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Abstract—Cellular networks can be operated more energy-
efficiently if operators agree to share base-stations during off-
peak hours. We apply a micro-economic analysis for a single-cell
two-operator scenario to investigate the conditions under which
self-interested operators would agree to share resources in this
manner. Our analysis yields a comprehensive treatment of the
existence and number of Nash Equilibria. We consider the cases
when the payment rates are exogenous, as well as when they can
be set strategically by the operators. Through numerical solutions
we examine the quality of the best and worst Nash Equilibria in
comparison with the globally optimized solution. Our results show
that there is often a sensitive dependence on key parameters such
as energy price, capacity, load, revenues, penalties and payments.

I. INTRODUCTION
With the growing demand for mobile data services, cellular

wireless networks have been growing quite rapidly in recent
years and are expected to continue to do so in the near future.
The energy consumption of mobile telephony is significant and
growing. It has been estimated [1] that cellular networks will
consume so much energy that their CO2 emissions equivalent
will be 0.4 percent of the global value by 2020. The electricity
bill forms a significant portion of the operating expenditure for
a mobile service provider, and has been estimated globally to
amount to about $22 billion in 2013. In case of increasing
energy prices, this is expected to remain an important consid-
eration for cellular system operators in the future.

It has been found that about 60 to 80 % of total en-
ergy consumption in cellular networks takes place in base
stations (BS) [3]. Energy reduction in BSs can be achieved
at many levels: from hardware design improvements to traffic-
optimized deployment. Several researchers have focused on the
problem of turning off base-stations during off-peak hours to
save energy [4], [5]. While base-station activation for energy
management is usually considered for a single operator, an
additional promising solution was suggested and investigated
quantitatively in [5]: multiple operators sharing base stations
during off-hours.

Base-station sharing is predicated on the fact that there are
typically multiple cellular providers in urban environments.
And often in urban settings due to both a need for high-
density deployment to provision peak traffic, and due to code
constraints on where base stations can be deployed, operators
often tend to have nearby, if not exactly collocated, base-
stations. For instance, in [5], the authors examined a dataset
from U.K., and noted that there were 5 different operators
managing 139 base stations in 128 locations in a 3.5×3.5 km
area of Manchester.

If two operators were able to enter into an agreement
to share base stations during off-peak hours, they could po-
tentially both benefit from the resulting energy savings. The
authors of [5] estimated that such an approach could save up
to 85% of total energy consumption during off-peak hours in
an urban deployment, an additional 35% over what could be
obtained if each operator acted in isolation.

However, just because it is globally efficient for operators
to turn off base stations and share resources, it does not mean
that they will do so. As self-interested entities, each operator
is focused on maximizing only its own utility, which is a
combination of revenue from customers, and cost of operation.
If an operator were to shut one of its own base station and
send its customers to a competing operator’s base station,
under a micro-roaming agreement1, it would do so only if
the additional cost of payments to the other operator and
potential revenue loss from dissatisfaction of its customers
were outweighed by the benefits of energy savings. Similarly,
the other party would only agree to serve the first party’s
customers if the payments it received outweighed the loss in
revenue due to potential dissatisfaction of its own customers.

In this paper we address the following questions: Under
what conditions will self-centered operators be willing to
enter into micro-roaming agreements? How does their utility
compare to an idealized cooperative setting?

To do so, we build a simple but informative microeconomic
model that examines the behavior of base station operators
who are collocated in a single cell. The model takes into
account the demand distributions for each customer, their
energy costs, revenue from satisfied customers, loss of revenue
from dissatisfied customers, service capacity, and payment
rates (which we examine both as exogenous and endogenous
parameters). Using a game theoretic formulation, whereby
operators choose whether to turn base stations on or off, and
if considered, also the payment rates to charge to the other
operator, so that they operate at Nash Equilibria. Our analysis
reveals conditions under which operators will clearly agree to
share, but also reveals that there are conditions in which there
are multiple equilibria and there is an additional problem of
equilibria selection. And further, to see if their self-interest
results in significant loss of performance with respect to the
social welfare we examine through analysis and simulations
the gap between the total utility at the global solution to that
obtained at Nash equilibria for the formulated games.

1so named to distinguish it from traditional roaming agreements which are
typically entered into by non-competing operators in geographically distinct
areas such as different countries.
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Fig. 1. An example of the single cell layout, (a) Both BSs are on and serving their own demands, (b) BSB is turned off and BSA is serving both demand
sets fairly.

Concretely, we make the following contributions in this
paper:

• To our knowledge this is first study to examine the
problem of base-station sharing from a game theoretic
perspective.

