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Abstract—We present two novel distributed algorithms for
hole detection in a wireless sensor network (WSN) based
on the distributed Delaunay triangulation of the underlying
communication graph. The first, which we refer to as the
distance-vector hole determination (DVHD) algorithm, is based
on traditional distance vector routing for multi-hop networks
and shortest path lengths between node pairs. The second,
which we refer to as the Gaussian curvature-based hole
determination (GCHD) algorithm, applies the Gauss-Bonnet
theorem on the Delaunay graph to calculate the number of
holes based on the graph’s Gaussian curvature. We present
a detailed comparative performance analysis of both methods
based on simulations, showing that while DVHD is conceptually
simpler, the GCHD algorithm shows better performance with
respect to run-time and message count per node.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a group of small
devices with sensing, wireless communication and compu-
tation ability, intended to monitor or gather information
in many diverse situations. A WSN can be applied to a
wide range of fields like environment monitoring, industrial
operation management, health management and surveillance.
There are many important and practical challenges in WSN
such as scalable deployment, self-organization, routing, lo-
calization and clustering. Over last few decades, many
researchers across the world have significantly contributed
to each of these sub-domains [1]. However, most of these
works assume uniformity in the distribution of the network
over the region of interest, which is far from practical
distributions. Due to non-uniformity of practical distribu-
tion, some regions can lack sufficient number of sensors.
Moreover, there can also be regions that are completely
deprived of sensors due to reasons like presence of obstacle,
node failure and worm/hole attack. We denote these regions
as “holes” in the network. The appearance of such holes
make the sensor network organization difficult. Fang, Gao
and Guibas have presented a definition of a hole or commu-
nication void as a face of a random directed graph (RDG)
with 4 or more vertices [2].

There exist many situations that result in creation of holes
in the WSN and the holes are also classified according to
these situations. The most important kind of hole is coverage
hole [3]. It can be created by improper node placement or

physical obstacle. Among other kind of holes, routing holes
[2], holes due to jamming signal [4] or malicious attack on
nodes [5] are important. All these kind of holes can result in
inefficiency or even hamper task completion in the network.
Also, jamming holes or sink holes possess the potential
threats of privacy and integrity compromise of the WSN.
To mitigate these problems, many researchers have tried to
either identify and patch holes or to prevent their creation.
We make a contribution to the literature on this problem by
providing two novel distributed techniques for the detection
and counting of holes in the network. These algorithms can
be used periodically as a distributed service to monitor the
status of a network over a period of time.

In particular, both algorithms are graph based approaches
and can be divided in two parts. While the first part, building
a distributed Delaunay triangulation, is shared by both meth-
ods, the second part is very distinct. The first method, that
we refer to as distance-vector hole determination (DVHD)
algorithm, employs a novel weighting model for shortest
distance path calculation between any pair of nodes1 and
leverages the path distance as metric for identifying the
holes’ boundaries. The second method, that we refer to as
the Gaussian curvature-based hole determination (GCHD)
algorithm, is based on distributed curvature calculation using
Gauss-Bonnet theorem in discrete settings. We also provide
a complete comparative analysis of both algorithms with
respect to correctness, runtime analysis and message com-
plexity via simulations.

II. RELATED WORK

The research on problems concerning holes in sensor
networks is relatively recent. In the following, an overview
of the current state of the art is provided. In [2], Fang, Gao
and Guibas presented an analytical model of a hole in sensor
networks. Based on that model they proposed two distributed
algorithms called Tent rule and BoundHole to find holes
in a sensor network using the geographical location of the
nodes. Connectivity information of the underlying commu-
nication graph topology without any locational information
of the nodes was the core of the hole detection algorithm

1In this paper we interchangeably use the terms node and vertex.



proposed by Funke [6]. Later on, they published another
improved method [7] with focus on correctly recovering
geometric information from the connectivity graph. Yao et
al. [8] used connectivity information gathered from one-
hop neighbors for coverage hole detection in distributed
manner. Yan, Martins and Decreusefond [9] presented a
technique for detecting coverage hole using a connectivity
based technique. They used two simplicial complexes, Rips
complex and Cech complex, to model the network around
hole and then used connectivity graph and concept of the
Hamiltonian cycle to find nodes in the hole boundary. In
[10], Ghrist and Muhammad presented an algebraic method
of hole counting called homology. The work of Wang
et al. [11] on identifying boundaries is also mentionable.
Compared to these works which are developed for static
networks, our algorithms are focused on mobile networks
with geographical coordinates.

