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Abstract— We consider how two secondary users should
interact to maximize their total throughput in a two-
channel sensing-based opportunistic spectrum access net-
work where spectrum opportunities are time varying and
spatially inhomogeneous. By modeling the occupancy of the
primary users as discrete-time Markov chains, we obtain
the optimal dynamic coordination policy using a partially
observable Markov decision process (POMDP) solver. We
also develop several tractable approaches - a coopera-
tive multiuser approach based on explicit communication
between the secondary users, a learning-based approach
involving use of collision feedback information, and a
single-user approach based on uncooperative independent
decisions. As a baseline we consider the static partitioning
policy where both users are allocated a single channel of
their own. Simulations comparing the performance of these
strategies yield several interesting findings: that significant
improvements over static partitioning are possible with the
optimal scheme; that the cooperative multiuser approach
shows near-optimal performance in all cases; that there
are scenarios when learning through collision feedback can
be beneficial; and that the single-user approach generally
shows poor performance.

I. INTRODUCTION

A promising approach for the efficient utilization of
the radio frequency spectrum is opportunistic spectrum
access (OSA), where secondary users sense for the pres-
ence of primary users and transmit only when suitable
opportunities arise.

A basic component of OSA is a sensing strategy at
the MAC layer for spectrum opportunity tracking. Since
a secondary user may not be able to sense all channels
in the spectrum simultaneously, a sensing strategy for
intelligent channel selection is crucial to track the rapidly
varying spectrum opportunities.

By modeling primary users’ channel occupancy as
a Markov process, the design of sensing strategies is
formulated as a partially observable Markov decision
process (POMDP) in [1], [2], where the objective is
to maximize the throughput of an individual selfish

secondary user. The interaction among secondary users
is not taken into account in the design of the sensing
strategy.

The optimal sensing strategy designed for individ-
ual users is, however, suboptimal in terms of network
throughput. Our goal in this study is to investigate
whether and how contending secondary users should
cooperate and learn from “mistakes” (collisions) in order
to maximize the network throughput.

Intuitively, to maximize the network throughput, sec-
ondary users should seek spectrum opportunities in dif-
ferent channels, which avoids collision among secondary
users and exploits fully the spectrum opportunities of-
fered by multiple channels. This suggests a channel
partition strategy which preassigns each secondary user a
distinct set of channels for use (assuming the number of
channels is larger than the number of secondary users).
If all secondary users are fully backlogged and affected
by the same set of primary users (thus experiencing
the same spectrum opportunities), this channel partition
strategy yields an efficient solution.

In this paper, we show that when secondary users
are affected by different sets of primary users, it is no
longer optimal to partition the channels among secondary
users and more sophisticated strategies are called for.
For analytical tractability and in order to obtain gen-
eral insights, we consider a simple setting with two
interfering secondary users, each affected and observing
different primary users. We develop and compare a
number of different strategies that the two secondary
users can adopt to make decisions at each step on which
channel they should sense. The sensing decision not
only helps obtain immediate rewards in terms of free
channels, but also provides fresh information regarding
the primary users’ occupancy which in turn can help
improve future decisions. If a secondary user senses a
channel to be free at any time slot, it transmits during that
slot. Depending on the strategy adopted, it can happen
that both users sense the same channel to be free and
transmit simultaneously, which is assumed to result in
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a collision. In a multi-user setting, even such collisions
can carry useful information for the secondary users to
learn about each other’s behavior.

We formulate the problem as a finite-horizon POMDP,
in which the history of previous observations is sum-
marized by a set of beliefs regarding the presence of
primary users on the channels that both secondary users
maintain and update. Obtaining a solution to a POMDP
is in general intractable, and even with two users and two
channels, solutions may be difficult to obtain for large
horizons. To address this, we develop and evaluate three
variants of myopic policies, in which the users act to
maximize their immediate expected reward, given their
beliefs. These variants are distinguished by the informa-
tion available to the two secondary users regarding each
others’ beliefs. The first, which we term “cooperative
multi-user,” assumes that users exchange their beliefs at
each time slot. In the second, which we term “learning-
based multiuser,” each user maintains an estimate of the
other user’s belief implicitly learned and updated based
on occurrence of collisions. In the third scheme, which
we term “single-user,” each user acts uncooperatively
and entirely ignores all observations pertaining to the
other user.