• For exogenous payments, we show analytically that
the equilibrium properties depend upon the payments,
traffic parameters and the energy cost of operating a
base station. Depending on the settings, there may
be one or two pure Nash Equilibria, or in some
cases, none (in these cases there are mixed Equilibria
instead).

• For strategic payments, we find analytically there are
generally always a multitude of pure Nash Equilibria.
Thus, if reciprocal payments are to be strategically
chosen by the operators, there is often a very chal-
lenging problem of equilibrium selection. Though we
do not address this directly in our work, we identify
this as a topic that needs to be addressed in future
research by the community.

• Through numerical evaluations we further quantita-
tively demonstrate the conditions under which Base
Station sharing emerges as a Nash Equilibrium, and
the conditions under which equilibria result in good
outcomes with respect to the globally optimized (co-
operative) case.

• Interestingly and somewhat counter-intuitively, we
show that in some cases with exogenous payments
the pure Nash Equilibrium shifts from operator A
turning on and operator B turning off to the reverse
— operator A turning off and operator B turning on,
if only the energy price common to both operators
is increased (all other factors such as load, capacity,
revenue and penalties being kept constant).

• Though the focus of this work is on turning off base
stations to save energy, we also find incidentally from
our modeling that when the operators have asymmetric
traffic loads, it could be beneficial for both operators
to enter into agreements to share their base stations
even when both are turned on, so that the lower-loaded
operator can help the higher-load operator in exchange
for payment. Such agreements, it turns out, have
recently been investigated by other researchers [17].

II. RELATED WORK
Energy-efficient design of cellular wireless networks has

recently received significant attention [3], [6], [7], [8], [9],
[16], [10], [4], [5], [11], [13], [14]. One of the earliest works
on green cellular networks is [6], where the idea of dynamic
BS operation based on the traffic profile was proposed. Other
similar studies studying the improvement in energy savings
from turning base stations on and off, based on analytical
models as well as a real traffic trace include [3], [7]. In
addition, the BS operation concept considering cooperative
network sharing among different hierarchical levels of net-
works, i.e. macro/macro, macro/micro, macro/femto-cells, are
studied in [8], [9], [10]. Some concrete algorithms for base
station operation are proposed in [11], [13], [14], [15]. In
[11], [13], the authors researched about the energy efficient
operation based on the cooperation transmission in multi-hop
systems. Niu et al. proposed the cell zooming considering
the BS cooperation and relaying in cellular systems [14].
In [16], the authors consider the use of dynamic voltage scaling
which offers a finer-grained approach to energy minimization
compared to completely turning off base stations, which relies
on future hardware and software improvements. A common
theme to all this prior work is the focus on dynamic base
station operation by a single operator.

In [5], the authors evaluate the savings that can be obtained
from base station switching using real data set of base station
deployments from multiple operators. In particular, they pro-
pose and show that the sharing of base stations by different
operators could be a way to significantly improve energy
usage; their numerical evaluations show a 35% additional
energy reduction from inter-operator cooperation above and
beyond the benefit to a single operator. However, the concrete
evaluation in that work assumes globally optimized inter-
operator cooperation. Considering inter-operator cooperation
issues as a challenging future direction for research into green
cellular networks, the authors of [5] note that “this is also an
interesting problem from a game theoretic perspective”, and
ask: “under what conditions would self-interested operators
agree to cooperate with others? What kind of profit sharing
agreements will provide an adequate incentive for all partici-
pants?” These are the very questions that we are taking a step
towards addressing in this work.

A closely related recent work is [17], where the authors
investigate the problem of cellular operators sharing excess
spectrum with other operators to help them handle traffic



overload. Similar to our work, they also assume that the
demands for each operator are known statistically (i.e., as
a distribution) but not exactly, and also consider a form of
micro-roaming. However in that work, which is not focused
on green cellular operation, there is no option to turn off
base stations, and energy costs are not taken into account.
The authors of [17] focus instead on revenue-sharing contracts
that balance capacity sharing with customer satisfaction. In our
work, we do consider similar spectrum sharing even when both
base stations are turned on for the centralized global solution
but not for the case of self-interested operators. That work
also points to prior literature on analysis of roaming contracts
such as [18], but indicates that most of the prior literature has
been focused on investigating harmful collusive behavior under
known demand conditions.

