first responders in real time, so that decision-making
processes are made faster and more informed. When an emergency
happens, first response teams are sent to carry out search and rescue
operations. In most cases, searching for occupants is a manual process
and requires a complete inspection of all indoor spaces. Such blind
search process is highly inefficient and could be prohibited by fire,
smoke or structural damages. Reducing the time spent on searching
for occupants has great potential to reduce chances of fatalities and
injuries of trapped occupants, and it can be achieved by making the
locations of trapped occupants more transparent to first responders at
emergency scenes.

Access to location information during emergency response opera-
tions is far from being automated and efficient. Currently, after a size-
up of an emergency, which evaluates the severity of an incident and es-
timates required resources based on visual inspections from outside a
building, first response teams are sent in to the building, usually in
groups of four, to perform various tasks such as fire attack, ventilation,
and search and rescue. The deployed first responders communicate
over radios with an incident commander outside the building, who
marks tasks and locations of the deployed teams in a command post
and updates this information based on vocal reports received from the
deployed teams. However, it is challenging to keep this information
organized and updated, considering the ever-changing situations inside
a building, especially when multiple teams use multiple radio channels
to communicate. Access to real-time location information, if made
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possible, would enable an incident commander to better monitor and
guide the deployed first responders. This would lead to reduction
of their chances of getting lost or trapped, and improvement of their
efficiency in performing assigned tasks. On the other hand, search for
trapped occupants is usually done in two rounds. During a primary
search, first responders traverse the building, determine a rough num-
ber and location of trapped building occupants and rescue them. During
a secondary search, first respondersmake sure all spaces are thoroughly
searched, and rescue occupants who are still trapped. Although radios
(and in some cases thermal cameras) are used to help detect the occu-
pants at emergency scenes, the search process is generally low-tech
and blind. First responders usually have little clue of how many occu-
pants are trapped, where they are, and how to reach them. There is a
need for an indoor localization solution that enables first responders
to obtain real-time location estimations of both themselves and trapped
occupants during emergencies, so that they can prioritize spaces that
are more likely to have occupants when planning the search and rescue
routes, and increase their own safety during emergency response
operations.

2. A radio frequency based indoor localization framework

2.1. Need analysis

Given the significance of indoor location information at building
emergency scenes, the authors have carried out the following research
efforts that have led to the development of a novel indoor localization
framework using radio frequency (RF) technologies.

First, the authors examined the relative importance of indoor loca-
tion information among a list of nineteen information items that may
be useful during building emergencies [5]. Interactive interviews were
designed and conducted with first responders from the Los Angeles
Fire Department (LAFD). During the interactive interviews, imaginary
building emergencies were presented to the interviewees who were
asked to command an emergency operationwith the help of the provid-
ed information items. Based on the interview results, for each informa-
tion item, its importance was examined from three perspectives
including the order that it was requested during the interviews, the fre-
quency that it was updated, and its overall value ranked by the inter-
viewees. The importance of each information item was assessed in a
quantitative manner, and it was found that indoor location information
was one of the most important information items in all stages of build-
ing emergency response operations.

A survey was also carried out among first responders across the U.S.
to examine the requirements for indoor localization at building emer-
gency scenes [5]. The survey was motivated by the fact that, with the
rapid adoption of various sensing tools, such as remote sensing [6–8],
geographic information systems (GIS) [9–11], thermal imaging cameras
[12], and mobile computing and communication devices [13,14], that
are used in the emergency response practices, there is a need for an ef-
fective tool that can aid the search for victims and tracking of deployed
first responders. Most existing indoor localization solutions for building
emergency response operations, either proposed in the academia
[15–23] or are available in themarket [24,25],were developed in the ab-
sence of clear knowledge about the needs offirst responders if an indoor
localization solution existed. This problem is even more obvious with
indoor localization solutions developed for general purposes using var-
ious technologies such as inertial navigation systems (INS) [26–28],
assisted GPS (AGPS) [29–31], and infrared [32–34], as well as a couple
of RF technologies including ultra wide band (UWB) [35–37], radio fre-
quency identification (RFID) [38–41], wireless local area network
(WLAN) [42–45], andwireless sensor networks (WSN) [46–48]. For ex-
ample, most existing solutions predominantly emphasized their high
accuracies; however, none of them arguedwhat level of accuracy is suf-
ficient to support emergency response operations while not becoming
over demanding in terms of supporting infrastructure or prior data
input, or to what extent an accuracy should be retainedwhen a solution
is challenged by hazards such as fire and structural collapses. In this
survey, the respondents were asked to select the top five important
requirements from a list of eleven requirements. Based on the survey
results, the following requirements were identified as critical when
designing or evaluating indoor localization solutions for building emer-
gency response operations: accuracy (focus on room-level), ease of on-
scene deployment (up to 2.25 min for ad-hoc network setup), robust-
ness (against physical damages), computational speed (approximately
40 s for location computation), and finally size and weight of devices
(up to 107 cm3 and 1.15 kg).

2.2. Methodology

Based on the above requirements, the authors designed two
localization algorithms, named the EASBL (Environment-Aware radio
frequency beacon deployment algorithm for Sequence Based Localiza-
tion) and the IMLE (Iterative Maximum Likelihood Estimation). Built
on a sequence based localization schema [49], the EASBL was designed
for situations, where ad-hoc sensor networks are needed at emergency
scenes in the absence of existing sensing infrastructure. The algorithm
has a dual-objective function that balances between localization accura-
cy and the deployment effort of ad-hoc networks. The likelihood of
correct room-level location estimation is measured by location space
quality, a metric that can be calculated based on geometries of the
space and the deployment plan of devices. The deployment effort
is measured by the number of devices to deploy, and the accessibility
of locations to deploy the devices. The EASBL uses a Tabu search
metaheuristic to improve the efficiency of searching for optimal plans
for space division and device placement. The algorithm design and
details as well as the mathematical formulation can be found in [50].