We evaluate the performance of these schemes through
a comprehensive set of simulations. For a baseline, we
compare the above schemes with the simple strategy
of statically partitioning the two channels between the
two users. The results we obtain shed light on the role
of cooperation and learning in multiuser OSA under
different scenarios.

Related Work Existing work within the POMDP
framework for OSA includes [1], [2], [3], all focusing
on the single-user setting. In [4], the POMDP framework
is extended to a multiuser setting for spatially homoge-
neous spectrum opportunities. Random traffic arrivals at
each secondary user is considered in [4], which renders
a fixed channel partition among users inefficient, and
a randomized dynamic sensing policy is proposed to
address the tradeoff between choosing the channel that is
most likely to offer a spectrum opportunity and avoiding
other competing secondary users.

Under the assumption of time-invariant (or slowly
varying) spectrum opportunities, spectrum sharing
among competing secondary users has been addressed
using graph coloring theory [5], [6] and game theory [7],
[8], [9], [10]. These approaches assume perfect knowl-
edge of spectrum opportunities at any time and location
over all the channels. In [11], only statistical information
about spectrum opportunities (the probability that each
channel presents an opportunity to a secondary user) is

assumed. The optimal sensing actions for single-stage
interactions among secondary users are obtained for both
spatially homogeneous and inhomogeneous spectrum
opportunities.

Another related work is [12], which considers multiple
secondary users sharing spatially homogeneous spectrum
opportunities. The time variation of spectrum opportuni-
ties is also modeled by discrete-time Markov chains. Bid-
ding policies for secondary users are developed within
a stochastic game framework by assuming a central
coordinator who has the knowledge of the occupancy
state of all the channels.

II. PROBLEM DEFINITION

A. Network Model

Assume the spectrum is divided into M independent
channels that are leased to a time synchronized slot-
based primary network with multiple primary users. In
the secondary network, there are N users; each chooses
one channel to sense at the beginning of each time slot
and transmits if an opportunity exists (i.e. if there is
no primary user occupying the channel in that slot). In
general, depending on the geographical locations of the
nodes, each secondary user i can be in the range of a
different set of primary users.

Fig. 1. Illustration of Scenario

Figure 1 shows the scenario considered in this work
- two secondary users (N = 2) contending with each
other but perceiving different primary users. Spectrum
opportunities for secondary users S1 and S2 are deter-
mined by two independent sets of primary users (P1
and P2, respectively). We consider M = 2 channels in
this study. The availability of channel j for secondary
user i is modeled as a two-state discrete time Markov
chain with state sij(t) indicating whether an opportunity
(sij(t) = 1) exists for secondary user i in channel j at
slot t. To simplify notation and without loss of generality,
we assume that for each secondary user i, the states
of the two channels form identical Markov chains with
one-step transition probability denoted by pij,k where
j, k ∈ {0, 1}.
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B. POMDP Formulation

We formulate the opportunistic channel access
problem as a POMDP represented by the tuple
(S,A,O, P s, P o, R) given below.
• S is the combination of channel availability states

for every secondary user. S = ×i∈N,j∈Msij , i.e. S =
{0, 1}MN .

• A is the joint action profile for all the users. The set
of actions in this problem are the decision for each
user on which channel to sense at the beginning of
each time slot. A = {1, 2}N for our case where
M = 2. We use ai(t) to denote the action for
secondary user i in time slot t.

• O is the observation space. We denote by O =
×i∈NOi the joint observations of all secondary user
i and o(t) = (o1(t), ..., on(t)) is a joint observation
in time slot t. For each user i, there exist three kinds
of observations in a time slot t: busy, collision,
and success. Busy means that the channel was
occupied by the primary user in this slot so that
the secondary user must defer to the next slot. If
the channel is sensed to be free, the secondary user
transmits a packet. If two secondary users transmit
simultaneously it results in a collision, else the
transmission results in a success.

• P s is a set of Markovian state transition probabili-
ties. P s(s, s′) = Pr{s(t+1) = s′|s(t) = s} denotes
the probability of being at state s′ at time slot t+ 1
when given that at time slot t, spectrum state is at
state s. Note that the spectrum state transition of
primary users is independent of the actions made
by secondary users.