III. PROBLEM FORMULATION
We consider a single cell with two available operators,

called A and B, to serve the demands inside the cell. Assume
that the set of demands Di with the size of di is assigned to
the operator i ∈ {A,B}. di is unknown but its distribution is
assumed to be given. Serving each unit demand in Di results
in a revenue ri and each unit of unserved demand in Di results
in a penalty qi. Each operator has access to a Base Station with
the available capacity of C and the operating energy cost of
E .

The utility of the operator i is equal to the total revenue
collected by serving the demands in Di minus the penalty
related to the unserved demands and the energy consumption
(when its BS is operating). The goal is to decide about turning
on or off each BS in order to maximize the total utility which
is equal to the summation of the utilities of two operators.
The decision could be shown by a pair of Boolean variables
(xA, xB) where xA = 0 means the BS of operator A is off and
xA = 1 means it’s on and serving the demands. This problem
can be considered from two view points. One is the global
solution where we assume that there exists a central decision-
maker which has access to both Base stations to serve the
demands in DA ∪DB fairly. Another view point is based on
game theory where we assume there is no central controller
and two operators try to maximize their own utility. To save
the energy one operator, namely A, may prefer to turn off
its BS. Then the operator B could serve some demands in
DA by charging the operator A with some payment rate pA.
Therefore, the utility of operator A/B will decrease/increase
with the amount of payments to B. In this case, two operators
play a game and each one decides on turning on/off its own
BS to maximize its utility. The payments pA and pB could
be adjusted exogenously or be parts of strategy. In the later
case, operator A could decide on the payment rate of pB to
charge the operator B in case of serving any demand in DB .
We explore the existence of Nash equilibra for different values
of parameters, e.g. revenue, penalty, payment, etc.

In summary, the parameters corresponding to the operator
i ∈ {A,B} are as follows:
• di: demand assigned to the operator i with cumula-

tive distribution function Fi(.) and probability density
function fi(.)

• ri: revenue rate for served demands
• pi: payment rate made to the other operator
• qi: penalty rate for unserved demands
• C: the assigned capacity to the BSi

• E : energy cost of operating (when BSi is on)
Note that all of the above parameters are non-negative.

IV. GLOBAL UTILITY
In the global view point, there is a central controller who

decides which BS should be on or off to maximize the total
expected utility. For the central controller, both set of demands
DA and DB have equal priority to be served. Therefore, the
available capacity will be divided between two sets (even if the
revenue or penalty rates are different). No payment is needed in
the global solution and the total utility which is the summation
of the utilities of two operators is given by:

uG(xA, xB) = rAsA(xA, xB) + rBsB(xA, xB)− E(xA, xB)

− qA(dA − sA(xA, xB))+

− qB(dB − sB(xA, xB))+, (1)

where (a)+ = a if a ≥ 0, otherwise (a)+ = 0. As it is obvious
from the above equation, the global utility is equal to the total
revenue minus the energy cost and minus the total penalty.
sA is the served amount of demands in DA, thus rAsA is
the total revenue earned by serving this amount of demands.
(dA − sA(xA, xB))+ is the unserved demands and qA(dA −
sA(xA, xB))+ is the total penalty to be paid. E(xA, xB) is the
total energy cost which is related to the number of active BSs
as follows:

E(xA, xB) =

{
2E if (xA, xB) = (1, 1),
E if (xA, xB) = (1, 0) or (0, 1).

(2)

The number of served demands, sA which is always less than
or equal to dA, is given by:

sA(1, 1) =

{
dA if dA + dB ≤ 2C

dA

dA+dB
2C if dA + dB > 2C,

(3)

sA(1, 0) = sA(0, 1) =

{
dA if dA + dB ≤ C

dA

dA+dB
C if dA + dB > C,

(4)

which means all demands in DA are served if the total
demands do not exceed the available capacity. Otherwise, the
available capacity is divided fairly between two sets of de-
mands. Note that sB is similarly computable with exchanging
the indexes of A and B and other terms in (1) correspond to
the operator B with the similar explanations. The goal here
is to decide on the pair of (xA, xB) in order to maximize the
expected global utility, computed in (5).