The IMLE was designed for situations, where existing sensing infra-
structure can be accessed to collect RF data needed for location compu-
tation. Existing sensing infrastructure can be a network of any type of RF
transmitters and transceivers installed in buildings for certain purposes,
such as communications and security. This network of RF devices can be
used for localization purposes during emergencies, provided that the in-
formation of its configuration, particularly the layout and specifications
of the devices, is known. The IMLE integrates a maximum likelihood
estimation (MLE) method for estimating the parameter values of a RF
signal propagation model. Such ad-hoc estimation reflects the impacts
of environmental factors on RF signal propagation. The model is then
used to infer target locations from collected RF signals, which also
adopts the MLE method. In addition, the IMLE introduces a novel itera-
tive computational process, which integrates the spatial layouts and
searches for room-level estimations that can lead to convergence after
certain iterations or, if no converged estimations exist, estimations
that aremost likely to converge. This iterative process offsets the impact
of wall-related RF signal attenuations on the localization accuracy. The
details of the IMLE algorithm can be found in [51]. Both algorithms
were evaluated extensively however, only under simulated building
emergency scenarios, and reported promising results that demonstrat-
ed the potential of the algorithms in satisfying the aforementioned
five requirements. It needs to be emphasized that both algorithms
closely integrate building information modeling (BIM) as a source of
indoor geometric information used in location computation, and a plat-
form for user interaction and visualization of localization results.

As a continuous research effort, this paper further assesses the local-
ization framework with two algorithms, in hopes of achieving the
following objectives:

(1) Assess the performance of these two algorithms in field tests.
Simulation based evaluation is advantageous in that the tests
are easily repeatable, and that evaluations are carried out in
a controlled environment so that the impact of a particular factor
can be isolated and analyzed. However, simulation based
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evaluation is also challenged by the fact that the real-world envi-
ronments are more complex and unpredictable, which may im-
pact the performance of the indoor localization framework in
ways that are unobservable in a simulation. Field tests are there-
fore necessary in order to examine the achievable performance
of the algorithms under various constraints imposed by real-
world environments. In this paper, the two aforementioned algo-
rithms are examined in field tests conducted in a typical office
building. A smartphone-based prototype was developed for the
tests, and emergency scenarios parallel to those used in simula-
tions were used for field evaluations.

(2) Evaluate the performance of the localization framework under
different situations and scenarios. The EASBL and the IMLE
were examined separately under situations that they were re-
spectively designed for. For either algorithm, the simulation
based assessments and the field test based assessments were
carried out in two consecutive stages. The simulations and field
tests shared the same test bed and emergency scenarios and sit-
uations, which provided the basis for comparisons. By providing
a comparative evaluation of both algorithms, this paper synthe-
sizes previous results, and demonstrates how the framework
can be adapted to different situations and scenarioswhile consis-
tently yielding satisfactory localization performance.

3. Field test setup

This section presents the design of the smartphone-based prototype
used in the field tests, and explains the details of emergency scenarios
and situations, based on which the field tests were conducted.

3.1. Prototype development

The prototype consisted of three major components: RF transmit-
ters, smartphones, and a localization server. The RF transmitters were
off-the-shelf programmable routers (Fig. 1a) [52]. Each transmitter,
with a size of 113 mm × 138 mm × 29 mm and a weight of 230 g,
contained a 400 MHz processor, 32 MB onboard memory, two built-in
high power antennae, five Ethernet ports, and light-emitting diode
(LED) indicator lights.With a transmit power of 30 dBm, the transmitter
could create a 802.11b/g/n wireless access point that was detectable up
to 50m away in an open space. During the field test, in scenarios where
an ad-hoc network was needed, the transmitters were used as beacon
nodes in the network, and they were deployed by first responders at
the beginning of the field test following the deployment plans devel-
oped by the EASBL algorithm. In scenarios, where existing sensing infra-
structure was available, the transmitters were preinstalled in the test
Fig. 1. Transmitter (a) and smartphone (b) used in the prototype.
bed before the field tests began, and the information, including their
mac addresses, service set identifiers (SSID), and locations, was record-
ed beforehand and made available for location computation. In either
case, each transmitter had its own unique mac address and SSID,
which were visible to any device that received the RF signal that the
transmitter broadcasted.

The smartphones used in the prototype were also off-the-shelf
smartphones (Fig. 1b) [53] with a size of 116 mm × 60 mm × 14 mm
and a weight of 169 g. Each smartphone had a 600 MHz processor,
256 MB memory, extendable storage capacity, and built-in cellular,
WiFi and Bluetooth modules, and relied on a built-in battery for
power. It supported customized and third-party applications. A localiza-
tion application was developed for this prototype (Fig. 2) and installed
in the smartphones. The application, when run by the user, would
turn on the WiFi sensor in the smartphone, scan all detectable WiFi
access points in the environment every five seconds, collect RF signal
data, and forward it to a localization server, whose IP address was pro-
grammed into the application beforehand but could also be overwritten
by user input. The data sent by the application to the server included the
mac address, SSID, and RSSI of every detectedWiFi access point, the de-
vice ID of the phone, and a timestamp. The data transition could rely on
either the WiFi or the cellular connection. The application also had a
user interface that allowed users to monitor the data collection and
transition processes, and to stop or resume the localization function
whenever needed. In addition, an off-the-shelf time synchronization
application was also installed in the smartphone. This application kept
the clocks synchronized among all smartphones and the localization
server during the field test. A few smartphones were pre-deployed
and used as transceivers in the field tests.

A remote localization server was set up as part of the prototype.
Accessible to the incident commander, the localization server consisted
of fourmajor components: awebserver, an SQL database, a BIM platform,
and a location computation module. The webserver was responsible for
receiving the signal data that were sent by the smartphone application
in a JSON format, parsing the data, and passing the data to the SQL data-
base. The SQL database, upon the receipt of the data, checked the integrity
of the data, and stored it in two separate tables, one for real-time process-
ing, and the other for data backup. The SQL database was also used for
maintaining additional data required for location computation. This
data included the location, mac addresses, SSID, and transmit power of
existing transmitters and transceivers, the mapping between IDs of the
phone users and the phone device IDs. The SQL database also included
Fig. 2. Interface of the localization application.