• P o represents the probability that action a for
state s at time slot t will give observation o, i.e.
P o(s, a, o) = Pr{o(t) = o|s(t) = s, a(t) = a}.

• R represents the reward function mapping from the
observation space O to real numbers; Ri(t), the
reward for secondary user i in time slot t defined
as follows:

Ri(t) =
{

0 if oi(t) is busy or collision
1 if oi(t) is success

The system reward is the expected reward summation
for all the secondary users.

R = E(
T∑
t=1

N∑
i=1

Ri(t))

where T is the total time slot, also named horizon.
A sensing policy π is a policy to decide for each

secondary user what action to take in each time slot.
Rπ denotes the system reward of a policy π, which is

defined as the expected reward summation of horizon
T for all users. In evaluating different policies, we will
use the normalized reward rπ = Rπ

T which represents
average per-slot throughput as the evaluation criterion.

C. Decision Cycle

In each time slot, each secondary user experiences the
following three phases.

1) Decision Phase: at the beginning of slot t, sec-
ondary user i takes the action ai(t), deciding which
channel to sense in this time slot.

2) Transmission Phase: upon taking the sensing ac-
tion, the user transmits if an opportunity exists.
The observation oi(t) follows, determined jointly
by the primary-users’ occupancy in time slot t and
the actions of both users a1(t), a2(t).

3) Reward Phase: If transmission is successful in that
slot a unit reward is accrued, determining Ri(t).

D. Belief Vectors and Myopic Policy

Due to limited sensing, each secondary user cannot
directly observe the exact spectrum status of both chan-
nels at each time slot. Instead it obtains a distribution
(belief) on the non-observed channel from the history of
sensing results, taking into account the Markov process
governing the evolution of the channel state.

Definition 1: A belief vector for user i at time slot t
Υi(t) is a M -dimension vector (υi1(t), υi2(t), ...., υiM (t))
for in a M -channel system. Element υij(t) is channel i’s
available probability for the secondary user j in time slot
t.

Belief vectors are updated at the end of each time slot.
Specifically, for cognitive radio opportunistic channel
accessing problem with two channels in the system, the
belief vector updating rules are represented in Figure 2.

III. TRACTABLE POLICIES

In this section, we develop and compare three ap-
proaches to multiuser OSA that involve different degrees
of cooperation among the secondary users. While the
optimal policy in each approach can be obtained, the
complexity grows exponentially with the horizon length.
We thus focusing on myopic solutions for all approaches;
the main objective is to explore the role of cooperation
and learning through performance comparison of these
approaches. A static channel partition strategy is also
presented as the baseline performance.
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Fig. 2. Belief Vector Updating Rules

υij(t+ 1) =


pi1,1 if ai(t) = j and sij = 1
pi0,1 if ai(t) = j and sij = 0
pi1,1υ

i
j(t) + pi0,1(1− υij(t)) if ai(t) 6= j

A. Static Partition Strategy

The static partition strategy is a straightforward ap-
proach to completely avoid collision among secondary
users: to assign a fixed channel to each secondary user.
Note that we assume the two channels are identical,
therefore it doesn’t matter which channel is assigned to
which user. Without loss of generality, we assign channel
i to user i:

ai(t) = i for i = 1, 2

B. The Single-User Approach

In single user myopic approach, each secondary user
executes an independent myopic policy, ignoring the
presence of the other user.

ai(t) = arg max
a=1,...,N

E(Ri(t)|Υi(t))

Obtaining the myopic action under this approach is
trivial - each secondary user independently picks the
channel for which it has a higher belief of seeing an
opportunity.

The major drawback of the single user approach is
that it does not take collision among secondary users
into consideration.

C. Cooperative Multi-User Approach

This cooperative policy allows secondary users to
exchange their belief vectors at each time slot and use
these information to generate consistent actions:

ai(t) = arg max
a=1,...,M

E(
∑
i

Ri(t)|
⋃
j∈N

Υj(t))

Computing the optimal action for the cooperative
multi-user myopic approach is somewhat involved.