Huang and Tseng [3] are among the few researchers to
present a method to solve the coverage hole problems. Wang
et al. [12] proposed a heterogeneous network architecture
containing both mobile and static sensor nodes to mitigate
the coverage hole problem. They used static sensors to
detect the holes and the mobile sensors to cover the holes
to the greatest extent. Wood, Stankovic and Son presented
technique for mapping and identifying jammed area in a
wireless sensor network [4]. Unlike these methods, we do
not restrict our algorithms to certain types of holes. However,
like most of the hole detection algorithms, the core idea of
our hole counting techniques is based on identifying distinct
boundaries of the underlying communication graph.

III. DISTRIBUTED HOLE DETECTION

In this section, we describe our proposed methods for dis-
tributed hole detection. These methods rely on the Delaunay
triangulation of the underlying communication graph of the
WSN. Prior to detailed description of our methods, we define
some terms used in the algorithms. Note that, the definitions
of holes are based on the availability of a triangulation. In
previous works, when a triangulation is not available the
definition of a hole is by itself a research question.

Definition 1. Distinct Boundary: Two hole boundaries based
on the triangulation will be called distinct boundaries if and
only if they have no common edges.

Definition 2. Boundary Cycle: A boundary cycle is the
sequence of nodes in a distinct boundary.

Definition 3. A Delaunay triangulation is closed if the
number of distinct boundaries is greater than 1 for a network
with holes.

The Delaunay triangulation is a special kind of triangula-
tion of the convex hull of a set of points. The most important
property of the Delaunay triangulation is the ‘Empty Circle’
property which implies that no other point or vertex should

be inside a circumcircle of a Delaunay triangle, except
its vertices. Another important property is ‘Planar Graph’
property which states that no two edges of the graph should
cross each other. In this scenario, any Delaunay edge’s length
should also be less than or equal to the communication range
of the nodes. Furthermore, the Delaunay triangulation of
a network with holes should be ‘closed’. In [13], Bruck,
Gao and Jiang presented a method for the Delaunay trian-
gulation in a practical network containing multiple nodes.
In their work, they assume that the nodes have accurate
angle calculation capabilities. They show that all the short
Delaunay edges, i.e., edges whose length are within the
communication range, can be found in a distributed manner
with only information from the neighbors. This way each
node/vertex has only a local knowledge of the Delaunay
triangulation.

Now, we briefly describe the steps of our distributed
Delaunay triangulation technique. The first task of each
node/vertex is to identify its one-hop neighbors and make
a list of all possible triangles obtained with any two of the
neighbors. Then based on the ‘Empty Circle’ property, ‘Pla-
nar Graph’ property, each node removes the non-Delaunay
Triangles from its triangles list. For these purposes, we rely
on angle information rather than coordinates. In this context,
if two triangles, say 4ABC and 4ABD, share an edge
and this edge satisfies the local Delaunay property, then
the sum of angles ∠ACB and ∠ADB is less than π. The
next important task is to deliver the information about a
triangle removal to the other nodes/vertices of that triangle,
so that they can also remove it from their lists. By doing
so, neighboring nodes will have unambiguous view of the
Delaunay triangulation. But this restricts the parallelism to
some extent, because we need synchronization between the
neighbors to make sure that a node can run this algorithm
only if none of its one-hop neighbors is running it. This
problem can be solved using proper scheduling such as token
ring approach where a node will run this algorithm only if
it possesses the necessary token ring.