For the symmetry case of rA = rB = r and qA = qB =
q, the expected global utility can be simplified as given by
(6) where F̄ (.) = 1 − F (.) is the complementary cumulative
distribution function of the total demand dA + dB . Then, the
global solution can be obtained by:

(xA, xB) =


(1, 1), if E ≤ t2
(1, 0), if t2 ≤ E ≤ t1
(0, 0), if E ≥ t1

(7)

where t1 and t2 are thresholds on the energy cost, computed
from uG(0, 0) ≥ uG(1, 0) and uG(1, 1) ≥ uG(1, 0), respec-
tively, by substituting the corresponding parameters given by



E[uG(xA, xB)] =


(rA + qA)E[sA(xA, xB)] + (rB + qB)E[sB(xA, xB)]

−E(xA, xB)− qAE[dA]− qBE[dB ], if (xA, xB) 6= (0, 0)

−qAE[dA]− qBE[dB ], if (xA, xB) = (0, 0).
(5)

E[uG(xA, xB)] =


2C(r + q)F̄ (2C) + r

∫ 2C

0
yf(y)dy − q

∫∞
2C
yf(y)dy − 2E if (xA, xB) = (1, 1)

C(r + q)F̄ (C) + r
∫ C

0
yf(y)dy − q

∫∞
C
yf(y)dy − E if (xA, xB) = (1, 0) or (0, 1),

−q
∫∞
0
yf(y)dy if (xA, xB) = (0, 0),

(6)

(2), (3), and (4) in (1). The results are given by:

t1 = (q + r)

∫ C

0

yf(y)dy + C(q + r)F̄ (C)

t2 = (q + r)

∫ 2C

C

yf(y)dy + C(q + r)(F̄ (C)− 2F̄ (2C))

V. GAME THEORY
In the game theoretical view point, there is no central

controller and each operator decides on turning its own BS
on or off in order to maximize its utility. Therefore, two
operators play a game and behave selfishly. We are going to
explore the existence of Nash Equilibria, the decision pairs of
(xA, xB) where if one of the operators changes its decision
while the other one is fixed the utility will not increase.
We will determine the possible Nash equilibria for different
values of parameters including capacity, load, revenue, penalty
and payment rates. We consider two payment cases: (i) the
exogenous payment where the values of pA and pB are given
and the players do not have any control on them, (ii) strategic
payment where the values of pA and pB are parts of strategy
and the players can select them, i.e. decide on how much to
charge the other player in case of serving its demands.

A. Analysis of Nash Equilibria for Exogenous Payments
In the case of exogenous payment, the values of pA and

pB is given and the players select their strategy based on the
payment values and other parameters. We consider different
conditions to see whether there exists a Nash equilibrium (NE)
or not and in case of existence what it is. Let ui(xA, xB)
indicates the utility function of operator i ∈ {A,B} and if
there exists a pure NE point, shown as (xNE

A , xNE
B ), it must

meet both conditions below:

E[uA(xNE
A , xNE

B )] ≥ E[uA(xA, x
NE
B )], ∀xA (8)

E[uB(xNE
A , xNE

B )] ≥ E[uB(xNE
A , xB)], ∀xB . (9)

The utility of operator A for different decision pairs of
(xA, xB) is given by:

uA(1, 1) = −E + rA min(dA, C)− qA(dA − C)+ (10)
uA(1, 0) = −E + rAsA − qA(dA − sA)+ + pBsB (11)
uA(0, 1) = (rA − pA)sA − qA(dA − sA)+ (12)
uA(0, 0) = −qAdA (13)

where, the served amount of demands sA is similar to sA(1, 0)
in the global solution given by (4). Note that uB and sB can
be computed similarly. From the inequalities (8) and (9), we
find different conditions for each NE as follows, where for

simplicity we use the notations MA = E[min(dA, C)], MB =
E[min(dB , C)], GA = E[sA], GB = E[sB ]:
• (1,1) is a pure NE if

E − pAGA ≤ (rA + qA)(MA −GA) , LA (14)

E − pBGB ≤ (rB + qB)(MB −GB) , LB (15)

Proof: To have (1,1) as a pure NE two condi-
tions should be satisfied. First, by (8), the following
equation should be greater than or equal to zero:

E[uA(1, 1)]− E[uA(0, 1)]

= −E + rAE[min(dA, C)]− qAE(dA − C)+]

− (rA − pA)E[sA] + qAE[(dA − sA)+]

= −E + rAMA − (rA − pA)GA

+ qAE[(dA − sA)+ − (dA − C)+]

= −E + rAMA − (rA − pA)GA

+ qA(MA −GA) ≥ 0

where E[(dA − C)+ − (dA − sA)+] = E[sA −
min(dA, C)] = GA −MA. This results in (14) and
(15) comes from E[uB(1, 1)]−E[uB(1, 0)] ≥ 0 which
is equivalent to (9).

• (0,0) is a pure NE if

E − pAGA ≥ (rB + qB)GB , UA

E − pBGB ≥ (rA + qA)GA , UB

• (1,0) is a pure NE if

E − pBGB ≥ (rB + qB)(MB −GB) = LB

E − pBGB ≤ (rA + qA)GA = UB

• Similalry (0,1) is a pure NE if

E − pAGA ≥ LA

E − pAGA ≤ UA

The above three Nash equilibria are easily achievable from (8)
and (9) with proofs similar to the proof of NE (1,1).