Fig. 3. Snapshot of the BIM platform.
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a table that kept a record of all location computation results. This table not
only allowed further analysis of the localization results, but also had the
potential to be used for supporting an extended target tracking function.
The BIMplatform (Fig. 3), based on a commercial BIM authoring tool [54]
and a customized add-on development, was used to interact with the
BIM model of the test bed building that had emergency situations. The
BIM platform extracted building geometric information from the BIM
models, and used it for interpreting the layout of existing sensing infra-
structure or the ad-hoc networks, as well as supporting location compu-
tation. It also provided aGUI that allowedusers to define the sensing area,
indicate the availability of existing sensing infrastructure, monitor loca-
tion computation progress, and see visualized localization results. Lastly,
Fig. 4. Data flow in
the location computationmodulewas responsible for processing the data
retrieved from the SQL database and the BIMmodels, estimating targets'
locations by implementing the EASBL and IMLE algorithms, and sending
the location computation results back to the SQL database for record
and to the BIM platform for visualization. Fig. 4 shows the connection of
the above components of the prototype and the data flow in the field
tests.

3.2. Field test scenarios, procedures and test bed setup

The field tests were carried out in a representative floor of a typical
office building on the University of Southern California campus. This
the field tests.



46 N. Li et al. / Automation in Construction 57 (2015) 42–54
floor has an area of about 1800 m2, containing a total of 14 single occu-
pancy offices, and 12 multioccupancy conference rooms or labs. The
hallway has a length of about 100m comprised of four linear segments.
Each linear segment was treated as a separate room in the tests.
Instances when test subjects were in the hallway were included when
calculating the room-level accuracy. Two imaginary building fire emer-
gency scenarioswere used in the field tests (Fig. 5). Both scenarioswere
designed based on the suggestions from a number of first responders,
and were reviewed and verified by two incident commanders from
the LAFD in terms of the representativeness of the incidents and the
scope of the sensing areas. In scenario 1 (Fig. 5, a, b), two single offices
were on fire (marked as rooms on fire in the figure). Occupants in
these offices, all neighboring offices, and offices and conference room
that were across the hallway and had doors open to the hallway
(i.e., all rooms within the sensing area boundary) had to be evacuated.
Due to the spreading smoke, visibility in the hallway outside the offices
was low, resulting in an increased risk to the first responders. The sens-
ing areawas defined by the sensing area boundary in Fig. 5 (a, b) with a
size of 221 m2. In scenario 2 (Fig. 5, c, d), fire started in a lab and soon
Fig. 5. Simulation scenario
spread to another lab across the hallway (marked as rooms on fire in
the figure). All labs on the east side of the floor were shut down for
fire attack and search & rescue (i.e., all rooms within the sensing area
boundary). Visibility in the hallwaywas lowdue to the smoke. The sens-
ing area was defined by the sensing area boundary in Fig. 5 (c, d) with a
size of 729 m2.

In both emergency scenarios, two situations were tested, including
situation 1 (Fig. 5, a, c), where no existing sensing infrastructure existed
in the building, an ad-hoc sensing networkwas required, and the EASBL
algorithmwas used; and situation 2 (Fig. 5, b, d), where existing sensing
infrastructure was available, and the IMLE algorithmwas used. The lay-
outs of the devices in both scenarios and both situations are illustrated
in Fig. 5. For each combination of scenario and situation, a field test
was designed and repeated twice. A total of eight field tests were
conducted.

Based on the common resource dispatch rules used by fire depart-
ments in the U.S., the following resources would be dispatched upon
the receipt of an emergency call from the test bed building: four engine
companies, two truck companies, two rescue ambulances, one battalion
s and device layouts.



Table 1
Localization accuracy of the EASBL algorithm and the optimal placement with proximity
schema in the field tests.

Performance metrics EASBL Optimal placement with
proximity schema

Scenario 1
Room-level accuracy (%) 82.8 31.7
Coordinate-level accuracy (m) 2.12 3.23

Scenario 2
Room-level accuracy (%) 83.7 39.3
Coordinate-level accuracy (m) 2.29 3.06
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chief, and one emergency medical service captain. In both scenarios,
based on the discussions with incident commanders from the LAFD,
the following assumptions about resource allocation and actions taken
by first responders and trapped occupants within the sensing area
were made: the truck companies, ambulances, battalion chief, and
emergency medical services (EMS) captain would be working outside
the building. Three engine companieswould be deployed towork inside
the building, with a fourth engine company standing by. Each engine
company consisted of four first responders. Two deployed engine com-
panies would be assigned to attack the fire, with three first responders
in each company working together within the sensing area, and one
first responder working outside the area on water supplies. The teams
would first lay out hoses, and deploy an ad-hoc sensor network, if need-
ed. Theywould thenwork in or around burning rooms until the fire was
put out. One deployed engine companywould be assigned to search and
rescue trapped occupants. The team would traverse all rooms in the
sensing area and, when trapped occupants were found, escort them to
a safe zone. In both scenarios, it was assumed that five occupants
were trapped in four rooms when the first response teams arrived.
Two of them moved around, trying to find their way out but blocked
by fire and smoke, until they were rescued by the first responders.
Three of them stayed in their rooms and wait for the rescue. The emer-
gency situation was assumed to be under control within 20 min after
the first response teams were deployed. To mimic this process, each
field test was designed to take a maximum of 20 min. A total of sixteen
test subjects participated in the field tests. One subject assumed the role
of a battalion chief, who operated the localization solution and
commanded the emergency response operation from outside the sens-
ing area. Among the rest of the fifteen subjects, ten assumed the role of
first responders in three engine companies, and five assumed the role of
trapped occupants. These fifteen subjects acted as targets in the field
tests, and they were always monitored and located when they were in-
side the sensing area during the field tests. Every target was equipped
with a smartphone that was synchronizedwith the server. The localiza-
tion application was installed in the smartphones. Every target was also
given a stopwatch, and a unique script that listed a number of locations
that the target needed to traverse. A target was instructed to take an ac-
tion every 15 s paced by the stopwatch. An action can be either moving
to the next location indicated in the script, or staying at the current lo-
cation. A target needed to perform a total of 60 actions in every field
test, including actions taken by a group of first responders in situation
1 to deploy ad-hoc networks. There were 66 different locations that a
target might be instructed to visit. Scattered in the sensing area, these
locations were marked with numbered sticky notes for easy recogni-
tion, and their locations were measured beforehand and used as the
ground truth. All subjects went through one-hour long training before
the field tests. During the training, they were explained the purpose
and procedure of the field test, their respective roles, and the instruc-
tions in their individual scripts. They were also instructed about how
to use the two applications installed in their smartphones. In addition,
the subjects were walked through the test bed during the training to
get familiar with the locations of the sticky notes, so that they could
quickly navigate in the building during the field tests.