One major requirement for this algorithm is that either
each node knows its own location or each node is capable
of accurate calculation of incident angle between any two
of its one-hop neighbors. As a result of this algorithm, each
node has a local view of the global Delaunay triangulation.
That is all we need for our hole detection techniques. Based
on this information, we can also determine the number of
distinct boundaries that includes node {i}, say DHi. Given
the number of Delaunay neighbors, DN i, and the number
of Delaunay triangles, DT i, DHi = DN i−DT i. Next, we
discuss the second part of our algorithms in details. Prior to
that we introduce few more definitions as follows.

Definition 4. Boundary edge/link: In the triangulation if an
edge is part of only one triangle i.e no two triangles have
this edge as common edge, then we refer to it as boundary



edge.

Definition 5. Interior vertex/node: A vertex of the triangu-
lation is an interior vertex if none of its adjacent edges is a
boundary edge.

Definition 6. Boundary vertex/node: A vertex of the trian-
gulation is a boundary vertex if at least one of its adjacent
edges is a boundary edge.

Definition 7. Pinch vertex/node: A vertex of the triangula-
tion is a pinch vertex if it is a boundary vertex and part of
more than one distinct boundaries.

A. Distance Vector Hole Determination (DVHD)

This method is based on the shortest distance path be-
tween a pair of nodes in the weighted Delaunay graph
of the underlying communication model. It uses traditional
Bellman Ford algorithm for the shortest path calculation.
The core of this method is the link/edge weighting model
and modified distance vector table. We assign a weight
of ‘1’ to all the boundary edges and some high constant
weight K (greater than number of nodes, N ) to rest of
the edges. Ideally, the value of K can be assumed as
∞ to make the algorithm independent of N . The edges
in this context are obviously the Delaunay triangulation
edges. The structure of the distance vector table is also
modified to include a separate column (called boundary flag)
to discern between boundary vertices and interior vertices.
Similarly, the information shared between neighbors also
include information about the destination being a boundary
or an interior vertex.

Now, based on this model, the shortest path distances
between every pair of vertices is calculated. The decision
policy used in DVHD can be described as follows. If the
shortest path distance between two boundary vertices is less
than K, we say they are on the same boundary. If the shortest
path distance between two boundary vertices is greater than
or equal to K, we say they are on different boundaries.

(a) (b)

Figure 1. Solving the ‘pinch vertex’ problem

This decision policy and algorithm will lead to an er-
roneous calculation if there exists a pinch vertex, as in
Figure 1. Since a pinch vertex is part of more than one
hole boundary cycles, the vertices on two different boundary
cycles will try to find shortest part through the pinch vertex
e.g., the distance between vertex x and vertex z will be

2 (x → v → z) even though they are in the different
boundaries. To solve this problem, firstly, we identify a pinch
vertex, say v, of the Delaunay triangulation. Then for each
extra boundary it is part of, we add a dummy node v′ and
assign the constant weight, K, to the edge between node
v and v′. Also connect the dummy node to the neighbors
of the pinch vertex which are on the same boundary the
vertex v′ is now part of. Figure 1b clearly demonstrates the
concept. Then assign a weight of ‘1’ to those new edges.
To this end, we need to distinguish which edges belong to
the same boundary at vertex v. This problem can be solved
straightforwardly by exploiting the angle information, i.e.,
sorting the edges clockwise and matching adjacent boundary
edges. In general, it is also possible to have a chain of nodes
as in Figure 2a. We fix this problem similarly by taking
duplicates as in Figure 2b. Then we apply the previously
mentioned weighting scheme on the modified graph. Now,
we run the shortest path algorithm on the modified graph
and apply the decision policy described before to get the
number of distinct boundaries. The nodes on the same
boundary use a unique identifier to identify the boundary
which they are part of. This unique id can be chosen in
many different ways such as taking the smallest node id in
the boundary cycle(including the dummy node ids) to be the
boundary cycle id. Each node can determine the smallest
node id locally, by exploring its distance vector table. Next,
based on application, they flood the entire network with this
hole identifier to inform the rest of the network about the
boundary’s existence. After flooding is complete, every node
will have same information, that is the number of distinct
boundary identifiers in the network which is same as number
of holes. The convergence of the distributed Bellman Ford
algorithm is shown in [14].