Fig. 2 shows the division of the two-dimensional space
of (E − pAGA, E − pBGB) to the regions where different
(xA, xB)s are NE, for different values of LA, UA, LB , UB .
For instance in Fig. 2-(a), at the region V, both (1,0) and
(0,1) can be pure NE, and at the regions I and IX there is no
pure NE. Figures 2-(b-e) show similar division for different
relations between LA, UA and LB , UB . There are two more
cases which could be achieved by exchanging the indexes of
A and B in Fig.2-(b-c) and we skip them due to similarity. At



the regions I and IX in Fig. 2-(a) where there is no NE, there
can exist a mixed NE. Assume the mixed strategy assigns the
probabilities P (xA = 0) = α and P (xB = 0) = β where
α can be computed from the indifference of player B to the
decision of the player A, as follows:

αE[uB(0, 0)] + (1− α)E[uB(1, 0)]

= αE[uB(0, 1)] + (1− α)E[uB(1, 1)] (16)

Therefore,

α =
E[uB(1, 1)]− E[uB(1, 0)]

E[uB(0, 0)]− E[uB(1, 0)]− E[uB(0, 1)] + E[uB(1, 1)]

=
E − pBGB − LB

UA − LB + E − pBGB − (E − pAGA)
, (17)

and similarly,

β =
E − pAGA − LA

UB − LA + E − pAGA − (E − pBGB)
. (18)

B. Analysis of Nash Equilibria for Strategic Payments
In this section, we consider the scenario where the player

A (B) could decide about the price pB (pA), as well as about
turning on or off its BS, xA (xB). Therefore, the strategy
is shown by quadruple (xA, xB , pA, pB) and we are going
to explore on what conditions, which quadruples could be
NE. The payment rates pA and pB may be unconstrained
or constrained. In case of unconstrained payment, there is
no restriction on the values of pA and pB . But in case of
constrained payment, the payment rates are restricted to the
values such that the decision are prevented from changing the
NE regions. In the later case, we restrict the payment rates
such that if for instance the decision is (0, 1), the operator B
is not allowed to charge A with very large values of payment;
because in this case, A will prefer to turn on its own BS rather
than paying too much to B. On the other hand, if the payment
rate is too low, the operator B may prefer to turn off its BS and
then strategy will switch to (0, 0). Therefore, the payments are
restricted to the values corresponded to the borders of regions
related to (0, 1) and (1, 0) Nash equilibria.

If there exists a pure NE for strategic payment shown as
(xNE

A , xNE
B , pNE

A , pNE
B ), it must meet both conditions below:

E[uA(xNE
A , xNE

B , pNE
A , pNE

B )] ≥ E[uA(xA, x
NE
B , pNE

A , pB)],

∀xA, pB (19)
E[uB(xNE

A , xNE
B , pNE

A , pNE
B )] ≥ E[uB(xNE

A , xB , pA, p
NE
B )],

∀xB , pA (20)

1) Unconstrained strategic Payment: For unconstrained
payment, the pure Nash equilibria are computed as follows:
• (1, 1, pNE

A , pNE
B ) is a pure NE if

E − pNE
A GA ≤ LA

E − pNE
B GB ≤ LB

which is exactly similar to the pure NE (1, 1) for
the exogenous payment and means that all the points
in the region VII in Fig. 2 can be pure NE for the
strategic payment.

• To have a NE point (0, 0, pNE
A , pNE

B ) the following
inequalities should hold:

E − pAGA ≥ UA, ∀pA
E − pBGB ≥ UB , ∀pB

which is impossible, because for some pA and pB
the above inequalities are not valid. Therefore, this
quadruple cannot be a pure NE.