4. Field test results

This section presents the results reported from eight field tests con-
ducted in the test bed building.

4.1. Evaluation of the framework with no existing sensing infrastructure

4.1.1. Localization accuracy and deployment effort
For situation 1, where there is no existing sensing infrastructure at

emergency scenes, the deployment of an ad-hoc sensor network was
needed, and the EASBL algorithm was used for location computation.
In thefield tests, an optimal Tabu size of 10 as reported in the simulation
was used in the EASBL. For each scenario, the average accuracies of the
two repeated field tests are presented in Table 1. The localization accu-
racy with a proximity schema, coupled with optimal transmitter place-
ments reported by the EASBL, was also calculated. The proximity
schema assumed the location of the nearest transmitter to a target as
the target's location [41]. The proximity schema is oneof themostwide-
ly used localization schema. It usually outperforms range-based schema
anddoes not require prior data input asfingerprinting schemadoes, and
is applicable to data collected by the ad-hoc networks. The results are
presented in Table 1.

In all of the four field tests in situation 1, the room level accuracy
achieved by the EASBL algorithm was above 80% and the coordinate-
level accuracy was above 2.5 m. Specifically, the respective average
room-level accuracies in scenario 1 and scenario 2 were 82.8% and
83.7%, and the respective average coordinate-level accuracies in scenar-
io 1 and scenario 2 were 2.12 m and 2.29 m. These results were better
than those with the proximity schema, suggesting the competence of
the EASBL. It was observed that the room-level accuracy of the EASBL
was significantly better but the difference between the coordinate-
level accuracies was not that significant. This phenomenonwas a reflec-
tion of the fact that the EASBL was particularly designed to improve
room-level localization accuracy, by strategically selecting the place-
ment of RF devices, whereas the coordinate-level accuracy did not nec-
essarily benefit from the optimized layout. Moreover, further analysis
revealed that 41.7% of incorrect room-level estimations by the EASBL
werewithin rooms neighboring the correct rooms. This finding suggests
that even an incorrect estimation could potentially be used to indicate in
whichmulti-room zone a targetmay be located. This is important, espe-
cially when first responders fail to find trapped occupants in estimated
rooms in the first attempt and need clues for secondary places to search.
In general, the accuracies reported in the field test provided convincing
evidence about the capability of the EASBL algorithm in providing reli-
able location information at emergency scenes.

4.1.2. Robustness against partial loss of deployed transmitters
Further analysis of the test data was carried out to evaluate the

robustness of the EASBL against occurrence of loss of deployed transmit-
ter. The ad-hoc networks deployed in the test bed included 11 and 13
transmitters in scenario 1 and scenario 2, respectively. For each scenar-
io, beginning with the initial deployment, randomly selected transmit-
ters were taken out, one at a time, and the accuracy was re-calculated
only based on the data collected from the remaining transmitters. In
order to offset the impact of randomness in selecting the transmitter
to be taken out, for a specific number of remaining transmitters, thepro-
cess was repeated 100 times. The minimum number of deployed trans-
mitters to make sensing space division possible in the EASBL algorithm
was 2 transmitters. The results are shown in Fig. 6.

In scenario 1, when no more than 4 transmitters, or 36.4% of all
transmitters, were removed, the room-level accuracy remained above
70% and the coordinate-level accuracy remained above 2.5m. In scenar-
io 2, when no more than 7 transmitters, or 46.2% of all transmitters,
were removed, the room-level accuracy remained above 70% and the
coordinate-level accuracy remained above 3.0 m. Such limited impact



Table 2
Evaluation of the accuracy of the IMLE algorithm in the field tests.

Performance metrics Localization algorithm

IMLE MLE IP

Scenario 1
Room-level accuracy (%) 84.6 51.7 27.8
Coordinate-level accuracy (m) 1.85 3.98 7.49

Scenario 2
Room-level accuracy (%) 86.2 55.3 32.5
Coordinate-level accuracy (m) 2.07 4.06 7.17

Fig. 6. Assessment of robustness against partial loss of deployed transmitters.
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of device losses on the localization accuracy provided a demonstration
of the robustness of the EASBL algorithm under situation 1 in the field
tests. However, when the device losses continued to increase, the im-
pact became more obvious. A significant decline of accuracy was ob-
served when 6 or more transmitters were removed in scenario 1,
resulting in a room-level accuracy of below 60% and a coordinate-level
accuracy of below 3.0 m, and when 8 or more transmitters were re-
moved in scenario 2, resulting in a room-level accuracy of below 60%
and a coordinate-level accuracy of below 3.5 m.