(a) (b)

Figure 2. Solving the ‘Chain vertex’ problem

B. Gaussian Curvature-based Hole Determination (GCHD)
The Gauss-Bonnet theorem [15] is an elegant way to

connect geometry, specifically the concept of curvature, to
the Euler characteristics of a topological surface. Given
the number of holes Z and number of handles H, the
total curvature of a surface M is a topological invariant:
Ctotal = 2πχ(M) where χ = 2 − 2 ∗ H − Z . The Gauss
Bonnet theorem has a discrete version for triangulated 2-
manifolds, i.e., triangulations with no two boundary cycles
sharing any common vertices.

Although, the Gauss-Bonnet Theorem is applicable to any
triangulation, we focus only on “topological” triangulation



for ease of implementation. The term “topological” is used
to describe triangulations that need no knowledge of the edge
lengths. For a triangulated graph, Ctotal can be expressed as∑
viεV

C(vi) where C(vi) is the curvature for vertex {vi}.
To simplify the curvature calculations, we artificially assign
each edge a weight of 1. It implies that all the angles of the
triangles are π/3.

Definition 8. Corner Angles: A corner angle of a node v
is the interior angle of a Delaunay triangle attached to it.
Node v must also be the vertex of the angle.

The curvature of an interior vertex {v}, is C(v) = 2π −∑
i θi(v), where θi(v) refers to the ith corner angles that v

is involved. The curvature of an boundary vertex {v} that
stays on only one boundary cycle, is C(v) = π−

∑
i θi(v),

where θi(v) refers to the ith corner angles that v is involved.
In our settings, all the corner angles are assigned a value of
π/3. Thus for an interior vertex v, the curvature is C(v) =
2π − k(v) · π/3, where k(v) is the number of triangles that
v is involved. Similarly, for a boundary vertex v that stays
on only one boundary cycle, the curvature is C(v) = π −
k(v) · π/3, where k(v) is the number of triangles that v is
involved.

The triangulation we obtain as mentioned above may have
multiple boundary cycles sharing common vertices thereby
violating the property of a 2-manifold. One way of handling
this is to add dummy vertices as is done in [15]. Here we
are not going to maintain the dummy vertices but rather
directly count/modify the curvature definition. Therefore, if
a vertex v stays on multiple boundary cycles, as in Figure 1,
we will imagine adding a dummy node v′ to restore the
property of a 2-manifold. Also connect the dummy node to
the neighbor of the pinch node in the same way as mentioned
in the DVHD algorithm. From a mathematical standpoint,
for the case in Figure 1, we are adding an extra −2π/3
at vertex v, an extra −π/3 at vertex x and vertex y each,
and an extra π − 2π/3 at vertex v′. This gives a total of
extra −π for the curvature. So for each agent that is part of
more than one boundary, the modified Gaussian curvature
will be C(v)+(n(v)−1)∗ (−π) where vertex{v} is part of
n(v) distinct boundaries. Similarly, if there exists a chain of
nodes as in Figure 2a, it should be fixed by taking duplicates
similar to Figure 2b. Again the duplicated nodes do not need
to be explicitly added. Each duplicated node contribute to
an extra π. Suppose the chain has length m, there will be
m duplicated nodes. All the corner angles of the dummy
triangles contribute to −2mπ. Thus the total extra curvature
we need to add would be −mπ. To solve this problem in a
distributed manner, firstly we identify the nodes that form a
chain (say, length= m). Then each node of the chain adds −π
to its local curvature calculation which results in a addition
of −mπ to the network’s curvature in total.