• To have a point of (1, 0, pNE
A , pNE

B ) as a pure NE, we
get:

pNE
B GB ≥ pBGB , ∀pB (21)

E − pNE
B GB ≤ UB (22)

E − pNE
B GB ≥ LB (23)

Proof: The quadruple (1, 0, pNE
A , pNE

B ) is a pure
NE if three conditions hold. First, the following dif-
ference should be greater than or equal to zero:

E[uA(1, 0, pNE
A , pNE

B )]− E[uA(1, 0, pNE
A , pB)]

= (pNE
B − pB)GB ≥ 0

which results in (21). Second,

E[uA(1, 0, pNE
A , pNE

B )]− E[uA(0, 0, pNE
A , pB)]

= −E + rAGA − qAE[dA − sA] + pNE
B GB

+ qAE[dA] = −E + rAGA + qAGA + pNE
B GB ≥ 0

(24)

which is equivalent to (22). Third,

E[uB(1, 0, pNE
A , pNE

B )]− E[uB(1, 1, pA, p
NE
B )]

= (rB − pNE
B )GB − qBE[dB − sB ]

+ E − rBMB + qBE[(dB − C)+]

= E − pNE
B GB − (rA + qB)(MB −GB) ≥ 0

which results in (23). For pB ≥ (E − LB)/GB the
inequalities (21) and (23) are not satisfied, thus this
case cannot be a pure NE.

• Similarly, (1, 0, pNE
A , pNE

B ) cannot be a pure NE.
Fig. 3-(a) shows the division of the space of (E−pAGA, E−

pBGB) for the unconstrained strategic payments and the values
of LA < UA, LB < UB . The region of (1, 1, pA, pB) is similar
to the region of (1, 1) for the case of exogenous prices shown
in Fig. 2, and the rest of the regions do not have a pure NE
anymore. Note that for other values of LA, UA, LB , UB , we
have figures similar to Fig. 2-(b-e) with having only NE of
(1, 1, pA, pB) in the regions of (1, 1).

2) Constrained strategic Payment: Now lets consider the
case where the payments are restricted to the values on the
borders in Fig. 3-(a). For instance, in case of (xA, xB) =
(0, 1), the player A is not allowed to select a price higher
than pmax,10

B = (E − LB)/GB or lower than pmin,10
B =

(E − UB)/GB . Similarly, in the case of (xA, xB) = (0, 1),
pA should be limited to pmax,01

A = (E − LA)/GA and
pmin,01
A = (E − UA)/GA. Therefore, we will have additional

conditions on the values of the payments and the NE will be
computed as follows:
• The region for (1, 1, pNE

A , pNE
B ) is similar to that for

unconstrained case.
• In contrast to the unconstrained case, there is a NE of

(0, 0, pNE
A , pNE

B ) satisfying the following inequalities:

E − pAGA ≥ UA, ∀pA ≤ pmin,01
A

E − pBGB ≥ UB , ∀pB ≤ pmin,10
B ,



(a) LA < UA, LB < UB (b) LA < UA, LB = UB (c) LA < UA, LB > UB

(d) LA = UA, LB = UB (e) LA > UA, LB > UB

Fig. 2. Division of the two-dimensional space of (E−pAGA, E−pBGB) to the regions with different NE; a) LA < UA, LB < UB , b) LA < UA, LB = UB ,
c) LA < UA, LB > UB , d) LA = UA, LB = UB , e) LA > UA, LB > UB .

which is similar to the pure NE of (0,0) for the
exogenous payment (i.e. all the points in the region
III in Fig. 2 can be pure NE).

• To have a point (1, 0, pNE
A , pNE

B ) as a pure NE, we
obtain:

pB ≤ pNE
B , ∀ pmin,10

B ≤ pB ≤ pmax,10
B

E − pNE
B GB ≤ UB

E − pNE
B GB ≥ LB .

pNE
B = pmax,10

B satisfies the above inequalities which
means that on the line of E − pBGB = LB ,
(1, 0, pA, p

max,10
B ) is a pure NE.

• Similarly (0, 1, pmax,01
A , pB) could be a pure NE on

the line of E − pAGA = LA.
Fig. 3-b shows the division of the space of (E−pAGA, E−

pBGB) for the constrained strategic payments and the values
of LA < UA, LB < UB . The regions III and VII are similar to
the exogenous case. On the above border of region VII both
(1, 1, pA, pB) and (1, 0, pA, pB) could be NE and on its right
border both (1, 1, pA, pB) and (0, 1, pA, pB) could be NE. At
the intersection of these two borders all three strategies could
be pure NE. Note that by the term (xA, xB , pA, pB) is a NE
in a specific point/line/region, we mean that only the values
of pA and pB corresponded to that point/line/region are valid.