4.1.3. Ease of on-scene deployment, computational speed, and the size and
weight of devices

In addition to the accuracy and robustness, the aforementioned sur-
vey results also revealed that a localization solution should have ease of
on-scene deployment, have fast computational speed, and use devices
with desirable size and weight. The ease of on-scene deployment, mea-
sured by the deployment effort of ad-hoc networks, is improved by the
inherent design of the EASBL algorithm. During the field tests, the ten
subjects assuming the role of first responders were able to identify the
specified locations for node deployment and set up an entire ad-hoc
network within 90 s after the instructions were provided. While admit-
tedly more timewould be required for the ad-hoc network deployment
at real-world emergency scenes due to conditions such as fire and
smoke, the results from the test deployment were promising. Well
trainedfirst responders are likely to be able to complete thedeployment
within 135 s, which is the maximum amount of time allowed to be
spent on a deployment, as reported in the survey [5].

In terms of the computational speed, it was observed that one up-
date of the location estimations, which involved collecting the data
from the ad-hoc network, computing the targets' locations, and present-
ing the localization results in the BIMplatform, took less than 5 s, far less
than 40.34 s, which was reported as an appropriate amount of compu-
tational time in the survey [5]. Moreover, the Tabu search was used
by the EASBL algorithm to quickly search for satisfactory solutions to
initial ad-hoc networks deployment. The integration of this soft com-
puting technique significantly improved the computational efficiency.
However, the EASBL algorithm, when implemented in its current
shape, required excessive computational time in computation of the
transmitter deployment plan due to the delay in processing of building
geometries, which was performed by the BIM authoring tool. The BIM
toolwas selected solely based on its availability regardless of its efficien-
cy, as the scope of the research presented in this paper does not focus on
improving the computational efficiency of processing building geome-
tries. It was observed that the building geometry processing was re-
sponsible for over 90% of the total computational time. Since the
processing of geometries occurs only when finding satisfactory solu-
tions to transmitter deployment, the impact of low efficiency in geome-
try process was limited to the impediment of fast network deployment
at the beginning of the emergency response operation.
Lastly, the sizes of the transmitters (0.45 cm3) and the smartphones/
transceivers (0.10 cm3)were below the 107.34 cm3 threshold identified
in the survey. The weights of the transmitters (0.23 kg) and the
smartphones/transceivers (0.17 cm3) were also below the 1.16 kg
threshold identified in the survey [5].

4.2. Evaluation of the framework with existing sensing infrastructure

4.2.1. Localization accuracy
For situation 2, where there is existing sensing infrastructure at

emergency scenes, the localization framework would implement the
IMLE algorithm for location computation. In two field tests conducted
for scenario 1 in situation 2, the IMLE algorithm achieved an average ac-
curacy of 84.6% at the room level and 1.85 m at the coordinate level. In
two field tests conducted for scenario 2 in situation 2, the IMLE algo-
rithm achieved an average accuracy of 86.2% at the room level and
2.07 m at the coordinate level. The results are summarized in Table 2.
The accuracies were consistent across the two scenarios that involved
sensing areas of different sizes and shapes. Test results also showed
that 62.5% of incorrect room-level estimations fell within neighboring
rooms, suggesting that a secondary estimation of a target's locations
could be possible if the initial estimation turned out to be incorrect.

To further evaluate the performance of the IMLE, this algorithm is
compared to two other localization algorithms. The first algorithm is
thewidely usedmaximum likelihood estimation (MLE) algorithm. It lo-
cates targets byMLE based triangulation, and does not take into account
the impact of building geometries on signal propagation. The second al-
gorithm integrates the widely used proximity based algorithm [40,41],
assuming that a target is located at its nearest neighboring transmitter,
and offsets the impact of signal attenuations through walls with an
iterative process. This algorithm is named as the iterative proximity
(IP) algorithm in this paper. These two algorithms were selected for
comparison as they share important characteristics (MLE based compu-
tation, an iterative process) with the IMLE algorithm, and at the mean-
time integrate existing indoor localization algorithms (i.e., MLE and
proximity) that have been extensively investigated in the prior research
[55].



Fig. 7. Robustness against partial loss of existing transmitters in the field test.
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The results, which are also summarized in Table 2, showed that the
accuracies of the MLE and IP were significantly lower than those of the
IMLE both at the room level and the coordinate level in both scenarios.
The failure of theMLEwas due to its negligence of RF signal attenuations
caused bywalls, and the failure of the IPwas due to its heavy reliance on
a high density of transmitters thatwas unavailable in thefield tests. This
comparison highlights the advantages of the IMLE algorithm, particular-
ly its capability of offsetting the impact of walls and its insensitivity to
the amount of devices when existing sensing infrastructure is accessible
at building emergency scenes.

4.2.2. Robustness against partial loss of existing transmitters
The test datawere further analyzed to evaluate the robustness of the

IMLE algorithm against occurrence of losses of devices, including trans-
mitters and transceivers. Beginning with the initial deployment, the
analysis process was the same as the process for analyzing the robust-
ness of the EASBL. A minimum of 3 transmitters and 3 transceivers
were needed for the framework to implement the IMLE algorithm.
This subsection discusses the findings about the robustness against
loss of transmitters. The results are shown in Fig. 7. The findings about
the robustness against loss of transceivers are discussed in the next
subsection.

As can be seen in Fig. 7, the IMLE algorithm was proven robust
against partial loss of transmitters. In scenario 1, the room-level
accuracy remained above 80% when up to 3 transmitters, or 27.2% of all
transmitters,were removed. Similarly, in scenario 2, the room-level accu-
racy remained above 80%when up to 4 transmitters, or 30.8% of all trans-
mitters, were removed. The impact of loss of transmitters became
dominant when only 4 or fewer transmitters were left. The results sug-
gested that a satisfactory accuracy could be achievedwith a small number
of transmitters, and that extra transmitters added to the network, while
not making significant contribution to the accuracy, could provide addi-
tional robustness to the localization solution.
Fig. 8. Robustness against partial loss of e
4.2.3. Robustness against partial loss of existing transceivers
It was found in thefield test that in both scenarios the room-level ac-

curacy was not significantly impacted by the loss of 2 or fewer trans-
ceivers, with the accuracy remaining above 75% and 80% in scenario 1
and scenario 2, respectively. However, unlike the simulation, the field
tests reported large reductions in the accuracy to an unreliable level of
below 55% when a third transceiver was removed. The impact of the
loss of transceivers was highly consistent across the two scenarios, as
shown in Fig. 8.
4.2.4. Ease of on-scene deployment, computational speed, and the size and
weight of devices