To use the Gauss-Bonnet theorem for hole detection we
need to add all the curvatures, C(v). The calculated sum

is equal to 2π(2 − h), where h is the number of holes.
So if there is only one hole (the outer surrounding of the
network is also a large hole) the sum becomes 2π. Thus
for counting the number of internal holes, we need to use
Ctotal = 2π(1 − h). To calculate Ctotal in distributed
manner, each vertex floods its own Gaussian curvature. After
flooding is complete, each vertex just add the curvature
values received, to get the Ctotal. An alternative method
is to use some consensus technique [16] to converge to the
average curvature value in the network and multiply it by
N . However, simple flooding is used to avoid the asymptotic
convergence problems of average consensus algorithms.

IV. SIMULATION & ANALYSIS

In this section, we evaluate the performance of both
GCHD and DVHD algorithms in a range of different sce-
narios. The simulations are performed on MATLAB 8.1 in
a Windows 8.1 computer with a 3.40 GHz processor and
12 GB RAM. We have taken average of 20 simulations for
each plot. Note that, in the comparative simulations we do
not consider the flooding part of the algorithms as it provides
similar outcomes for both algorithms.

In Figure 3a, we plot the variation of the average simula-
tion run-time per node with increasing number of holes in a
network with 200 nodes. From the simulation, it is clear that
the runtime remains almost the same or rather it decreases
with increasing number of holes for a network with fixed
number of nodes. The decrease of the algorithm runtime can
be explained by the fact that the number of boundary nodes
is likely to increase when the number of holes increases. So
the average number of neighbors per node decreases which
thereby slightly reduce the average calculation. Another
important point to note in Figure 3a is that the time taken
by the DVHD algorithm is always larger than the GCHD
algorithm. The extra time required in the DVHD algorithm
is due to the distance vector algorithm’s runtime to find the
shortest paths. We present the variations of average run-
times required per node with increasing number of nodes in
Figure 3b. The invariants in this plot are the number of holes
in the network, which is set to be 3, and the area per node.
It shows that, with increasing number of nodes the time
required also increases. In addition, it can be noticed that
the time required by the DVHD algorithm is always larger
than the GCHD algorithm due to same reason as before.

The simulation also points out that the number of message
exchanges per node in the network increases with increasing
number of nodes in the network. This is clear from Fig-
ure 3c, where the number of holes is equal to 3. However,
the average number of message remains almost same with
the increasing number of holes, as shown in Figure 3d. In
both cases the number of messages required in the DVHD
method is greater than the GCHD method due to the shortest
path calculations. However, one of the major advantages of
the DVHD algorithm over the GCHD algorithm is that it is
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Figure 3. Performance plots (a) run-time with increasing number of holes (b) run-time vs increasing number of nodes (c) number of messages sent per
node with increasing number of nodes (d) the number of messages sent per node with increasing number of holes

independent of the number of nodes (N ) in the network,
provided K = ∞ (or very high value compared to any
feasible N ).

In summary, according to the simulation results, the
GCHD algorithm outperforms the DVHD algorithm in al-
most every aspect, except simplicity of implementation
and independence from number of nodes in the network.
However, the independence of DVHD from number of nodes
in the networks, is a huge advantage in terms of scalability
and dynamic nature of the algorithm.

V. CONCLUSION AND FUTURE WORK

We have presented two novel methods for hole detection
in WSN called DVHD and GCHD. Both of them are
based on the topological information of the underlying
communication model. A detailed comparative analysis of
these methods is also presented in this paper. There is still
some work left to do with our proposed method including
theoretical analysis of the message complexity and practical
implementation on a real WSN testbed. Another future di-
rection may be to flesh out similar analysis in case of mobile
wireless sensor networks along with analysis of robustness
and fault tolerance. Also our current simulations rely on
the integrity of the underlying communication model. The
performance analysis of our methods on dynamic scenarios
with some probability of link failures is another direction
yet to be considered.
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