VI. SIMULATIONS
In the simulation part, the demands for both operators

are considered to follow Poisson distributions with different
expectations shown as λA and λB . The simulation parameters,
except in the figures that their effect is considered, are fixed
as follows: C = 5, E = 4, rA = 1, rB = 1.5, qA = 0.5,
qB = 0.7, pA = 0.6, pB = 0.7, λA = 7 and λB = 5. The
parameters including E , rA, rB , qA, qB , pA and pB are set
only to indicate relative value with no practical significance.
The value for C can be understood as the maximum number
of users that one BS can serve. As for the Poisson distribution

(a) Unconstrained payment

(b) Constrained payment

Fig. 3. the two-dimensional space of (E −pAGA, E −pBGB) for strategic
payment (the case of LA < UA, LB < UB); a) Unconstrained payment, b)
Constrained payment.

parameters, the average amount of users can be indicated.
We compare the global and NE utilities in two cases, (i) the
exogenous payments, and (ii) the strategic payments.

A. Exogenous Payment
In case of exogenous payments, the payment rates are given

and the Nash equilibria are in the form of (xA, xB) pairs. Note
that for the exogenous case in all regions but region V in Fig.
2, there is only one possible pair of NE and in the region V
the total utilities of (1, 0) and (0, 1) are equal. Therefore in all
regions the best and the worst Nash equilibria are the same.



Fig. 4 shows possible NE pairs for different values of
λA and λB (Each region with different color corresponds to
possible NE pairs as mentioned on the figure). The area related
to (0, 1) is larger than (1, 0). Because rA + qA < rB + qB , the
area of region VIII in Fig. 2-(a) will be larger than the area
of region IV and therefore the chance of having NE of (0, 1)
is higher. For large values of λA and small values of λB , the
decision pair will be in the region I of Fig. 2-(a) and therefore
no pure NE will exist (which corresponds to the mixed NE
indicated on the figure).

Fig. 4. The pairs of (xNE
A , xNE

B ) for different values of λA and λB for
exogenous payment.

Fig. 5 indicates the possible NE pairs for different values
of C and E .As it is obvious from the figure, for small values
of E , (1,1) is NE and for large values of E , (0,0) is NE where
the operators prefer to turn off their BSs to save the energy.
Interestingly, for moderate values of E operators may move
from turning off both BSs to sharing, as the capacity increases.
Also, we see that which operator turns off and which one offers
its BS for sharing can invert completely as E increases, which
is rather counter-intuitive but is a consequence of asymmetry
between the relative loads, revenues and payments in the
investigated scenario.

Fig. 5. The pairs of (xNE
A , xNE

B ) for different values of C and E for
exogenous payment.

Fig. 6 shows the global optimal utility and the NE utility
versus the available capacity C, for exogenous payments. Both
utilities increase by growing C. For small values of C, both
BSs need to be on where the global utility is higher than the
NE utility. Because in the NE solution, each BS only serve
its corresponding demands and the chance of leaving some
demands unserved is higher than the global solution. For large
values of C, one of BSs could turn off and only one BS will
be enough to serve all demands, thus the global and the NE
utility will be equal.

Fig. 6. The global optimal utility and the NE utility versus C for exogenous
payments.

Fig. 7 shows the global optimal utility and the NE utility,
versus the energy cost E , for exogenous payments. By growing
the energy cost, the utility decreases and the decision changes
from (1, 1) to (0, 1) and then to (0, 0). This change happens
at smaller energy costs for the NE solution compared to the
global solution which is becasue the NE solution leaves more
unserved demands in case of (1, 1) and it prefers to switch its
decision earlier.

Fig. 7. The global optimal utility and the NE utility versus E for exogenous
payments.

Fig. 8 shows the global optimal utility and the NE utility
versus the Poisson distribution parameter λA, for exogenous
payments. For small values of λA the number of demands,
dA, is small, so the decision for both the global and the
NE solutions is (0, 1). With increasing λA the number of
demands dA grows and the utility will decrease. So the
decision switches to (1, 1) to be able to serve more demands.
This switching happens in the NE solution later than the global
solution, because even in (1, 1) decision BSA will not serve
the demands of B, and the NE utility will decrease more than
the global utility.

Fig. 9 shows the gap between the global optimal utility
and the NE utility versus λA and λB . The gap is lower when
λA and λB are close and in case of increasing only one of
them and decreasing the other one, the gap will increase.
The reason is that in the NE solution, our model does not
allow the operators to help the other’s demands when both
BSs are on. Therefore, when one of the operators has a heavy
traffic the other one could not help it and the chance of
having unserved demands are higher. This inefficiency can
be alleviated by extending the roaming contract to include
spectrum sharing even when both BSs are on, as considered
in [17]. In addition, the gap for λA ≤ λB is larger than the



Fig. 8. The global optimal utility and the NE utility versus λA for exogenous
payments.

gap for λA ≥ λB which is because of having asymmetric
parameters of rA + qA ≤ rB + qB .