In addition to the provision of satisfactory accuracy and robustness,
the IMLE was proven to be capable of satisfying the other three impor-
tant requirements identified in the survey. First, the IMLE, unlike the
EASBL, does not require computation of ad-hoc network deployment
plans and the deployment of the networks. Therefore, it could be easily
set up and implemented at emergency scenes. Second, the computa-
tional time for updating the location information did not took more
than five seconds based on observations in the field tests. Since the
field tests used the same prototype, it could satisfy the requirements re-
garding the size and weight of devices as discussed above.
5. Discussions

This section discusses the assessment results reported from both
simulations and field tests. It needs to be noted that, in order to better
depict the performance of the framework and given the acceptable
repeatability of simulations, the accuracies reported in simulations are
presented as ranges instead of point values. They are confidence inter-
vals of the average accuracy, calculated at a 95% confidence level.
xisting transceivers in the field test.



Table 3
Localization accuracy under situation 1.

Scenarios Performance of the EASBL

Simulation Field test

Room-level accuracy (%) Coordinate-level accuracy (m) Room-level accuracy (%) Coordinate-level accuracy (m)

Scenario 1 87.0 ± 3.6 1.78 ± 0.24 82.8 2.12
Scenario 2 87.2 ± 3.8 1.57 ± 0.22 83.7 2.29
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5.1. Comparison between simulations and field tests

5.1.1. Localization performance with no existing sensing infrastructure
The reported accuracies of the EASBL, in both simulations and field

tests, under the situation where there is no existing sensing infrastruc-
ture, are summarized in Table 3. As can be seen in the table, both in
the simulations and the field tests, the performance of the framework
was consistent across the two scenarios, despite the variations in
the size and layout of the sensing areas. The discrepancies of the
room-level accuracy were less than 0.9%, and the discrepancies of the
coordinate-level accuracy were less than 0.21 m. The accuracies report-
ed in the field tests were slightly lower than those reported in the sim-
ulation. The difference could have been caused by multiple reasons,
such as the existence of complex environmental factors that interfered
with the propagation of RF signals, the influence of targets' movements,
and variations in the test subjects' gestures of holding the smartphones.
In addition, it was observed both in the simulations and field tests that
for a large portion of the targets that were incorrectly estimated with
the EASBL at the room level, their estimated rooms were neighboring
their actual rooms (83.6% and 41.7% in simulations and field tests,
respectively).

Moreover, themeasured robustness of the framework in simulations
was generally consistent with the robustness measured in the field
tests. The magnitude of reduction of the room-level accuracy with in-
creased loss of deployed transmitters was comparable between simula-
tions and field tests, as can be seen in Fig. 9. Given the same number of
remaining deployed transmitters, the average difference of the room-
level accuracy between the simulation and the field tests was 1.8%
with slight variations. The reduction of accuracy occurred at a lower
rate in scenario 2, due to the larger number of transmitters initially
Fig. 9. Comparison of robustness bet

Table 4
Localization accuracy under situation 2.

Scenarios Performance of the IMLE

Simulation

Room-level accuracy (%) Coordinate-level accuracy (

Scenario 1 95.0 ± 2.5 0.72 ± 0.10
Scenario 2 95.1 ± 2.7 0.84 ± 0.11
deployed in the sensing area. In general, it can be concluded that the
overall performance of the EASBL was comparable between simulations
and field tests.

5.1.2. Localization performance with existing sensing infrastructure
The reported accuracies of the IMLE, in both simulations and field

tests, under the situation where there is existing sensing infrastructure,
are summarized in Table 4. Both in simulations and field tests, the accu-
racy again was consistent across the two scenarios. The discrepancies of
the room-level accuracy were less than 1.6%, and the discrepancies of
the coordinate-level accuracy were less than 0.22 m. The accuracies
were expectedly lower than those reported in simulations, by approxi-
mately 10% at the room level and 1.2 m at the coordinate level. These
differences were the likely results of various impacts discussed in the
previous subsection. In addition, it was observed both in the simulations
andfield tests that for a large portion of the targets thatwere incorrectly
estimated at the room level, their estimated rooms were neighboring
their actual rooms (87.1% and 62.5% in the simulation and the field
tests, respectively).

A comparison of the robustness observed in the field tests to that re-
ported in the simulations, as illustrated in Fig. 10, showed that the IMLE
algorithm was more robust in the simulated environment. Given the
same extent of loss of transmitters, the reduction in the room-level
accuracy was more significant (7.1% higher on average) in the real-
world environment, especially when the loss exceeded half of the
total transmitters (up to 18.1% higher). Consequently, while aminimum
of 3 transmitters would suffice to ensure a room-level accuracy of above
70% in the simulation in both scenarios, aminimumof 5 and 6 transmit-
ters were required in scenario 1 and scenario 2, respectively, to achieve
the same level of accuracy in the field tests.
ween simulations and field test.

Field test

m) Room-level accuracy (%) Coordinate-level accuracy (m)

84.6 1.85
86.2 2.07



Fig. 11.Comparison of robustness against loss of transceivers between simulations andfield tests. (For interpretation of the references to color in thisfigure legend, the reader is referred to
the web version of this article.)

Fig. 10. Comparison of robustness against loss of transmitters between simulations and field tests.

Table 5
Comparison of the accuracy between the EASBL and the IMLE.