Let αi denote the probability for secondary user i to
sense channel 1. Since we assume that in each time slot,
a secondary user must choose a channel to sense, the
probability for secondary user i to sense channel 2 is
1− αi.

The objective of maximizing the expected immediate
system reward in time slot t can be formulated as the
following:

max α1(1− α2)(υ1
1(t) + υ2

2(t))

+(1− α1)α2(υ1
2(t) + υ2

1(t))

+α1α2((1− υ1
1(t))υ2

1(t) + (1− υ2
1(t))υ1

1(t))

+(1− α1)(1− α2)((1− υ1
2(t))υ2

2(t)

+(1− υ2
2(t))υ1

2(t))

such that 0 ≤ αi ≤ 1 for i = 1, 2

It can be shown that the solution for this maximization
occurs at an extreme point (i.e. when each user picks one
of the two channels with probability one).

Table 1 gives the solution of α1,α2 value and cor-
responding expected rewards in one time slot. Using its
own current belief vector and that of the other secondary
user, each user can compute all four possibilities and pick
the action that corresponds to the maximum expected
reward (the other user will also do the same as it has
consistent information).

TABLE I
TABLE FOR MAXIMIZED EXPECTED REWARDS

α1 α2 Expected Total Rewards
0 0 (1− υ1

2(t))υ2
2(t) + (1− υ2

2(t))υ1
2(t)

0 1 υ1
2(t) + υ2

1(t)
1 0 υ1

1(t) + υ2
2(t)

1 1 (1− υ1
1(t))υ2

1(t) + (1− υ2
1(t))υ1

1(t)

D. Learning-based Multi-User Approach

Collision among secondary users reduces the system
performance. However, collision information can also
provide accurate belief vector estimation for secondary
users. In this approach, the secondary user not only
maintains a belief vector of itself according to updating
rules described in section II-D, but also maintains an
estimated belief vector for the other secondary user by
learning from collision events as per rules depicted in
Figure 3. Note that no message exchange between the
two users is needed in this approach.

In the description of these rules, collision(i,−i) is
a Boolean expression to indicate whether there is a
collision between two secondary users in time slot t,
and â−i(t) is the inferred action of user −i by user i
using estimated belief vector υ̂−i(t) in time slot t.
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Fig. 3. Rule for Estimating the Other User’s Belief Vector in the Learning-based Approach

υ̂−ij (t+1) =


p−i1,1 if ai(t) = j and collision(i,−i, t) = TRUE

p−i0,1 if ai(t) = j and â−i(t) = j and sij = 1 and collision(i,−i, t) = FALSE

p−i1,1υ̂
−i
j (t) + (1− υ̂−ij (t))p−i0,1 if ai(t) = j and â−i(t) 6= j and sij = 1 and collision(i,−i, t) = FALSE

p−i1,1υ̂
−i
j (t) + p−i0,1(1− υ̂−ij (t)) if ai(t) 6= j

There are four cases in estimating the updated belief
vector: a) collision detected between secondary users;
b) user i successfully transmits in this time slot without
collision with the other user −i, while the other user
−i should choose same channel to transmit according
to previous estimated belief vectors; c) and d) both
represent the case when user i and user j choose different
channels to transmit in this time slot.

The actions are obtained in this approach using the
same method as cooperative multi-user myopic policy
except that the estimated belief vector is used for that
other user (instead of the exact belief vector).

IV. SIMULATION RESULTS

Table II shows the results obtained from a compre-
hensive set of simulations in MATLAB performed to
evaluate and compare the various approaches. Since we
have fixed the scenario to involve exactly two users and
two channels, the key parameters that determine relative
performance are the transition matrices characterizing
the two users. These are summarized by four numbers,
namely, p1

0,1, p1
1,0, p2

0,1, and p2
1,0. We considered low

(0.15) and high (0.95) values for these parameters and
ran simulations over 10 cases that capture all possi-
ble unique settings of these values (barring symmetric
settings). In these simulations the belief vectors for
each user are initialized to the corresponding stationary
distributions. In all cases the horizon length is 1000,
except in cases 4 and 10, where the optimal solution
could only be found for a short horizon length of 8 and
6, respectively. The results presented are all averaged
over 100 runs.