Fig. 9. The gap between the global optimal utility and the NE utility versus
λA and λB for exogenous payments.

Fig. 10 shows the global optimal utility and the NE utility
versus the revenue rate rA, for exogenous payments. Both the
utilities are increasing with respect to rA. With decreasing the
revenue rA, A prefers to turn off its BS and the NE decision
will change from (1, 1) to (0, 1). In other words, in Fig. 2-(a),
with decreasing rA we are moving the borders of LA and UA to
the left and therefore a fixed point in the region VII will move
to the region VIII. In this case the slope of the curve which is
equal to sA will decrease. In the global solution, because of
using both BSs to serve dA and dB in (1, 1), decreasing the
revenue of rA can not affect the decision which stays in (1, 1)
and thus the slope of the global utility versus rA is fixed.

Fig. 10. The global optimal utility and the NE utility versus rA for exogenous
payments.

We skip the figure of the utilities versus qA which follows

same arguments as Fig. 10 with having decreasing behaviour
with respect to qA.

Fig. 11 shows the global optimal utility and the NE utility
versus the payment rate pA, for exogenous payments. We
consider two different values for E and qB : (i) E = 4 and
qB = 0.3 and (ii) E = 8 and qB = 0.3. For the first (second)
set of values, the NE utility will increasing (decreasing) by
growing pA and switching NE. But as far as the NE is not
changed the total utility stays fixed, because of decreasing the
utility of A and increasing the utility of B with the same
amount.

Fig. 11. The global optimal utility and the NE utility versus pA for exogenous
payments.

B. Constrained Strategic Payment
We present some simulation results for the constrained

strategic payment. In this case the payment rates pA and pB are
also parts of strategy which could move the NE point among
all the regions (if there exists a NE) in Fig. 3. Therefore, the
best and the worst Nash equilibria can be different and we will
compare these two strategies with each other as well as with
the global solution. In the strategic payment the selection of the
NE is a more significant problem and the best NE achieves a
lot better utility than the worst one. We skip the unconstrained
strategic payment which only has one region of (1, 1) and the
rest of the Nash equilibria do not exist and only consider the
constrained payment. To have more clear figures we only show
the decision parts of the strategies, as given by (xA, xB), and
drop the pA and pB notations.

Fig. 12 and Fig. 13 show the global optimal utility and the
best and the worst NE utilities versus C and E , respectively, for
constrained strategic payments. With increasing C, the worst
NE which is (0, 0) is not changing and the best NE achieves
better utility. With increasing E the worst NE changes from
(0, 0) to (1, 1) which consumes a large amount of energy.

Fig. 14 shows the gap between the global optimal utility
and the best NE utility versus λA and λB for the constrained
strategic payments. We see similar results compared to Fig. 9.

Finally, we also examined how the global optimal utility
and the best and the worst NE utilities vary versus rA for
constrained strategic payments, but we do not show the figure
due to lack of space. Similar to the exogenous payment case,
all utilities are increasing with respect to rA. Similarly, though
we do not show the figure, the utilities decrease with respect
to qA.

VII. CONCLUSION
The microeconomic model presented in this paper shows

that inter-operator cooperation for energy-efficient operation



Fig. 12. The global optimal utility and the NE utility versus C for constrained
strategic payments.

Fig. 13. The global optimal utility and the NE utility versus the enrgy cost,
E , for constrained strategic payments.

is a complex issue. It shows that the decision to cooperate or
not depends sometimes sensitively on factors such as baseline
energy consumption, capacity, traffic loads on each operator,
and the revenues and penalties associated with satisfied and
unsatisfied customers. We find that often there are multiple
equilibria, and the gap between the best and worst equilibrium
can be substantial, so that the question of equilibrium selection
is a significant one in this domain, and needs to be addressed
in future work.

We believe the work presented in this paper is a first step
towards investigating these issues in more detail and there
are many interesting open problems ahead. For instance, in
our model, we have assumed that once operators agree to
cooperate, they will treat both their own traffic and the traffic of
the competing operators fairly; however, if they have different
revenues and payments, higher utility may be obtainable by
optimizing over the scheduling policy to favor one set of
customers over another; this bears further investigation as well.
Also, in the current model, equilibria were computed under
the assumption of full-information. In practice the traffic of
competing operators may be an unknown quantity, though it
may be inferable from observations of the other operator’s ac-
tions over repeated plays. Extending the model to address these
issues would be another avenue for future work. Other future
works could be considering time-varying energy cost/revenues,
or asymmetric settings where the values of energy, capacity or
revenues are different for different BSs.
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