Scenario 1 (EASBL) Scenario 2 (IMLE)

Situation 1 Situation 2 Situation 1 Situation 2

Simulation
Room-level
accuracy (%)

87.0 ± 3.6 95.0 ± 2.5 87.2 ± 3.8 95.1 ± 2.7

Coordinate-level
accuracy (m)

1.78 ± 0.24 0.72 ± 0.10 1.57 ± 0.22 0.84 ± 0.11

Field test
Room-level
accuracy (%)

82.8 84.6 83.7 86.2

Coordinate-level
accuracy (m)

2.12 1.85 2.29 2.07
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As for the robustness against the loss of transceivers, it was found
that there was a discrepancy between simulations and field tests re-
garding the impact of removing a third transceiver. This comparison is
illustrated in Fig. 11. The figure shows that themagnitude of the accura-
cy reduction was generally comparable between simulations (blue
lines) and field tests (red lines) in both scenario 1 (circles) and scenario
2 (triangles), except when a third transceiver was removed.

5.2. Comparison between the two algorithms

This subsection compares the performance of the two algorithms
under two situations. It is important to emphasize that two algorithms
are designed for the localization framework with different intentions
for different situations. This inherently determines the different perfor-
mances of the framework even when used in the same building fire
emergency scenarios.

The accuracies of the framework under two situations, both in simu-
lations and field tests, are summarized in Table 5. As can be seen in the
table, the accuracy under situation 1,where the EASBLwas implemented,
was generally lower than the accuracy under situation 2, where the IMLE
was implemented. In simulations, the room-level accuracy under situa-
tion 1 was 8.0% and 7.9% lower than that under situation 2 in scenario 1
and scenario 2, respectively; the coordinate-level accuracy under situa-
tion 1was 1.06mand 0.73m lower than that under situation 2 in scenar-
io 1 and scenario 2, respectively. In thefield tests, the room-level accuracy
under situation 1 was 1.8% and 2.5% lower than that under situation 2 in
scenario 1 and scenario 2, respectively; the coordinate-level accuracy
under situation 1was 0.27m and 0.22m lower than that under situation
2 in scenario 1 and scenario 2, respectively.
There are two reasons that explain the relatively lower accuracies
under situation 1. First, the accuracy was one of the two objectives
that the EASBL aims to optimize. By selectingdeployment plans that bal-
ance the accuracy and deployment effort, the EASBL did not demon-
strate its full capacity in improving the accuracy. Second, the IMLE
utilized more sensing infrastructure, including all transmitters in the
same placement utilized by the EASBL, and a number of additional
transceivers. The extended sensing infrastructure and the resulting
richer sensor data contributed to the higher accuracy yielded by the
IMLE. In addition, smaller discrepancies in the accuracy of the two algo-
rithms were observed in the field tests than in the simulations. The
cause of such reduced discrepancies is that the environmental factors
that the simulation did not factor in, such as the existence of metal fur-
niture and themovement of people, hadmore impact on the accuracy of



Fig. 12. Comparison of the robustness of the two algorithms (simulation). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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the IMLE. Such stronger impact could result from the fact that the IMLE,
unlike the EASBL, relied on a mapping between signal strength and
physical distances, and the mapping was sensitive to the impact of the
environmental factors.

The IMLE algorithm also showed better robustness. As can be seen in
Figs. 12 and 13, in both scenario 1 (red solid lines) and scenario 2 (blue
dashed lines), the EASBL (circles) experienced faster reductions in the
room-level accuracy than the IMLE (triangles) when the number of de-
ployed transmitterswas gradually reduced.With theminimumnumber
of deployed transmitters, i.e. 2 transmitters for the EASBL and 3 trans-
mitters for the IMLE, the accuracy of the EASBL was below 20%, while
the accuracy of the IMLE was above 40%. The higher robustness of the
framework under situation 2 results from the use of the MLE method
in the IMLE algorithm. The performance of the MLE method should
not vary significantlywith variances in the number of input data entries,
if there are no outliers in the input data.

The localization framework was proven to be deployable on scene
within the 135 s threshold under both situations in the field tests.
Under situation 1, the framework required extra time during the on-
scene deployment to address the challenge of having to establish an
ad-hoc sensor network. It is important to note that on one hand, the
lack of the ability in the IMLE algorithm to address this challenge results
in the IMLE algorithm not being applicable to situation 1; on the other
hand, the EASBL algorithm is applicable to situation 2, but with reduced
accuracy and robustness. The EASBL algorithm reduced the ad-hoc net-
work deployment effort by 32.5% in scenario 1 and 31.7% in scenario 2.
In addition, the computational time for updating the location informa-
tion was comparable across the two algorithms and in both cases far
less than the 40.34 s threshold. The framework could use the same
prototype under both situations in the field tests, and therefore always
satisfied the thresholds of 107.34 cm3 and the 1.16 kg for device size and
device weight, respectively.
Fig. 13. Comparison of the robustness of the two algorithms (field test). (For interpretation o
this article.)
6. Limitations

While the localization framework has achieved promising results
both in the simulation and the field tests, it bears a number of limita-
tions that need to be noted. First, some caution is neededwhen general-
izing the reported results. The framework has been tested for two
scenarios in two situations and yielded consistent performances. How-
ever, it must be pointed out that the selected test bed building is not
representative of all building types, nor are the two emergency scenar-
ios representative of all emergency scenarios that could happen in the
real world. Admittedly, the performance of the framework may differ
when implemented in other buildings, especially those with drastically
different construction types, interior spatial layouts, construction mate-
rials and furniture. For instance, room-level localization becomes more
challenging in densely partitioned spaces filled with metal-made furni-
ture than in open-plan spaces with few obstructions. The performance
may also differ when the nature, scope and severity of the emergencies
are different than those used in the simulation and thefield tests. For in-
stance,fire emergencies spreading acrossmultiple floors aremore likely
to damage existing devices and leave less room for first responders to
deploy ad-hoc networks, and would challenge the scalability of the
localization framework. Further implementation of the framework in
diverse test beds and emergency scenarios is necessary in order to per-
form more conclusive evaluation of the framework.