We have also obtained the optimal policy with global
information using a POMDP solver [13] to provide a
performance benchmark. The per-slot network through-
put for different approaches are given in Table II.

Table II yields the following interesting insights:
• The cooperative approach, which uses a tractable

myopic policy, is almost indistinguishable from
optimal in nearly all cases (except case 1 where
it is only about 5 % off).

• The single-user approach generally performs worse
(sometimes drastically, as in case 5) than even the

baseline of static partition, suggesting that some
degree of cooperation is essential.

• While the learning-based approach (which involves
no message exchange) does not always perform as
well as the cooperative scheme, there are cases (1,
3, 9) where it is better than fixed partition.

Based on these results we hypothesize that the con-
ditions under which the learning-based approach can
outperform static partition are when the following con-
ditions hold: (1) one of the two secondary users is domi-
nant in the sense that it has a higher stationary probability
of finding an opportunity compared to the other user
(i.e., user 1 is dominant if p10,1

p10,1+p
1
1,0
>

p20,1
p20,1+p

2
1,0

), and (2)
this dominant user prefers to switch channels in order
to maximize its own throughput (this would occur for
user i if pi1,0 is large). Intuitively, under these settings,
the static partition strategy has room for improvement
since the gains that the dominant user can make by
switching channels when needed cannot be offset by the
long-term average reward obtained by the non-dominant
user staying on a single channel.

To verify this hypothesis, we ran some additional
detailed simulations covering a wider range of cases,
shown in figure 4. The plot has 100 points obtained by
varying p1

0,1 and p2
0,1 from 0.1 to 1 with a step-size of 0.1,

p1
1,0 = p2

1,0 = 0.9. In the plot a blue cross point means
that learning-based approach outperformed partitioning;
red circles mean partitioning performed better. A green
star implies that they have the same performance. The
points are obtained by comparing the average of 100 runs
over a horizon length of 300.

Condition (2) of our hypothesis holds in this plot
because of the high values of pi1,0, p

2
1,0, and condition (1)

holds in regions away from the 45-degree diagonal. We
do indeed see that the learning approach performs better
than partition when both conditions hold, supporting the
hypothesis.

V. CONCLUSION

The results from this study provide some useful gen-
eral lessons regarding multiuser sensing for opportunistic
sensing. They indicate that some degree of cooperation
is essential - secondary users cannot afford to completely
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TABLE II
NETWORK THROUGHPUT COMPARISON

Case [p1
0,1, p1

1,0, p2
0,1, p2

1,0] Optimal Cooperative Learning-based Partition Single User
1 [0.95, 0.95, 0.95, 0.95] 1.32 1.28 1.04 1.00 0.92
2 [0.95, 0.95, 0.95, 0.15] 1.59 1.59 1.14 1.36 0.98
3 [0.95, 0.95, 0.15, 0.95] 0.86 0.86 0.76 0.63 0.76
4 [0.95, 0.95, 0.15, 0.15] 1.26* 1.28 1.00 0.99 0.91
5 [0.95, 0.15, 0.95, 0.15] 1.74 1.74 1.41 1.72 1.01
6 [0.95, 0.15, 0.15, 0.95] 1.00 1.00 0.91 0.99 0.89
7 [0.95, 0.15, 0.15, 0.15] 1.54 1.54 1.33 1.36 0.96
8 [0.15, 0.95, 0.15, 0.95] 0.29 0.29 0.27 0.27 0.27
9 [0.15, 0.95, 0.15, 0.15] 0.80 0.80 0.72 0.63 0.71

10 [0.15, 0.15, 0.15, 0.15] 1.33* 1.18 0.91 1.00 0.90

Fig. 4. A detailed performance comparison of the learning-based
multi-user approach versus the static partitioning approach

ignore the presence of other secondary users and use a
single-user approach. The cooperative myopic approach
shows near-optimal performance in our simulations and
is generally substantially better than static partitioning,
but it requires explicit belief exchange among users at
each step. Thus this strategy may be most useful for
settings such as high-bandwidth applications where the
control overhead of communicating beliefs is small com-
pared to the data size. We have also identified conditions
where implicit learning based on collision feedback may
be effective compared to static partitioning.
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