Furthermore, the framework was not tested at real building emer-
gency scenes. Setting up a real emergency in the test bed building is
prohibited by safety regulations. The framework could not be tested in
fire departments' drills either due to liability and logistical issues. Such
field tests, if could be carried out in the future, would provide valuable
evidence to address the following seven critical questions regarding
the performance of the algorithms when challenged by real emergen-
cies: (1) How accurate and robust is the localization framework when
f the references to color in this figure legend, the reader is referred to the web version of
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challenged by hazards on emergency scenes? (2) What additional con-
straintswould hazards on emergency scenes impose on the deployment
of ad-hoc networks? (3) How reliable is the RF sensor data transmitted
and received by devices functioning under high temperature? (4) To
what extent are device losses likely to happen? (5) How reliable is
the WiFi based or cellular network based communication between
smartphones and the webserver? (6) How to quickly determine the
sensing area boundary that is needed to initialize the localization frame-
work? (7)How to bestfit the devices into the coat or backpacksworn by
first responders in order to protect the deviceswhile avoiding intrusive-
ness? The answers to these questions would further clarify the validity
and applicability of the framework.

Equally important, the evaluation of the framework was based on a
critical assumption that all targets would have access to mobile nodes
that can collect RF signal data and transfer the data to a remote server.
Admittedly, this assumption may not always be satisfied in real-world
situations, especially for trapped occupants. However, this assumption
would become more realistic if the framework is applied to certain
types of buildings, such as government buildings and healthcare facili-
ties, where employers can mandate the use of required mobile nodes.
The prototype has proven that smartphones can be used as the mobile
nodes, avoiding intrusiveness to the occupants. Implementing the
framework among first responders would be easier, as first responders
have indicated in the survey the feasibility of carrying mobile nodes
that do not exceed the size and weight limits during their operations.

The framework could be integrated into the incident command sys-
tem (ICS) concept. The ICS provides a systematic tool used for the com-
mand, control, and coordination of emergency response operations, and
is widely endorsed, sometimesmandated, by the federal agencies in the
U.S. that have emergency response responsibilities. The data flow and
interface of the localization framework need to be redesigned to be in-
teroperable with the ICS, so that the localization information can be
shared by multiple agencies collaborating in emergency response
operations.

In addition, as discussed in [50], the processing of geometries ex-
tracted from BIMmodels when implementing the EASBL was observed
in the field tests to be prohibitively time-consuming. There are several
potential solutions to address this limitation: one can test other BIM
tools that can process building geometries faster, or extract geometries
frombuildingmodels and process themwith a customized code, or sim-
ply wait for the vendor to improve the computational efficiency of the
BIM tool. Lastly, both the IMLE algorithm and the EASBL algorithm rely
on BIM as a source of building information. Currently the accessibility
of first responders to BIM is still low, though they indicated a foresee-
able increase of the accessibility in the interviews.

Finally, the framework is based on and applicable to RF technologies
only. RF technologies, which include but are not limited to RFID,WLAN,
UWB, and WSN, are rapidly evolving. The framework is essentially de-
signed for any type of RF technologies. Those running at frequencies
compatible with onboard sensors in smartphones are preferred, so
that the implementation of the framework requires building occupants
to carry no additional devices and is hence non-intrusive. However, the
framework is not intended to be usedwith competing localization tech-
nologies such as inertial navigation system (INS). The algorithms are de-
signed to process RF signal data, and are not capable of processing other
types of data e.g., inertial sensor data. Admittedly, there is a possibility
that, with their new development in the future, these competing tech-
nologies may outperform the RF technologies in indoor localization. It
therefore requires future research to extend the capacities of the frame-
work, by examining how the competing technologies can be integrated
in the framework to reduce its technology-dependence and better satis-
fy the indoor localization requirements.

To summarize, the evaluation of the localization framework present-
ed in this paper serves as a feasibility study that demonstrates the po-
tential of using the framework to locate first responders and trapped
occupants.With the advancement of technological tools, the framework
can be further improved to overcome the above limitations and perform
better.

7. Conclusions

This paper presents a continuous effort of previous research of the
authors in developing an indoor localization framework to support
building emergency response operations. The ultimate objective is to
provide first responders with accurate, robust and real-time indoor lo-
cation information so that first responders can prioritize spaces that
are more likely to have occupants when planning the search and rescue
routes, and increase their own safety during the operations and avoid
getting lost in buildings as well as avoiding the associated fatalities
and injuries. The framework uses RF technologies, and selects from
two innovative localization algorithms to implement depending on
the availability of existing sensing infrastructure at building emergency
scenes.

This paper provides an assessment of the framework in field tests,
and synthesizes results, collected from different building emergency
scenarios and situations, both in simulations and field tests. In simula-
tions, the framework yielded room-level accuracies of above 87.0%
and coordinate-level accuracies of above 1.78 m under situation 1 and
room-level accuracies of above 95.0% and coordinate-level accuracies
of above 0.84 m under situation 2. In the field tests, the framework
yielded room-level accuracies of above 82.8% and coordinate-level accu-
racies of above 2.29 m under situation 1 and room-level accuracies of
above 84.6% and coordinate-level accuracies of above 2.07 m under
situation 2. The ease of on-scene deployment of the framework is
addressed by the design of the EASBL algorithm that takes reducing de-
ployment effort as oneof the algorithm's two objectives. The framework
yielded promising robustness both in the simulation and the field tests,
by ensuring satisfactory accuracies upon partial loss of the sensing net-
work. Moreover, the framework has been proven capable of meeting
the requirements on computational speed and the size and weight of
devices in the field tests. The assessment demonstrates that this locali-
zation framework is promising to achieve the above objective, and
hence improve the efficiency and safety of building emergency response
operations.

There are several limitations, such as limited representativeness of
the test bed and emergency scenarios, simplicity of real building emer-
gency situations, requirement on the use of mobile nodes, and incom-
patibility with competing indoor localization technologies. These
limitations will be addressed in future research, to further improve the
performance of the framework and advance this line of research.
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